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Althoughmodel-based solution strategies for the ECGI were reported to deliver promising

clinical results, they strongly rely on some a priori assumptions, which do not hold true for

many pathological cases. The fastest route algorithm (FRA) is a well-established method

for noninvasive imaging of ectopic activities. It generates test activation sequences on

the heart and compares the corresponding test body surface potential maps (BSPMs)

to the measured ones. The test excitation propagation patterns are constructed under

the assumption of a global conduction velocity in the heart, which is violated in the

cardiac resynchronization (CRT) patients suffering from conduction disturbances. In

the present work, we propose to apply dynamic time warping (DTW) to the test and

measured ECGs before measuring their similarity. The warping step is a non-linear

pattern matching that compensates for local delays in the temporal sequences, thus

accounting for the inhomogeneous excitation propagation, while aligning them in an

optimal way with respect to a distance function. To evaluate benefits of the temporal

warping for FRA-based BSPMs, we considered three scenarios. In the first setting,

a simplified simulation example was constructed to illustrate the temporal warping

and display the resulting distance map. Then, we applied the proposed method to

eight BSPMs produced by realistic ectopic activation sequences and compared its

performance to FRA. Finally, we assessed localization accuracy of both techniques in ten

CRT patients. For each patient, we noninvasively imaged two paced ECGs: from left and

right ventricular implanted leads. In all scenarios, FRA-DTW outperformed FRA in terms

of LEs. For the clinical cases, the median (25–75% range) distance errors were reduced

from 16 (8–23)mm to 5 (2–10)mm for all pacings, from 15 (11–25)mm to 8 (3–13)mm

in the left, and from 19 (6–23)mm to 4 (2–8)mm in the right ventricle, respectively.

The obtained results suggest the ability of temporal ECG warping to compensate for

an inhomogeneous conduction profile, while retaining computational efficiency intrinsic

to FRA.

Keywords: ECG imaging, fastest route algorithm, FRA, dynamic time warping, inverse problem of ECG, CRT,

inhomogeneous excitation propagation
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1. INTRODUCTION

Due to the aging population, increase in unhealthy lifestyle
and advances in acute management of myocardial infarction,
heart failure is becoming the world leading cause of death.
Thereby congenital and acquired ventricular dysfunction result
in poor short- and mid-term prognosis, making cardiac
resynchronization therapy (CRT) the first choice of care to
decrease hospitalization and improve the quality of life for

heart failure patients. However, around 30% of CRT candidates
fail to respond to this treatment, which leads to increasing
morbidity and involved medical insurance costs (Daubert et al.,
2016). In general, patient-specific optimization of CRT treatment
and selection, being essential for improved success rates, can

be accomplished only upon knowledge of underlying cardiac
substrate and electrophysiological properties.

Invasive acquisition of individual heart model parameters

is laborious, associated with risks and, therefore, prohibitive
for many CRT candidates. For these candidates, the ECG
imaging (ECGI) technique represents a noninvasive alternative
(Gulrajani, 1998; Pullan et al., 2001). Based on a patient-specific
geometry, ECGI maps measured body surface potentials to
activation times on the cardiac anatomy. Although there has
recently been a distinct interest raise from both engineering and
clinical communities, this technology has not yet found its niche
in the clinical work-flow (Cluitmans et al., 2018). For this, known
technical issues have to be solved and clear clinical benefits have
to be defined in cooperation with physicians. Furthermore, the
validation of ECGI is extremely challenging, which is mostly due
to the lack of invasively obtained high quality data.

In a nutshell, ECG imaging consists in solving an ill-posed
problem of finding cardiac sources configurations causing the
observed body surface potential maps (BSPMs) (Cluitmans et al.,
2018). Different approaches to ECGI, or inverse problem of
ECG, could deliver information on the earliest activation site
(Erem et al., 2014a; van Dam et al., 2016; Giffard-Roisin et al.,
2017; Yu et al., 2018), isochronal, isopotential, or phase maps
(van Dam et al., 2009a; Revishvili et al., 2015; Wang et al., 2016;
Rodrigo et al., 2017), and substrate characterization (Rudy, 2013;
Sohns et al., 2018). One way to tackle the inverse problem is the
classical regularization by imposing appropriate regularization
constraints (Brooks et al., 1999). Another, model-based, approach
consists in employing a realistic excitation propagation model
and fitting the model parameters to match the measured BSPMs.
In van Dam et al. (2009a) the nonlinear inverse problem was
solved based on the action potential wave forms specified by
two parameters at each cardiac node, activation and recovery
times. The initial estimation for this task was provided by a
physiologically inspired fastest route algorithm. Wang et al.
developed a Bayesian framework for coupling personal data
with the prior model based on the unscented Kalman filter for
integration of the nonlinear action potential’s dynamics (Wang
et al., 2011). Performance of an artificial network optimizing
cellular-automaton excitation parameters in a 3-D heart was
presented in Li and He (2001) and Liu et al. (2008). Parameter
tuning in a more complex bidomain model was evaluated
in terms of simulated ECG similarities with the measured

12-lead signals in heart-failure patients (Potse et al., 2014).
Dhamala et al. (2017) introduced a computational framework
featuring spatially adaptive coarse-to-fine optimization of cardiac
excitation properties to match the measured ECGs. The work by
Giffard-Roisin et al. (2017) aimed at noninvasive estimation of
the global conduction velocity and activation onset by regressing
the measured BSPMs from a simulated database.

Despite being one of the most straightforward among
the existing model-based inverse strategies, the fastest route
algorithm (FRA) has demonstrated a number of encouraging
simulation as well as clinical results in imaging of ectopic and
normal activation sequences (van Dam et al., 2009a; van Dam
et al., 2016; Oosterhoff et al., 2016; Janssen et al., 2018). For
a patient-specific cardiac geometry, FRA simulates excitation
patterns starting from every node of the discretized heart mesh.
The obtained activation sequences are converted to the BSPMs by
solving a linear forward problem of ECG for the corresponding
volume conductor model. This is followed by a full-search
step resulting in the activation sequence associated to the
BSPMs with the highest correlation compared to the measured
electrocardiograms. Depending on the clinical application, the
best sequence can be either used independently, e.g., for
estimation of the excitation origin (Potyagaylo, 2016; Potyagaylo
et al., 2016a,b), or followed by an iterative nonlinear least-squares
(NLLS) procedure (van Dam et al., 2009a; Erem et al., 2014b).
The NLLS itself is a severely ill-posed optimization problem with
multiple local minima, which makes it extremely sensitive to the
initial estimate (Modre et al., 2002; Janssen et al., 2018).

For a global conduction velocity (CV), an initialization
provided by FRA was shown to be robust with respect to the
forward modeling errors in an in silico study in Potyagaylo et al.
(2016a). For the calculation of the FRA activation sequences,
transmural cardiac connections are assigned with half the value
for propagation speed in the direction tangential to the heart
surface (van Dam et al., 2009a). While this model aims at taking
into account a slower transmural wave propagation, it can neither
fully compensate for anisotropic excitation nor tackle differences
in the local CVs due, for instance, to scar. Furthermore, the NLLS
optimization step was demonstrated to be highly sensitive with
respect to the assumed propagation velocity used within FRA
(Erem et al., 2014b).

To overcome the above-mentioned limitations of the standard
FRA approach, we propose to apply dynamic time warping
(DTW) to the BSPMs. The simulated BSPMs are adjusted
and aligned with the measured signals. After the alignment,
euclidean “distances” between warped simulated test potentials
and recorded BSPMs are calculated. The cardiac mesh node
associated with the excitation pattern corresponding to the
smallest error is considered the sought-after activation origin. In
the sequel, we denote this method as FRA-DTW.

2. MATERIALS AND METHODS

To demonstrate superior performance of the proposed strategy,
we first consider a simplified focal excitation scenario with an
artificially introduced region of slow CV and provide an ECG
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signal warping example. Then, we compare performance of
FRA-DTW against the standard correlation-based FRA for eight
realistic simulation cases of ectopic excitation used in Janssen
et al. (2018). We analyze localization errors (LEs) and visualize
both correlation and DTW-based distance maps for studying
possible reconstruction ambiguities.

Finally, we performed clinical evaluation and comparison
of both techniques using isolated univentricular left and right
ventricular (RV and LV, respectively) pacing in 10 patients (n =
10) with previously implanted CRT devices. For the first time,
we quantitatively estimate performance of FRA and time warping
applied to FRA-generated BSPMs on the CRT patients.

2.1. Source Model and Fastest Route
Algorithm (FRA)
In this study equivalent dipole layer (EDL) is used. For
equal anisotropy ratios in intra- and extracellular electrical
conductivity tensors the cardiac current sources were shown to
behave like an EDL (Geselowitz and Miller, 1983; Yamashita and
Geselowitz, 1985; Geselowitz, 1989). The EDL has an orientation
normal to the heart surface, encompassing both endo- and
epicardium, and is proportional to the surface transmembrane
potentials (TMP) (van Oosterom and Jacquemet, 2005; van Dam
et al., 2009a,b).

Furthermore, this source model allows a linear relationship
between the TMP and BSPMs given by a transfer (also known
as forward, or lead-field) matrix A, which depends solely on the
volume conductor model. For the depolarization phase, when
the cardiac cells can be assumed to be either at rest or activated,
electrical activity of the heart is fully described by the activation
times τ (Ex). Then, the expression for body surface potentials at
time t reads as follows (Huiskamp and Van Oosterom, 1988;
Janssen et al., 2018):

y(t) =

∫

Sh

H(t − τ (Ex))A(Ex) dEx (1)

where A(Ex) is the lead-field for Ex, i.e., the potentials generated
by an infinitesimal source at location Ex on the heart surface
dSh, and H(t) is the Heaviside step function characterizing “on”
and “off” states of the cellular activity. For the present work,
the transfer matrix A was calculated by means of the boundary
element method (BEM).

The inverse problem of ECG associated with (1) consists
in finding the depolarization (activation) times τ (Ex) on the
heart surface. Due to its intrinsic ill-posedness, this nonlinear
optimization problem has multiple local minima and is,
therefore, highly sensitive to the initial estimate (Modre et al.,
2002; Erem et al., 2014b). With this respect, the fastest route
algorithm (FRA) was reported to provide a physiologically
meaningful initialization for (1) (van Dam et al., 2009a). In
essence, FRA is a, possibly multi-foci, search, where each cardiac
node is considered as an initial focus. For computation of
the corresponding test activation sequences, a times matrix T
based on the adjacency graph of the triangulated heart mesh
is used. Although a global conduction velocity is assumed for
calculation of T, the transmural wavefront speed is set to be twice

less than those along the heart surface, which mimics cardiac
transmural anisotropy. For each cardiac node, the respective
BSPMs are compared to the measured signals on the basis of
correlation coefficient (CC), providing a correlation map on the
heart surface. The sequence resulting in the highest correlation
is taken as the initialization for (1). However, the best activation
pattern can be effectively used together with the accompanying
correlation map in order to estimate the solution uncertainty and
illustrate reconstruction ambiguities (Potyagaylo et al., 2016a;
Janssen et al., 2018).

Despite its simplicity, FRA has proven to be a robust method
delivering a physiologically meaningful solution approximation
for (multi-foci) excitation patterns (Oosterhoff et al., 2016;
Potyagaylo et al., 2016a; van Dam et al., 2016). Nonetheless, FRA
gets computational very expensive when it accounts for regions
with a local different CV. Consequently information on their
anatomical location needs to be incorporated explicitly into the
activation model given by the matrix T. In these cases, FRA
scales the global CV (0.8m/s for this work) in order to match the
QRS complex duration, which can apparently result in a distorted
CC distribution and a misleading solution. To alleviate this FRA
drawback, we propose to apply temporal warping to the test and
measured BSPMs before calculating their mismatch.

2.2. Dynamic Time Warping (DTW)
Dynamic time warping (DTW) is an algorithm for measuring
similarity between time series that may vary in velocity, even
if there were acceleration or deceleration phases in one of the
signals. We hypothesized that local CV differences reduces the
accuracy of FRA performance, which can at least be partially
compensated by the nonlinear time warping of the simulated
BSPMs in the FRA-DTWmethod.

Within the FRA formulation all test activation sequences
are linearly temporally scaled to match the reference BSPMs
duration. This results in a particular case for the dynamic time
warping, where both reference Y and test Ỹ ECG sequences have
the same length of Tms, i.e., Ỹ ,Y ∈ R

P×T with P being the
number of electrodes. Outlining the general approach, a local
distance measure c(̃y, y) between their elements is introduced
first. Each element represents body surface potentials for one
time instance recorded at P positions. In this way, we align the
whole temporal BSPMsmatrices simultaneously for all electrodes
positions. Then, a cost matrix C ∈ R

T×T is constructed by local
costs for all element pairs from Ỹ and Y . Provided C, the goal
of the DTW algorithm is to find an optimal temporal alignment
between Ỹ and Y , i.e., such an alignment that runs through the
two-dimensional matrix C along the path of the lowest total
cost. In other words, DTWminimizes the body surface potentials
mismatch by a proper reordering of the temporal indices.

More formally, a warping path p = (p1, . . . , pL) with pl =
(nl,ml) ∈ [1,T] × [1,T] and l ∈ [1, L] is defined by assigning
the elements ỹnl in Ỹ to the elements yml

in Y . While nl
and ml take the values of temporal indices, L denotes the
number of path elements which is in general greater than the
sequences’ length T. This is the case when at least one element
in one sequence is matched to multiple elements in the other
sequence (Müller, 2007).
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Furthermore, a feasible warping path is specified to satisfy
some common sense observations: boundary, monotonicity and
step size conditions have to be met. The boundary condition
means that the first index from the first sequence must be
aligned with the first index of the second sequence (and possibly
following indices), i.e., p1 = (1, 1). Furthermore, the last index
of the first sequence must be aligned with the last index of the
second one (and possibly previous indices), i.e., pL = (T,T). The
monotonicity condition applies to both positional arguments of
p: n1 ≤ n2 ≤ . . . ≤ nL andm1 ≤ m2 ≤ . . . ≤ mL and reflects the
requirement of a proper time progression. The third condition
restricts the step size in each index: pl+1 − pl ∈ (1, 0), (0, 1), (1, 1)
for l ∈ [1, L − 1], meaning that every index in both arrays must
get a pair from the other sequence.

Under these conditions, the total cost function cp(Ỹ ,Y) is
formed by a sum of distances between elements from Ỹ and Y
with the path indices (nl,ml):

cp(Ỹ ,Y) =

L∑

l=1

c(̃ynl , yml
) =

L∑

l=1

c(Ỹ(:, nl),Y(:,ml)) (2)

and the DTW algorithm minimizes the total cost among all
feasible paths (Müller, 2007):

cp∗ (Ỹ ,Y) = min
{
cp(Ỹ ,Y) | p is a warping path

}
(3)

Obviously, the number of all possible paths cp through a
two-dimensional grid C is very large. In order to reduce the
computational complexity, we used a dynamic programming
algorithm for calculating the optimal path p∗. For this purpose,
the accumulated cost matrix D ∈ R

T×T is introduced as follows:

D(n,m) = cp∗ (Ỹ(:, 1 : n),Y(:, 1 :m)) (4)

The matrix D contains optimal costs for all temporal
subsequences in Ỹ and Y and its element D(T,T) is equal
to the optimal cost function value cp∗ (Ỹ ,Y). Furthermore, it can
be shown that the matrix elements satisfy the following identity
(Müller, 2007):

D(n,m) = min
{
D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)

}

+ c(̃yn, ym) (5)

Extending the matrix by an additional row and column and
settingD(0, :) = D(:, 0) = ∞ andD(0, 0) = 0 facilitates recursive
calculation of D.

Provided the accumulated cost matrix D, an optimal warping
path p∗ = (p1, . . . , pL) is computed in the reverse manner by
starting from the index pL = (T,T):

pl−1 =





(1,m− 1), if n = 1

(n− 1, 1), ifm = 1

argmin
{
D(n− 1,m− 1),

D(n− 1,m), D(n,m− 1)
}

otherwise

(6)

Apparently, the optimal warping path depends on the choice of
a cost function c(̃ynl , yml

) being the only algorithm’s parameter.
For this study, we used the euclidean norm as the distance
function, i.e., c(̃ynl , yml

) = ‖̃ynl − ỹml
‖L2 . Similar to Giffard-

Roisin et al. (2018), both test and measured BSPMs signals were
normalized beforehand in order to reduce the influence of torso
inhomogeneities on the ECG amplitude. To this end, we scaled
all BSPMs signals column-wise by subtracting the mean and
component-wise scaling to unit variance (preprocessing scale
function from sciki-learn (Pedregosa et al., 2011) was used). For
a pseudo-code of the employed inverse pipeline the reader is
referred to the Appendix A.

Same as within standard FRA methodology, for each cardiac
node we computed the corresponding test activation sequence
and the associated test BSPMs. Then, each test BSPMs sequence
in pair with the reference BSPMs were temporally warped
by computing the optimal path cost (3). As minimizing the
cost function cp in (3) is equivalent to maximization of 1/cp,
for the sake of consistency with the standard FRA approach
searching for the maximum correlation, we used the reciprocal
(or inverse) distance function 1/cp for visualization. Calculated
for test BSPMs relating to each cardiac node, the obtained
reciprocal distances 1/cp can be displayed on the heart surface.
By analogy with the FRA-based correlation maps, the resulting
inverse distance maps can be employed as an uncertainty
quantification tool.

2.2.1. Simplified Simulation Case of Slow CV Area
First, we provide a simulation example based on a realistic
human geometry. For the considered heart mesh, the activation
times matrix T was computed as utilized by FRA. Next, a node
on the lateral LV wall was selected to be the ectopic focus,
the one to be noninvasively localized . Additionally, a region
with 20 mm radius about 60 mm from the selected focus in
which the CV was reduced by a factor of three. According
to this modification in CV, the activation times were created,
see Figure 1A. The corresponding BSPMs from this activation
sequence was computed. For both FRA and FRA-DTW the
unaltered times matrix T was used. For FRA the correlation map
was used to estimate the focus, for FRA-DTW the reciprocal
distance as similarity measure was used. In Figure 1B, the FRA-
based correlation map is visualized together with the true and
localized origins shifted by 31 mm in the direction opposite to
the location of the slow CV area relative to the reference focus.
In contrast to that, the nonlinear temporal warping was able to
account for this modeling error, which is reflected in the exact
onset reconstruction provided by the inverse cost map shown
in Figure 1C.

To illustrate temporal warping of the ECG signals, the ECG
channel with the lowest correlation (88%) is shown. Figure 2A
depicts both reference and test signals together with their
nonlinear alignment, whilst Figure 2B visualizes the optimally
warped signals. As mentioned previously, the duration of an
optimal warping path cp∗ is generally larger than the signals’
length due to the fact that multiple elements of one sequence can
be aligned with the same element of the other one. Obviously,
no temporal shifts can compensate for amplitudes mismatch due
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FIGURE 1 | (A) Modified ectopic excitation sequence starting from the node marked by the white marker with the reduced CV in the area centered at the black dot

and enclosed by the black line. (B) Correlation map generated by the standard FRA with the reconstructed onset marked by the black point. It is worth noting that a

relatively large area exhibits upper percentile of the high correlation coefficient values, implying higher solution ambiguity and, thereby, weakening the prediction

(C) Distribution of the DTW-based inverse distance function (dimensionless due to the ECG scaling). The black point overlaps the reference origin, meaning that the

temporal warping could account for the excitation delay and resulted in the exact inverse localization. Notably, only a few heart nodes corresponded to the upper

percentile of the inverse distance.

to a complex nonlinear relationship (1) connecting activation
times on the heart to the body surface potentials. However, the
difference in a local conduction speed was accounted for by the
warping function.

2.3. Realistic Simulations of Ectopic
Excitation
After the proof-of-concept provided by the manually constructed
and, certainly, oversimplified simulation case, we conducted
a comparison between FRA and FRA-DTW and evaluated
performance of the latter for realistic excitation patterns. For
this study eight ectopic activation sequences presented in Janssen
et al. (2018) were used.

In short, the excitation propagation patterns were simulated
with the monodomain model and the BSPMs were then
generated for a realistic finite-element volume conductor with
an anisotropic heart model. In Janssen et al. (2018), the authors
investigated the influence of bidomain conductivity tensors in
the forward modeling on the quality of inverse reconstructions
obtained with the EDLmodel. In the present work, only the most
realistic case is considered, the model with unequal anisotropy
ratio in the intra- and extracellular spaces.

In Janssen et al. (2018) FRA was used to compute an initial
estimate for solving the subsequent NLLS (1). As the final
solution was shown to heavily depend on the initialization, the
goal of this study was to determine, whether the FRA with
incorporated temporal warping is able to provide an improved
estimate compared to its standard version. The focus locations
considered for this study listed: “two foci on both sides of the
septal wall, two left ventricular free wall foci, two foci on the right
ventricular free wall, and two beats originating from a basal part
of the ventricles close to the septal wall” (Janssen et al., 2018).

2.4. Clinical Data
The implanted biventricular pacemaker leads position are exactly
known from CT scans, providing ideal ECGI validation data

for single paced activation sequences from the LV and RV for
each patient. Therefore, we enrolled in this study 10 patients
(n = 10) from 54 to 70 years (median 65; 25–75% range 59–
64; 8 male) with previously implanted CRT devices. Among
them nine patients had a left bundle branch block (LBBB) QRS
morphology of the intrinsic rhythm, and seven of them had a
LV scar with low conduction velocity zones after myocardial
infarction. These LV zones were not taken into account in the
inverse procedure.

The study was reviewed and approved by the Ethical
Committee of Almazov National Medical Research Center
in Saint Petersburg, Russia. Written informed consent was
obtained from each patient after detailed description and
explanation of the study before the procedures. This single-
center cross-sectional study was performed in accordance with
the Good Clinical Practice guidelines and Helsinki declaration
for biomedical research.

2.4.1. ECG and CT Data
A total maximum number of 240 body surface electrodes
were applied on the patient’s torso and connected to the
multichannel Amycard 01C EP system ECG amplifier (EP
Solutions SA, Switzerland). CRT device in each patient was
programmed and continuous ECGs of isolated RV/LV pacing
from implanted leads at rate not more than 90 bpm were
recorded during 10 sec. The pacing amplitude and duration
were selected individually based on the originally established
parameters of the CRT device. The original parameters were
set up 2–3 months prior to the procedure during a regular
check-up based on standard criteria in the clinical practice.
According to the results of an automatic threshold test in
the CRT device, the minimal spike amplitude and duration
have been selected to have stable effective capture during
RV and LV pacing. All measurements were performed during
breath hold. Immediately after recording of the multichannel
ECG, all patients underwent cardiac CT imaging with applied
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FIGURE 2 | (A) ECG signals from the reference BSPMs, which was computed from the activation sequence with locally modified CV value, and the test BSPMs

generated by the standard FRA under the assumption of a global CV. The signals differ only on the time interval corresponding to the wavefront passing through the

low CV region. (B) Temporally warped ECG sequences with the path length L.

body surface electrodes. The obtained CT data was imported
into Amycard 01C EP system software in DICOM format to
reconstruct polygonal meshes of the torso, lungs and detailed
epi-endocardial ventricular heart models based on the semi-
automatic segmentation.

2.4.2. Anatomical Models
For our inverse calculations, a piece-wise heterogeneous volume
conductor model was used with thorax, lungs and ventricular
blood masses as regions with an electrical conductivity deviating
from that of the torso. Following the guidelines commonly
accepted in the ECGI community, the assigned electrical
conductivity values were 0.6, 0.04 and 0.2 Sm/m for bloodmasses,
lungs and ventricles, respectively (see e.g., Modre et al., 2002;
van Dam et al., 2009a).

2.4.3. Quality Metrics
In order to estimate the inverse routine performance, the
distances were computed between the known pacemaker
locations and noninvasively identified earliest excitation sites. All
estimated LV and RV pacemaker lead positions were localized for
the epi- or endocardial heart surfaces, respectively. The geodesic
distance was considered as a more reliable quality measure
for curved surfaces, and for endocardial solutions separated
from a pacemaker by the septal wall. As a supplementary
metric targeting the misclassified ectopic origins, we analyzed
whether the overall earliest activation site was found on the
same (endo- or epicardial) cardiac surface as the corresponding
pacemaker lead.

In addition, we performed a bias-corrected and accelerated
bootstrap analysis (in accordance to Efron and Tibshiran
correction) in order to check the stability, variability, and
robustness of the estimated ECGI accuracy and provide
more confidence to the results of this study. We used 2.5
and 97.5 percentile interval for the calculation of the 95%
confidence intervals for reference limits in all continuous

TABLE 1 | Localization error for the realistic ectopic simulations.

Activation pattern Localization

error FRA, mm

Localization

error FRA-DTW, mm

Left side of septum (1) 0 0

Right side of septum (2) 11 7

Base LV near septum (3) 15 0

Base RV near septum (4) 18 4

LV epicardial free wall (5) 20 14

LV endocardial free wall (6) 12 19

RV endocardial free wall (7) 6 6

RV epicardial free wall (8) 14 7

variables. Bootstrap was performed with 1,000 replications
for each variable with a Mersenne twister as a random
number generator.

3. RESULTS

3.1. ECGI for Realistic Simulations of
Ectopic Excitation
A summary of LEs delivered by both FRA and FRA-DTW for
the considered eight excitation patterns is shown in Table 1. The
order of appearance is the same as in the original work (Janssen
et al., 2018). As seen from the table, temporal alignment of the
FRA-simulated test BSPMs resulted in lower LEs in seven cases.
In Figure 3 shows the correlation maps obtained with FRA and
inverse distance maps yielded from subsequent time warping
for the excitation patterns 3 and 6. Although for pattern 6 the
localization error from FRA-DTW is slightly higher than that of
FRA, the focus was still correctly classified to originate from the
endocardial wall.
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FIGURE 3 | ECGI results for realistic simulated patterns 3 and 6. For pattern 3, the combination of FRA with subsequent time warping exhibited the highest error

decrease from 15 to 0mm. For this activation sequence, the onset reconstructed by FRA-DTW and marked by the black point coincides with the true focus. Pattern 6

was the only case among the considered eight, where the localization error provided by FRA-DTW was higher than that from the standard FRA.

3.2. ECGI of Single Pacings in CRT Patients
The main accuracy characteristics are provided in Table 2. For

all 10 patients, median (25–75% range) accuracy for FRA was

16 (8–23)mm and 5 (2–10)mm for FRA-DTW algorithm. The
median accuracy for FRA in the LV was 15 (11–25)mm and
8 (3–13)mm for FRA-DTW algorithm, while in the RV the
values were 19 (6–23)mm for FRA and 4 (2–8)mm for FRA-
DTW. There was a significant difference in accuracy values
calculated with FRA and FRA-DTW algorithms for LV, RV, and
both LV and RV, which is shown in Figures 4A–C. It can also be
seen from Figures 5A,B displaying the histograms that represent
overall accuracy distributions for both algorithms. 95% bootstrap
confidence intervals were also more narrow for LEs based on
FRA-DTW compared to FRA algorithm. Furthermore, FRA-
DTWwas able to detect the correct (epi / endo) surface of an early
activation for all LV pacings and one RV, whereas FRA detected
the correct surface in four LV cases and wrongly associated all
RV paced sequences to the epicaridal part of the heart surface
(Figure 6). However, there was no significant difference in this
accuracy feature between the RV and LV in every algorithm.
For two patients, FRA-DTW resulted in a lower localization
error in the RV septum compared to FRA. The LEs were
reduced from 20–8 mm to 9–3 mm, respectively. Exemplarily,

performance results from both methods for the cases featuring
maximal and minimal LEs in the RV and LV are displayed
in Figure 7.

4. DISCUSSION

In the presented work, the fastest route algorithm (FRA) was
modified to account for local differences in conduction velocities.
The dynamic timewarping formatching simulated andmeasured
BSPMs proved to increase robustness and accuracy of FRA. The
improvements were shown both in simulation data as well as
in a small CRT patient population with known inhomogeneous
conduction velocity within the ventricular myocardium.

As within the standard FRA-based inverse procedure
(van Dam et al., 2009b), for each cardiac mesh node activation
sequences are generated with FRA, and the corresponding
simulated test BSPMs are computed for a patient specific
volume conductor model. Then, instead of correlation-based
comparison between simulated and measured ECGs, the signals
are temporally warped on the basis of an associated cost, or
distance, function. To evaluate possible benefits of the warping
step, we benchmarked this strategy against the CC-based FRA
routine in three scenarios.
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TABLE 2 | Main characteristics of ECGI accuracy for FRA and FRA-DTW algorithms. m, mean; SD, standard deviation; M, median; LQ, lower quartile; UQ, upper quartile;

min, minimum; max, maximum, ratio of correctly detected early activation site’s surface-R (in percents). For the localization error characteristics, 95% bootstrap

confidence interval (CI) is provided in parentheses.

Accuracy features, mm

(95% bootstrap CI)

LV RV LV + RV

FRA FRA-DTW FRA FRA-DTW FRA FRA-DTW

m 17 (12–22) 8 (5–12) 16 (10–22) 4 (3–6) 17 (13–21) 6 (5–9)

SD 9 (3–11) 6 (4–8) 10 (6–12) 3 (2–4) 9 (7–11) 5 (3–7)

M 15 (12–23) 8 (3–13) 19 (6–24) 4 (2–8) 16 (10–22) 5 (3–9)

LQ (25%) 11 (7–15) 3 (1–9) 6 (3–20) 2 (1–4) 8 (2–14) 2 (1–4)

UQ (75%) 25 (14–33) 13 (7–20) 23 (18–31) 8 (4–9) 23 (18–31) 10 (6–14)

min 7 1 3 1 3 1

max 33 20 31 9 33 20

R 40 100 0 10 20 55

FIGURE 4 | Box and whisker plots of LEs for FRA and FRA-DTW for the LV (A), RV (B), and all considered pacings (C). The Wilcoxon signed-rank test was performed

to compare localization accuracy provided by the two ECGI algorithms. A p < 0.05 was considered as statistically significant due to the relatively small sample size.

FIGURE 5 | Histograms of LEs for the LV (A), and RV (B) pacings. The curves represent fitted normal distributions.
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FIGURE 6 | Histograms of the epi-endocardial early activation site’s surface identification in the LV (A) and RV (B).

FIGURE 7 | ECGI results for single pacings in CRT patients: FRA based CC maps (A) and FRA-DTW based inverse distance maps (B). The white dot marks a

pacemaker lead position projected on the cardiac surface, while the black point labels the reconstructed excitation origin. In the cases of minimal LEs for both LV and

RV (first and third columns), the FRA-DTW method localized the onset at the same mesh node as the pacemaker lead. The accuracy of FRA was 8 and 16mm,

respectively. The cases, featuring maximal LEs for FRA-DTW, resulted in 16 and 16mm for FRA.

First, FRA-DTWwas able to correct the localization error due
to slower CV in a small heart region for a simple simulation case.
Though this construct was purely artificial and did not represent
a physiologically meaningful simulation, it served as a proof-of-
concept that the excitation delays can be accounted for by BSPMs
warping in the temporal domain.

In the next model-to-model comparison, the LEs were on
average reduced by 5 mm when using the DTW-FRA algorithm
vs. the standard FRA algorithm (Table 1). Previously, the authors
examined three setups with respect to cardiac anisotropy used
in the forward modeling: isotropic model, anisotropic model
with equal anisotropy ratios in the extra- and intracellular
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spaces and an unequal anisotropy ratios case. For our purpose,
we compared FRA to its warping modification only for the
most realistic case of BSPMs produced by an anisotropic heart
with unequal anisotropy ratios in the extra- and intracellualr
domains. For seven cases, FRA-DTWperformed similar or better
than the original FRA. For a focus on the endocardial LV
wall, FRA-DTW correctly identified endocardium as the onset
origin, but resulted in a higher localization error compared
to FRA. However, the ambiguity area, which can be taken
as a region exhibiting the upper percentile of a similarity
measure, was generally smaller for the reciprocal distance maps
delivered by FRA-DTW method compared to the FRA-based
CC maps.

Finally, we applied both methodologies to twenty paced
activation sequences in ten CRT patients. The Wilcoxon non-
parametric test suggested superior performance of FRA-DTW,
yielding p = 0.0076 and 0.038 for LV and RV pacings,
respectively. Importantly, the warping step improved localization
accuracy for two cases with RV leads implanted in a septal
area. An interesting aspect of all FRA related methods is
the automatic detection of an early activation zone, which
usually requires an additional sophisticated post-processing
step for potential-based ECGI solutions (Duchateau et al.,
2017). At the same time, both methods suffered from a low
classification rate with respect to the correct cardiac surface
for the RV pacings. We believe this issue to be due to the
limited thickness of the RV wall, as no significant association
was found between clinical characteristics, pacing modalities,
number of body surface electrodes on one side and ECGI
localization accuracy on the other. This fact can be considered
as an indirect representativity evidence of the original clinical
data set. We performed a bootstrap analysis for a robuster
estimation of the obtained LEs because of a relatively small
original sample size with the unknown distribution parameters
in accordance to recommendations from Adèr (2008). In
addition, bootstrap allowed us to use a resampling approach to
mimic the process of obtaining new data sets, so that we can
evaluate the variability of our assessment without generating
additional samples. The bootstrap analysis showed that LE
variability was significantly lower for the FRA-DTW algorithm,
indicating its greater robustness against outliers. The bootstrap
also helps to estimate LEs in the population, making results more
predictable for clinical work. Furthermore, univentricular LV
and RV pacings are the optimal ECGI validation data for single
ectopic activation sequences. Thus, obtained results show the
potential of the proposed methodology to significantly improve
noninvasive detection of focal arrhythmia sources in clinical
practice (Duchateau et al., 2018).

However, despite these promising results, it remains unclear
how to relate an optimal warping path to the actual excitation
in the heart. With this respect, we intend to perform further
research by adding the optimization step in solving the
NNLS problem using both initializations. FRA procedure in
combination with time warping could compensate for the
uniform excitation assumption of FRA. An example of explicit
scar removal from the heart geometry for the EDL inverse
model was presented by Oostendorp et al. (2002). Sapp et al.

showed that the quality of potential-based ECG imaging
of epicardial pacing sites in ventricular tachycardia patients
deteriorates over myocardial scar or slowly conducting tissue
(Sapp et al., 2012). Interestingly, the data from this study was
recently reused by Zhou et al. investigating performance of
a data-driven Bayesian method (Zhou et al., 2018). Though
overall LEs were reduced by this novel approach, its accuracy
was still suffering in cases when a pacing was performed
in the scar region. These observations suggest potential
improvements from combining ECGI in general, and FRA or
other model-based approaches in particular, with anatomical
substrate information.

Nonetheless, even in the absense of the underlying substrate
data, ECGI was reported to provide important insights on
the electrical excitation in CRT patients with varied LV
pathology (Jia et al., 2006). A recent study by Bear et al.
further demonstrated the ability of ECGI to accurately detect
electrical dyssynchrony and identify the latest activation
site with 9.1 ± 0.6 mm in Langendorff-perfused pig hearts
(Bear et al., 2018). As a representative of model-based
approaches, an offline created database of realistic forward
simulations with different EP setups was shown to facilitate
estimation of clinically relevant parameters, such as pacing
configuration and CV profile (Giffard-Roisin et al., 2018).
Such an offline strategy aiming at the real-time performance
is computationally efficient, whilst enjoying an essential
extensibility with every suitable clinical case. Our future
efforts will be focused on deploying imaging modalities
together with personalized biophysical computer models and
ECG imaging.

5. CONCLUSIONS

In this work, we quantitatively assessed FRA performance
on CRT patients. An important enhancement of the FRA
method, a temporal warping of FRA-generated BSPMs
sequences, was introduced. Using FRA-DTRW reduced the
LE by approximately a factor of two, demonstrating a significant
accuracy improvement for clinical data of CRT patients with a
complex etiology.

6. LIMITATIONS

Evaluation of ECGI accuracy using CRT devices is intrinsically
limited to the LV lateral wall, RV apex and septum, while
other anatomical regions cannot be tested in the same
manner. For drawing clinically relevant conclusions, another
study with a larger sample size should be considered for
a detailed representativity evaluation of the data used. The
presented bootstrap analysis models potential outcomes of
such a study and, therefore, serves as a reference point for
future investigations.

The lack of late gadolinium enhancement MRI data
in patients with previous myocardial infarction did not
allow us to quantify the influence of this factor on the
tested algorithms.
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A. APPENDIX: PSEUDO-CODE FOR
EMPLOYED PIPELINE

Some datasets of ventricular ectopic excitation, though simulated
with a cellular automaton, could be found on the open ECGI
validation platform EDGAR. For dynamic time warping, the
authors used a Python implementation available under https://
github.com/pierre-rouanet/dtw. The fastest route algorithm is
based on Dijkstra’s shortest path routine, for which multiple
numeric realizations are freely available.

To systematize the inverse processing flow applied, we provide
its pseudo-code in the following:

Algorithm 1 *

Inverse distance map 1/cp calculation

Input: BSPMs matrix Y , transfer matrix A, functions FRA and
DTW
[m, n] = size(A)
cp = zeros(n, )
Y = (Y − mean(Y , axis = 0))/std(Y , axis = 0)
z-normalization of each BSPMs column
for i = 1, . . . , n do

τi ← FRA(i) FRA-based activation times due to the onset
at the cardiac node i
Ỹ = A ∗ TMP(τi) test BSPMs due to cardiac node i using
formula (1)
Ỹ = (Ỹ −mean(Ỹ , axis = 0))/std(Ỹ , axis = 0)
disti, pi ← DTW(Ỹ ,Y)
the optimal path pi itself is not further used
cp(i) = disti

end for

return 1/cp
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