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d Taper Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA 
e The University of Texas at Arlington, Arlington, TX, USA 
f Division of Cardiology, Department of Medicine, University of Florida, Gainesville, FL, USA 
g Division of General Internal Medicine, Mayo Clinic, Jacksonville, FL, USA   

A R T I C L E  I N F O   

Keywords: 
Heart failure with preserve ejection fraction 
Pulse wave velocity 
Diastolic function 

A B S T R A C T   

Background: Heart failure with preserved ejection fraction (HFpEF) is the most common cardiac complication in 
patients with coronary microvascular dysfunction (CMD), yet its underlying pathways remain unclear. Aortic 
pulse-wave velocity (aPWV) is an indicator of large artery stiffness and a predictor for cardiovascular disease. 
However, aPWV in CMD and HFpEF is not well characterized and may provide understanding of disease 
progression. 
Methods: Among participants without obstructive coronary artery disease, we evaluated 51 women with sus
pected CMD and 20 women and men with evidence of HFpEF. All participants underwent aPWV measurement 
(SphygmoCor, Atcor Medical) with higher aPWV indicating greater vascular stiffness. Cardiac magnetic reso
nance imaging (CMRI) assessed left ventricular (LV) ejection fraction, CMD via myocardial perfusion reserve 
index (MPRI), and ventricular remodeling via LV mass-volume ratio. . Statistical analysis was performed using 
Wilcoxon rank sum tests, Pearson correlations and linear regression analysis. 
Results: Compared to the suspected CMD group, the HFpEF participants were older (65 ± 12 vs 56 ± 11 yrs., p =
0.002) had higher BMI (31.0 ± 4.3 vs 27.8 ± 6.7 kg/m2, p = 0.013), higher aPWV (10.5 ± 2.0 vs 8.0 ± 1.6 m/s, 
p = 0.05) and lower MPRI (1.5 ± 0.3 vs1.8 ± 0.3, p = 0.02), but not remodeling. In a model adjusted for car
diovascular risk factors, the HFpEF group had a lower LVEF (estimate − 4.78, p = 0.0437) than the suspected 
CMD group. 
Conclusions: HFpEF participants exhibit greater arterial stiffness and lower myocardial perfusion reserve, with 
lower LVEF albeit not remodeling, compared to suspected CMD participants. These findings suggest arterial 
stiffness may contribute to progression from CMD to HFpEF. Prospective work is needed and ongoing.   

1. Introduction 

Cardiovascular disease (CVD) remains the leading cause of death of 
men and women and is linked to arterial stiffness [1]. In contrary to 
systolic dysfunction and obstructive CAD, women are more likely to 

present with HFpEF [2] and CMD in the setting of no obstructive CAD, 
compare to men [3]. HFpEF is increasingly prevalent condition which 
accounts for almost one-half of all heart failure, particularly in women 
[4]. The contributors to HFpEF are unclear but may be related to 
vascular stiffness. 
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Modern-day lifestyle risk factors – including hypertension – 
contribute to left ventricular remodeling, diastolic dysfunction and 
consequently HFpEF [5]. Aortic pulse wave velocity (aPWV) has been 
established as the gold standard for assessing arterial stiffness [6]. The 
aPWV is a direct measure of large arterial stiffness. Augmentation index 
(AAI) is a surrogate measure of arterial rigidity that could be affected by 
the ventricular ejection and peripheral hemodynamics in addition to the 
properties of large arteries [7]. Previous investigations in women with 
symptoms and signs of myocardial ischemia in the absence of obstruc
tive coronary artery disease (INOCA) from the Women’s Ischemia Syn
drome Evaluation (WISE) revealed aortic systolic pressure, as an index 
of aortic stiffness, was associated with CMD indicated by low coronary 
flow reserve (CFR) [8,9]. 

Previous investigation documented the development of heart failure 
hospitalization, validated to be HFpEF, as the most common adverse 
cardiac event in follow-up after a diagnosis of CMD [10]. Aortic stiffness 
increases left ventricular (LV) afterload and workload, resulting in 
escalation of myocardial oxygen demand, LV hypertrophy and 
myocardial dysfunction [9]. Prior work also demonstrates the link be
tween hypertension and large artery stiffness with lower CFR and 
myocardial ischemia [11]. We have previously reported lower CFR is 
related higher aortic stiffness in women with suspected CMD [8]. 
However, relations between arterial stiffness, myocardial perfusion and 
ventricular remodeling in patients with CMD vs HFpEF in the absence of 
obstructive CAD have not been described. To explore this further, using 
an initial cross-sectional design, we hypothesized that arterial stiffness 
contributes to both CMD and HEpEF, and therefore may be a contributor 
to progression from CMD to HFpEF. 

2. Methods 

We recruited 51 women with suspected CMD and 20 women and 
men with HFpEF in a single center (NCT02582021). The CMD group 
included women with signs or symptoms of myocardial ischemia un
dergoing clinically indicated coronary angiography and function testing 
[3] . The HFpEF group included women and men diagnosed with HFpEF 
as defined by the European Society of Cardiology (ESC) [12]. The study 
received full IRB approval and all participants consented to participate 
in the study. 

2.1. Cardiac magnetic resonance imaging (CMRI) 

Stress and rest CMRI were obtained using 3.0 Tesla scanners (Mag
netom Verio and Biograph mMR, Siemens Healthcare, Erlangen, Ger
many) in the supine position with electrocardiogram (ECG)-gating, 
previously published [13]. Participants were asked to withhold cardiac 
medications 24–48 h and caffeine 24 h prior to CMRI as previously 
described [13]. First-pass perfusion imaging was performed and opti
mized to reduce subendocardial dark-rim artifact as previously pub
lished [14]. Adenosine was infused at a rate of 140 μg/kg/min using an 
MRI-compatible Medfusion pump for three minutes prior to the first- 
pass perfusion scan and was continued until end of the perfusion data 
acquisition, as previously described [13]. 

Three left-ventricular short-axis slices (basal, mid, and apical) were 
acquired. Blood pressures were recorded at rest and during vasodilatory 
stress. The rest scan was acquired at least ten minutes after the stress 
scan, with identical scan parameter settings and slice positions. 

Primary measures of interest for CMRI were defined as myocardial 
perfusion reserve index (MPRI), LV mass, LV mass/volume ratio, and 
secondary outcome measures included, LV end diastolic volume 
(LVEDV), and systolic function (LV ejection fraction). 

2.2. CMRI myocardial perfusion reserve index (MPRI) 

LV cavity contours and an 18-segment model (six segments per slice) 
were used to calculate subendocardial MPRI, subepicardial MPRI, 

transmural (whole, mean) MPRI as previously published [15]. Dedicated 
software (CVI42, Circle Cardiovascular Imaging, Calgary, Ontario, 
Canada) was used for analysis of the MPRI. As per prior report, a MPRI 
threshold of <1.84 was used to define coronary vascular dysfunction 
[14,16]. 

2.3. Cardiac morphology and function 

Short-axis cine images were placed and manually adjusted to derive 
LV volumes and LV mass using CVI42 software, as previously described 
[13]. Papillary muscles were not contoured for measurement of LV mass 
and were included in the left ventricular (LV) volume measurement. 

2.4. Aortic stiffness testing 

Aortic stiffness was assessed non-invasively by calculating aortic 
pulse wave velocity (PVW) and aortic augmentation index (AAIs) via 
Brachial- Femoral method using SphygmoCor system (AtCor Medical, 
Sydney, Australia). Brachial systolic pressure (bSP) and diastolic pres
sure (DP) were measured in the left arm with appropriately-sized cuff 
using a validated, automatic oscillometric BP monitor (Omron R3, 
Omron Healthcare, Kyoto, Japan). Three blood pressure reads were 
performed ≥2 min apart: the average of the last two reads was calcu
lated for this inquiry. Participants did not eat, smoke or drink caffein
ated beverage at least 2 h before measurements. 

Data was collected while participants were placed in the quiet, 
temperature-controlled room after resting ≥15 min in supine position. 
Radial artery pressure waveforms were measured at the wrist, using 
applanation tonometry with a high-fidelity micro-manometer (Millar 
Instruments, Houston, TX) [17]. The multiple aPWV measures were 
averaged per participant. 

2.5. Statistical analysis 

Variables were summarized using mean ± standard deviation (SD) 
or counts (percentages) where appropriate. The HFpEF and suspected 
CMD groups were compared for Table 1 using t-tests for continuous 
variables and Fisher’s Exact test for categorical. Table 2 used linear 
regression with the row variable as the outcome and group and age as 
explanatory variables. Multiple linear regression models were made for 
EF, LV EDV indexed by BSA. These models included group and adjusted 
for age, history of hypertension, dyslipidemia, diabetes and smoking. 
Model estimates are in Table 3. All tests used a significance level of 0.05. 

Table 1 
Baseline characteristics in suspected CMD and HFpEF groups.   

Suspected CMD group 
(n:51) 

HFpEF group 
(n:20) 

p-Value 

Age (yrs ± SD) 56 ± 11 65 ± 12 0.002 
Race   0.311 
American Indian or Alaska 

Native 
2 % 5 %  

Black or African American 4 % 10 %  
Hispanic/Latino 8 % 15 %  
White 86 % 70 %  
Male 0 % 45 % <0.0001 
BMI (kg/m2) 27.8 ± 6.7 31.0 ± 4.3 0.013 
HF 6.25 % 47.37 % 0.0003 
Current smoker 3.92 % 10 % 0.314 
Current/former smoker 21.6 % 40 % 0.141 
Family history of CAD 52.9 % 15 % 0.004 
History of hypertension 38 % 75 % 0.008 
Diabetes 7.8 % 15 % 0.394 
Dyslipidemia 20.4 % 33 % 0.336 

BMI: Body Mass Index; HF: Heart Failure; CAD: Coronary Artery Disease. The 
bold font indicates statistical significance. Heart failure with preserved ejection 
fraction (HFpEF) coronary microvascular dysfunction (CMD). 
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3. Results 

3.1. Baseline characteristics 

Baseline group clinical characteristics were summarized in Table 1. 
As expected, the mean age was older in the HFpEF vs suspected CMD 
group. The traditional major cardiovascular diseases risk factors 
including age, hypertension, diabetes mellitus, dyslipidemia, smoking, 
and obesity were higher in the HFpEF group with the exception of family 
history of CAD which was statistically significantly higher in suspected 
CMD group. 

3.2. Hemodynamic characteristics 

Age-adjusted variables are summarized in the HFpEF vs the sus
pected CMD group in Table 2. In the HFpEF group the heart rate, systolic 
and diastolic pressure were significantly higher compared to suspected 
CMD group. Aortic pulse wave velocity was significantly higher in the 
HFpEF group compared to the suspected CMD group. Aortic augmen
tation index (AAI) was statistically significant lower in the HFpEF group. 
While LVEF in the HFpEF group was lower than the suspected CMD 
group, LV mass/volume ratio was significantly lower in the suspected 
CMD group. Myocardial perfusion measured by CMRI in both groups 
was MPRI≤1.8, although it was significantly more often met the 
abnormally low threshold in the HFpEF group (55 % in suspected CMD 

group vs 87.5 % in than HFpEF group) (Table 2). 

3.3. Multivariable modeling 

A model with LVEF as the outcome (Table 3) demonstrated a dif
ference in LVEF between the groups, adjusted for age, smoking, history 
of hypertension, diabetes and dyslipidemia, with the HFpEF group 
having a lower LVEF (estimate − 4.78, p = 0.0437), however this was not 
observed for LVEDV/BSA. None of the other covariates were signifi
cantly associated with EF in this model. 

4. Discussion 

In an initial cross-sectional analysis of arterial stiffness in both 
HFpEF and suspected CMD groups, we observed comparatively rela
tively higher arterial stiffness and lower myocardial perfusion reserve, 
albeit not remodeling in the HFpEF group. Our findings also demon
strate adjusted lower LVEF but not different ventricular remodeling in 
the HFpEF compared to the suspected CMD group. These findings sup
port the hypothesis that arterial stiffness may contribute to progression 
from CMD to HFpEF and suggest that prospective work be undertaken to 
test this potential contributor. 

Central aortic stiffness measured by aPWV velocity is positively 
associated with age [18] . The AAI represents the arterial rigidity 
associated with ventricular ejection [17]. Our current findings are 
consistent with our prior report in the WISE study of increased arterial 
stiffness associated with increased myocardial energy demand to over
come increased left ventricular afterload, likely due to reduced nitric 
oxide production contributing to CMD [8]. The current results extend 
these observations to a HFpEF group demonstrating a higher large 
arterial stiffness and lower myocardial perfusion reserve compared to 
the suspected CMD group. 

Prior work by Nichols et al. [8] described that altered large arterial 
flexibility – associated with different risk factors including but not 
limited to age, smoking, obesity- induces changes in arterial properties 
and consequently increase LV afterload demanding the ventricle to 
produce additional, but wasted, energy that intensifies indices of 
myocardial oxygen demand and reduced nitrite oxide production. The 
increased large arterial stiffness increases afterload which can subse
quently increase myocardial energy demand to overcome increased LV 
afterload [8]. As a result, increased afterload can cause LV wasted en
ergy, and consequently increased myocardial oxygen demand and 
eventually cause myocardial ischemia leading to endothelial and dia
stolic dysfunction [8,19]. Ongoing prospective investigation is investi
gating these potential contributors to HFpEF in patients with CMD. 

5. Limitations 

Our relatively small sample sizes results may not be generalizable to 
all patients. The suspected CMD group was exclusively women while the 
HFpEF group were includes both men and women. No control group was 
included in this study. 

6. Conclusions 

We demonstrate in an initial cross-sectional analysis of arterial 
stiffness in HFpEF and suspected CMD relatively higher arterial stiffness 
and lower myocardial perfusion reserve in the HFpEF group. These 
findings suggest arterial stiffness may be a contributor to progression 
from CMD to HFpEF. Prospective work is needed and ongoing. 
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