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Metastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and
radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability,
migration, and immunogenicity. Such species are also created by cold physical plasma, an ionized gas capable of redox
modulating cells and tissues without thermal damage. Cold plasma has been suggested for anticancer therapy. Here, melanoma
cell toxicity, motility, and immunogenicity of murine metastatic melanoma cells were investigated following plasma exposure
in vitro. Cells were oxidized by plasma, leading to decreased metabolic activity and cell death. Moreover, plasma decelerated
melanoma cell growth, viability, and cell cycling. This was accompanied by increased cellular stiffness and upregulation of
zonula occludens 1 protein in the cell membrane. Importantly, expression levels of immunogenic cell surface molecules such as
major histocompatibility complex I, calreticulin, and melanocortin receptor 1 were significantly increased in response to plasma.
Finally, plasma treatment significantly decreased the release of vascular endothelial growth factor, a molecule with importance
in angiogenesis. Altogether, these results suggest beneficial toxicity of cold plasma in murine melanomas with a concomitant

immunogenicity of potential interest in oncology.

1. Introduction

With over 70,000 new incidences and 10,000 deaths annually
in the U.S. alone, melanoma is a highly prevalent type of can-
cer [1]. Advances have been made in melanoma therapy in
the past decade but stage IV survival of nonresponder
patients is still poor [2]. This owes partly to melanomas hav-
ing the highest mutational burden but at the same time also
having the most neoantigens among all types of cancers in
humans [3]. Similar to other types of cancer, the majority
of patients die due to metastasis spreading throughout the
body [4]. This requires an understanding of cellular behavior
and motility in response to therapy [5]. BRAF, NRAS, and
MEK inhibitors improved end-stage melanoma patient

survival [6]. Melanoma immunotherapy with anti-PD-(L)1
and anti-CTLA-4 antibodies further revolutionized therapy
by abolishing cancer immunosuppression of tumor-specific
T cells [7]. Moreover, increased immunogenicity correlates
with CD163" cellular infiltrate that in combination with the
number of FOXP3" cells is a predictor of survival [8]. Immu-
nogenic cell death (ICD) is hallmarked by expression of cal-
reticulin [9] which makes tumor cells visible to the immune
system [10]. Of note, mitochondrial-derived reactive oxygen
species (ROS) and reactive nitrogen species (RNS) and subse-
quent oxidative events seem to contribute to some molecular
ICD events following chemo- and radiotherapy [11].
Cold physical plasma is an ionized gas and potently gen-
erates ROS and RNS of different kinds [12]. Several studies
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indicated the involvement of mitochondria in plasma-
mediated cancer cell death, underlining the notion that exog-
enous as well as endogenous reactive oxygen species may be
at work [13-15]. Accordingly, cold plasma has been sug-
gested as an interesting tool in skin cancer [16] and generally
in tumor therapy [17] before. The first work also pointed at
the plasma’s potential to involve immunogenic cell death
[18]. Interestingly, antioxidants were shown to enhance met-
astatic spreading in a murine melanoma model [19].

Hence, the effects of cold plasma-derived oxidants on cell
motility, cytotoxicity, and immunogenicity were studied in
murine melanoma cell line. It was found that all of these
three important hallmarks of cancer were affected by expo-
sure to plasma. These results are promising with regard to
cold plasmas potentially having a future role in combination
therapy in oncology.

2. Materials and Methods

2.1. Cell Culture and Plasma Treatment. Murine, metastatic
B16F10 cells (ATCC CRL-6475) were maintained in Rosswell
Park Memorial 1640 (RPMI1640) medium (Pan BioTech,
Germany) containing 10% fetal bovine serum, 2% penicil-
lin/streptomycin, and 1% glutamine (all Sigma, Germany).
For plasma treatment in 24-well dishes (NUNC, Denmark),
5% 10* cells were added per well. For treatment in 96-well
plates (NUNC), 1x 10* cells were given to each well. Cells
were allowed to adhere overnight. As plasma source, an
atmospheric pressure argon plasma jet (kINPen 11) was uti-
lized. This plasma primarily acts via ROS and RNS and is not
genotoxic [20, 21]. The device is technically similar to the
KkINPen MED that received accreditation as medical product
for skin disease. Argon gas (99.999% pure; Air Liquide,
France) was used to ignite the plasma at a frequency of
about 1 MHz [22]. The jet was hovered over the cells for
the indicated time using a computer-programed xyz-table
(CNC, Germany).

2.2. Redox-Sensitive Probe and High-Content Imaging. Cells
were loaded with CM-H,DCF-DA (Thermo Fisher, USA)
and treated with plasma or were left untreated. Fluorescent
microscopy (Observer Z.1; Zeiss, Germany) was employed
to image dye fluorescence facilitated by intracellular oxidases.
Quantification of the cells’ mean fluorescent intensities was
facilitated using Fiji software. Metabolic activity was assessed
by incubating the cells with 7-hydroxy-3H-phenox-azin-3-
one-10-oxide (resazurin; Alfa Aesar, USA). Subsequently,
fluorescent resorufin was quantified using a microplate
reader measuring at A, 535nm and A,, 590nm (Tecan,
Switzerland). To assess viability visually, propidium iodide
(PL; Sigma) was added, and cells were imaged with a high-
content imaging device (Operetta CLS; Perkin-Elmer,
Germany) at different time points following treatment. For
each time point, the total number of cells was quantified
using digital phase contrast (DPC), and the number of PI
positive were expressed as percent of that. In a similar man-
ner, the total growth area was calculated for different time
points following plasma treatment. DPC was used to identify
cells, and only viable cells were included in the analysis before
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normalization to untreated control was calculated. To quan-
tify cell motility, cells were plasma-treated and subsequently
imaged every 20 min over three hours. Only PI” cells (identi-
fied using DPC) were tracked. Mean displacement per cell
over time was calculated. To identify mean nuclear area per
cell for each treatment, B16F10 melanomas were fixed with
PBS/PFA (4%, Sigma), permeabilized with 0.1% Triton X
100 (Sigma), and stained with DAPI. Nuclei area was quanti-
fied using automated image analysis. A similar protocol was
applied to quantify cytosolic mean fluorescence intensity of
zonula occludens 1 (ZO1 antibody; AbCam, UK) protein.
The cytosolic area was determined using DPC, and the
nuclear area was subtracted from that. Data analysis was per-
formed using Harmony 4.5 software (PerkinElmer).

2.3. Real-Time Deformability Cytometry. Real-time deform-
ability cytometry (Zellmechanik, Germany) allows analyzing
the mechanical properties of cells with a throughput of up to
1000 cells per second [23]. The setup is built around an
inverted microscope (Zeiss Observer, Germany) having a
PDMS-based microfluidic chip assembled on the translation
stage. One to two hours after plasma treatment, the cell sus-
pension was driven through the central constriction of the
chip by a syringe pump (Nemesys; Cetoni, Germany) at dif-
ferent flow rates between 0.16 ul/s and 0.32 ul/s. Inside the
constriction, cell deformation was induced by a laminar flow
profile and recorded by a high-speed camera (MC1362;
Mikrotron, Germany) at 2000 frames per second. Image
analysis was done on the fly enabling the quantification of
size and deformation for each cell. For sample preparation,
cells were centrifuged and resuspended in PBS containing
0.5% (w/v) methylcellulose to a final concentration of 10°
cells per ml. For each sample, at least 5000 events were
acquired. An analytical model calculating the hydrody-
namic flow profile around a cell inside the channel allows
to link cell deformation to material properties [24] and
derivation of the cells’ Young’s modulus [25]. Here, cell
deformation is calculated from

Je 1 (2\/71A)’ (1)
1
where A represents the area of the cell and I the perimeter.
Statistical analysis was based on linear mixed models, which
separates random effects, for example, biological variability,
from fixed effects, for example, treatment of cells.

2.4. Cell Surface Marker Expression. Cells were detached
using accutase (BioLegend, UK) and incubated with mono-
clonal antibodies directed against MHC I allophycocyanin
(BioLegend), melanocortin receptor 1 (MC-1R) fluorescein
isothiocyanate (Bioss, USA), and calreticulin (CRT) Alexa
Fluor 647 (AbCam, UK). Cells were washed and resus-
pended in PBS containing 1% bovine serum albumin
(Sigma) and 4'6-diamidino-2-phenylindole (DAPI; Sigma).
Cellular properties were acquired using multicolor flow
cytometry (CytoFlex; Beckman-Coulter, Germany). Only
viable (DAPI") cells were included for the analysis of cell
surface marker mean fluorescent intensities. Kaluza 1.5a
software (Beckman-Coulter) facilitated data analysis.
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F1cure 1: Oxidation and metabolic activity. (a) B16 melanoma cells were loaded with H,-DCF-DA and subjected to plasma treatment (120s)
or not. (b) Quantification of mean fluorescence intensities of the cells. (c) Mean fluorescence intensity of resorufin representative for cellular
metabolic activity. Data are one representative (a, b) and mean + S.E. (c). Statistical analysis was carried out using -test.

2.5. Vascular Endothelial Growth Factor. Cell culture super-
natants were stored at —80 °C until analysis. Concentrations
of vascular endothelial growth factor (VEGF) were assessed
using an enzyme-linked immunosorbent assay (ELISA) kit
(BMS619-2) according to the vendor’s instructions
(eBioscience, Germany).

2.6. Statistics. Graphing and statistical analysis was per-
formed using prism 7.02 (GraphPad Software, USA). Mean
and standard errors were calculated and analyzed according
to statistical methods given in the figure legends. Groups or
treatments differing significantly were marked with asterisks
(*p<0.05 **p<0.01; and ***p < 0.001).

3. Results

3.1. Plasma Oxidized Melanoma Cell and Decreased
Metabolic Activity and Viability. Cold physical plasma gener-
ated many different kinds of oxidants. In cells loaded with
H,-DCE-DA, plasma treatment increased total fluorescence
in B16 melanoma cells compared to untreated controls
(Figure 1(a)). Quantification of individual cellular fluores-
cence yielded a significantly enhanced mean fluorescence
intensity (Figure 1(b)). To assess the cytotoxic effects, meta-
bolic activity was assessed 3 hours after plasma treatment.
Exposure to plasma for 60s or 120s but not 120s of argon
gas alone significantly decreased metabolic activity
(Figure 1(c)). Subsequently, plasma-treated and control cells

were imaged at different time points following in presence of
PI indicative for cell membrane damage (Figure 2(a)). Utili-
zation image-based quantification algorithms and the total
number of cells as well as their mean fluorescence intensity
of PI were determined (Figure 2(b)). Quantification and nor-
malization to total cells revealed a significant increase in ter-
minally dead cells in samples that had received 120s of
treatment (Figure 2(c)). Peak percent of dead cells was mea-
sured 12h after treatment with a decrease after that. Alto-
gether, plasma oxidized melanoma cells and decreased their
metabolic activity by inducing terminal cell death.

3.2. Plasma Affected Cell Growth, Motility, and
Biomechanical Properties. Next, total cell area and cell
motility was assessed in PI" (viable) cells. Total cell area
was quantified at different time points postplasma treatment.
Immediately following the treatment, the cell area was
not affected (Figure 3(a)). By contrast, 60s and 120s of
plasma treatment gave a significantly reduced cell area
(Figures 3(b), 3(c), 3(d), and 3(e)). In the 120s treated
samples, the area was almost similar within the first hour
(Figure 3(a)) compared to 6h (Figure 3(b)) after treatment.
This was not the case with all other samples where an
increased cell area was observed. This suggested that also
the viable cells were halting proliferation and possibly migra-
tion. Thus, the mean displacement of each viable cell was
determined over three hours in controls and plasma-treated
cells. In the 120's plasma-treated sample, total displacement
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FIGURE 2: Cell death. (a) Representative bright field and PI overlay images of control (upper row) and plasma-treated (120 's, lower row) cells
at different time points following exposure. (b) Representative dot plot of control cell area versus PI intensity per cell. (c) Representative dot
plot of plasma-treated (120 s) cells and their area versus PI intensity per cell. Image quantification and normalization of PI" cells of all cells per
field of view. Data are presented as mean + S.E. of nine replicates. One representative of three independent experiments is shown. Statistical
analysis was performed using t-test.

per viable cell was significantly decreased (Figure 3(f)). Con-  Therefore, real-time deformability cytometry was performed
comitantly, mean nuclear area was significantly enlarged, in murine B16F10 control (Figure 4(a)) melanoma cells as
arguing for cell cycle arrest. Both facts indicate decelerated ~ well as following exposure to 60s (Figure 4(b)) and 120s
cell motility, which is linked to biomechanical properties.  (Figure 4(c)) of plasma treatment. After 60s of plasma
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per treatment and time point. Statistical analysis was carried out using one-way ANOVA.
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FIGURE 4: Real-time deformability cytometry. (a) Real-time deformability cytometry data of a control sample was compared to cells after 60 s
(b) and 120s (¢) plasma treatment. (d) The 50% and 90% density lines of each population are given for control (blue) and plasma-treated (red
605, green 120 s) cells. (e) After plasma treatment, melanoma cells revealed a significant increase in Young’s modulus whereas individual cell
area (f) was nearly unaffected. Measurements have been carried out in a 30 ym channel at a frame rate of 2000 fps. Data shown are one
representative (a—c) or mean (d) + S.E. (e, ) of three independent experiments.

treatment, the median deformation and cell area changed
from d=0.041 to d=0.027 and A=216.6um> to A=
202.6 um’, respectively. A further reduction in median defor-
mation to d=0.02 was seen after 120s of plasma treatment.
This is summarized in Figure 4(d) by comparing the contour
lines of each population. Overlay contour lines of each
population clearly marked differences between all samples
(Figure 4(d)). Application of an analytical model [25] allows
for calculation of cellular properties. Significant differences
were obtained between plasma-treated and control samples
(Figure 4(e)). Sixty seconds of plasma treatment led to a sig-
nificant increase in Young’s modulus from 1.53 + 0.22 kPa to
1.79 £ 0.23 kPa. Plasma exposure of 120's resulted in an even
higher elastic modulus of 1.94 +0.26 kPa. This alteration in
mechanical properties was accompanied by a small decrease
in cell area from 243.6+19.4um”> to 233.1+19.1 um*
(Figure 4(f)). An integral part of tight junction formation,
membrane-associated ZO1 expression is inversely linked to
motility. Immunofluorescence staining gave an increase in
cytosolic staining of ZO1 3h following plasma treatment
(Figure 5(a)). This increase was significant even with short,
nontoxic plasma treatment times (Figure 5(b)). We also
stained melanoma cells with antibodies targeted against
occludin and e-cadherin but staining was weak, and changes

upon plasma treatment were not observed (data not
shown). Altogether, plasma decreased melanoma cell growth,
motility, and deformability together with an increased
ZO1 expression.

3.3. Plasma Increased the Immunogenicity and Decreased
VEGF Release in Melanomas. Successtul melanoma therapy
is strongly linked to immunomodulation. Therefore, the
expression of several cell surface molecules was investigated
4h and 24h following plasma treatment. Representative
overlay histograms are given for each protein and time point
(Figure 6). With MHC 1, a significant increase was not seen
after 4h (Figure 6(c)) but was seen after 24 h (Figure 6(d))
in 120 s plasma-treated samples. This pointed to an increase
in antigen presentation promoting immune recognition.
For MC-1R, an important receptor in melanocyte biology, a
subtle but significant increase was seen 4h (Figure 6(e))
and 24h (Figure 6(f)) after plasma treatment. Calreticulin
(CRT) is the key molecule in immunogenic cell death
(ICD). CRT was significantly increased after both 4h
(Figure 6(i)) as well as 24 h (Figure 6(j)) following exposure
to plasma. Angiogenesis is important for tumor blood sup-
ply. VEGF—Dbeing a major molecule in the formation of
blood vessels—was significantly decreased (Figure 7) 24h
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FIGURE 5: ZO1 expression. (a) Representative images of ZO1 and ZO1/DAPI immunofluorescence of control and plasma-treated (120s)
murine melanomas 3h after exposure. (b) Quantification data are presented as mean of 8 replicates of each of the four experiments.
Statistical analysis was performed using one-way ANOVA.

after plasma treatment. In our hands, VEGF decrease was
greater than cell viable decrease (see Figure 2(d)).

4. Discussion

Cold plasma treatment affected melanoma cell viability,
motility, and immunogenicity. Immunogenic properties such
as therapy-induced upregulation MHCI and CRT are vital
for antitumor immune responses [26]. MHCI is vital for pre-
sentation of endogenous and potentially tumor-specific (neo)

antigens to cytotoxic T cells [27]. Vice versa, tumor cell elim-
ination with high MHCI expression favors the generation of
MHCI"™" cancer cells, especially in metastasis [28]. There-
fore, upregulation of MHCI is viewed as a therapeutic goal
in many types of tumors [29-31]. Similar to plasma, photo-
dynamic therapy uses oxygen radicals and was shown to
restore MHCI expression in human glioma [32]. Along sim-
ilar lines, radiation upregulates MHCI expression in the
breast [33], lung [34], and colon cancer [35]. Similar to
downregulated MHCI, elevated levels of VEGF are also
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Statistical analysis was performed using t-test.

important for tumorigenesis [36]. We saw a drastic decrease
in VEGEF release likely owing to cellular toxicity. Nonetheless,
an Akt-mediated increase in intracellular oxidants was previ-
ously linked to enhanced VEGF release [37]. Hence, VEGF
release might be redox controlled, and its reduction would
be therapeutically desired [38]. By enhancing immunogenic-
ity, also CRT correlates with favorable prognosis for patients

with, for example, lung cancer [39], gastric cancer [40], and
leukemia [41]. CRT on melanoma cells was also involved in
dendritic cell vaccination in melanoma patients, although
cell death was found to be dispensable for that effect [42].
Exogenously added CRT also potentiates the immunogenic-
ity of melanomas in patients [43]. A CRT fusion-protein
added to B16 cells evoked an antitumor immune response
in mice [44]. Intriguingly, therapeutic intervention associ-
ated with upregulation of CRT involves the generation of
reactive species [45-47].

Cold physical plasma expels reactive molecules known to
be important in redox biology and medicine [48]. In contrast
to intracellular generation with PDT and radio- or chemo-
therapy, plasma-generated species are applied exogenously
from ambient air to cells and tissues [49]. kINPen plasma-
generated reactive molecules include for example peroxyni-
trite, hydrogen peroxide, and hydroxyl radical [50-52].
Today’s view is that most oxidative events in cells are trans-
lated by redox enzymes and thiol switches in transcription
factors which then guide the cellular response [53]. For
example, we previously identified activator protein 1 (AP1)
family members such as FOSB and JUND in plasma-treated
blood cancer cell lines to be crucial [54]. Both factors are
redox-regulated [55], and their expression was dysregulated
in metastatic melanoma [56]. This makes AP1 a crucial
regulator of cell regulation and death [57], as observed in
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our study with a decrease in metabolic activity and cell cycle
arrest and increase in terminally dead cells. Interestingly,
JUN proteins are involved in melanoma migration [58].

Cell mechanics is a major regulator and indicator of cell
function and motility [59]. The main structural component
linking function to mechanical properties is the cytoskeleton
consisting of filamentous actin, microtubules, and interme-
diate filaments. For migration, cells require to alter their
morphology, which is controlled by the cytoskeleton on a
molecular and the emerging mechanical properties on a
cellular scale [60]. In real-time deformability cytometry, an
increase in elastic modulus after plasma treatment was
observed. This effect could be originated from an alteration
in actin polymerization subject to redox control [61], which
is also supported by the retarded migration of the cells. This
is in agreement with an earlier study on fibroblasts where a
direct correlation between cell elasticity and migration was
shown [62]. Enhanced cell motility and therefore invasive-
ness correlates with increased cytosolic ZO1 protein whereas
noninvasive breast cancer cells showed elevated ZO1 in the
cell membrane [63]. In pancreatic cancer cells, however,
membrane-associated ZO1 was supporting invasiveness
[64]. In our work, we saw an increase of ZO1 not only in
the cytosolic fraction but also visually in the cell membrane.
This implicates a de novo translation of ZO1 proteins in
melanoma cells and not necessarily its specific translocation
from the membrane to the cytosol. Underlining this idea,
de novo generated ZO1 in breast cancer cells was previously
shown to be present in the cytosol as well as to translocate to
the cell membrane [65]. Another report describes the associ-
ation of melanoma ZO1 with adherence junctions of none-
pithelial cells such as fibroblasts instead of tight junctions
[66]. The authors concluded that knockdown of ZO1 sup-
presses melanoma invasiveness. Similarly, an upregulation
of MCIR increases B16F10 melanoma motility [67]. Yet,
the authors transfected MC1R and induced an about twenty-
fold increase. By contrast, MCIR upregulation after plasma
was only 1.1-fold. The main function of MCIR is to control
skin and hair pigmentation via eumelanin production [68].
MCIR is generally upregulated in melanoma cells [69]. This
is used for therapeutic purposes to deliver target drugs into
the cells, and pro-oxidant therapies such as PDT have been
successfully employed in this strategy to increase survival in
experimental animal models [70].

The utilization of only one cell line limits the specificity
and/or generalization of our results that should be compared
to nonmalignant melanocytes and confirmed in other cancer
cell lines. Specifically, the relevance of our findings may
increase if human cancer cells would be similarly affected.
In addition, it would be valuable to identify the effects of
other types of plasma sources in this model.

In summary, it was demonstrated that treatment of
murine metastatic melanoma cells with cold physical
plasma-derived oxidants exerted cytotoxic effects, decreased
cell motility, and increased their immunogenicity. Animal
models need to provide evidence whether plasma-
inactivated melanoma experiences a vaccine-like immuno-
genic cell death (ICD) which would make plasma therapy
an interesting new tool in oncology.
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