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specimen examination time consuming and tedious, but also it is highly 
dependent on skill of the personnel. Sperm can easily be overlooked 
due to several variables, including incomplete cell dissociation, elevated 
levels of other cell types, inexperience, exhaustion, and human error.8 
For patients who produce a small number of sperm to begin with, 
failing to identify even a couple of sperm could mean the difference 
between a successful or unsuccessful testicular sperm extraction.

The field of computer vision technologies powered by deep learning 
methods offers exciting opportunities, especially when considering 
applications in low-cell number or single-cell analysis. With the 
increasing efficiency and robustness of deep learning methods for 
computer vision tasks,9 we are optimistic that a CASA system utilizing 
deep neural networks can achieve robust performance on tasks 
associated with testicular biopsy analysis. However, careful sample 
preparation and processing is necessary for building robust CASA 
systems.

Deep neural networks have been used in a variety of domains to 
learn the underlying relationships between raw data and complex, 
higher-order tasks. Traditional methods often require researchers to 
specify an explicit methodology for solving a task – often a difficult, 
if not impossible, requirement. Deep neural networks, however, only 
require properly labelled datasets, and can learn how to solve the task 
from the data. Training deep neural networks involves defining a loss 

INTRODUCTION
Approximately 1% of all men and 10% of infertile men have 
azoospermia, the absence of sperm in the ejaculate.1 Of all azoospermic 
men, over half have nonobstructive azoospermia (NOA) due to 
spermatogenic failure. NOA is defined as the absence of spermatozoa in 
semen because of minimal or no sperm production in the testis.2 In men 
with NOA, microdissection testicular sperm extraction (micro-TESE), 
a meticulous microsurgical exploration of the testicular parenchyma 
to search for seminiferous tubules housing intact spermatogenesis, is 
routinely performed.3–5

As part of this procedure, most centers perform intra- and 
postoperative microscopic assessment of the extracted testicular tissue. 
This manual process is highly labor intensive, time consuming, and 
shows significant variability;6 however, this remains the gold standard 
for identification and collection of potential sperm recovered from 
NOA patients.7

There are no existing computer-aided sperm analysis (CASA) 
systems for analysis of testicular biopsies, the source of sperm for 
patients with azoospermia. Clinics treating patients with severe 
infertility primarily rely on manual image analysis for sperm 
identification in testicular tissue.7 This process requires careful 
processing in the laboratory in order to separate and identify sperm 
within the biopsied tissue. Not only is manual microscopic testicular 
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function – a heuristic measure of how well the network is accomplishing 
its task – and then using nonconvex optimization techniques to adjust 
the parameters of the network in order to minimize that loss function 
and thereby increase the performance of the neural network.

One task well suited for deep neural networks is object recognition 
– the parsing of an image, represented by the raw RGB values of each 
pixel, in order to determine the presence and location of objects in that 
image. Here, we translate basic research on deep learning for object 
recognition into an applied CASA tool for the automated identification 
of spermatozoa.

MATERIALS AND METHODS
Dataset
Deep learning methods require a large amount of training data. To the 
best of our knowledge, there are no existing large-scale image datasets 
of testicular biopsies. After institutional review board (IRB) approval 
at Stanford University, Stanford, CA, USA (Approval No. 41652), we 
collected a novel dataset of 702 de-identified images from testicular 
biopsy samples of 30 patients. Consent from all participants was 
received at the time of semen collection (Figure 1).

Sample processing
The samples we obtained for this study were limited to the residual 
fraction of the prepared TESE samples for cryopreservation following 
micro-TESE procedures. The images were collected from these samples 
immediately after the procedure(s). In order to effectively obtain this 
fraction, we added 1.0 ml of Quinn’s Advantage Medium with HEPES 
(SAGE, Trumbull, CT, USA) with 20% Human Serum Albumin 
(SAGE), analyzed under the inverted microscope (IX73; Olympus, 
Tokyo, Japan) and captured images of sperm found in these samples. 
Hence, these TESE samples were more diluted and less complex 
compared to original TESE samples.

Characteristics
The data are all composite images of testicular biopsies from 30 distinct 
patients. These images vary in sperm phenotype, cellular clutter, tissue 
superstructure, imaging modality, size, and resolution. The dataset is 
comprised of two types of images: dense testicular tissue, collected from 
an inverted microscope (IX73; Olympus), at 1680 × 1050 resolution, 
or diffuse tissue, collected at 640 × 400 resolution.

Data preprocessing
At the time of collection, each image was normalized, passed through 
glare filters and diffraction correction (Hamilton Thorne, HT video 
and image capture software version 3, Hamilton Thorne, Inc., Beverly, 
MA, USA), and had microscopy artifacts removed.

Images were then anonymized and aggregated. A single 

embryologist annotated each image with bounding boxes around 
each identified spermatozoon. The data were split 80%, 10%, and 10% 
into training, validation, and test sets, respectively, and kept separate.

The dataset, with corresponding annotations, was parsed into the 
same format as Microsoft’s Common Objects in Context (COCO) 
image dataset, a standard convention for object detection datasets. 
This raw dataset was then augmented at training time by the methods 
described below.

Data augmentation
In order to increase the adequate size of our dataset, we applied various 
data augmentation techniques. Images were normalized (the RGB 
values of images were scaled to be between 0 and 1), randomly flipped 
horizontally, randomly cropped, padded, and jittered. Applying these 
augmentation techniques has been shown to increase the robustness of 
deep neural networks.10 Images were then linearly resampled to match 
the input size of 640 × 640.

Hard example mining
Our labelers were instructed to draw bounding boxes around all the 
spermatozoa they identified in each image. This means that our dataset 
only contains bounding boxes of “positive” examples and does not 
contain “negative” examples, i.e., bounding boxes for the “background” 
class. However, the neural network must also learn to recognize 
which parts of the image do not contain sperm, i.e., correspond to 
the “background” class. As such, we dynamically generate “negative” 
bounding boxes in each image to train the model on.

In more technical terms, a bounding box is considered a negative 
example if it has less than a 0.5 intersection-over-union ratio (IOU, 
defined in our Metrics section, below) with any labeled spermatozoa 
in an image. These boxes are dynamically selected during training. As 
there are significantly more possible boxes containing “background” 
rather than sperm, we decided to limit the number of negative boxes to 
three per positive box. In each image with k spermatozoa, we select the 
3k negative examples with the largest loss (i.e., the images the model 
made the greatest error on) in that image. These negative examples are 
temporarily added to the dataset for that iteration of model training. 
This procedure is known as hard example mining and is a method by 
which we pick the most informative negative examples for training 
the network while preventing a class imbalance between negative and 
positive examples.

Model
Sperm identification is an object detection task – object detection 
models take in an image and annotate it with bounding boxes. Each 
bounding box has an associated label (spermatozoon or background) 
and a confidence rating.

This deep object detection network is composed of two parts: a 
feature extraction network, which takes in raw images, and outputs 
feature maps, and an object detection network, which interprets those 
feature maps, and outputs predictions for the location and presence 
of items.

In this work, MobileNetV211 was used as a feature extraction 
network, and single-shot detector (SSD)12 was used as an object 
detection network. While we present summaries of these network 
architectures below, we encourage readers to see the original papers 
for more information.

Medical images require specialized expertise to annotate, and, 
as a result, medical image datasets are often much smaller than 
general image datasets. Transfer learning offers an effective way to 
mitigate the challenges of small training sets. Related work done by 

Figure 1: Sample testicular biopsy image with embryologist-labeled bounding 
boxes.
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the medical imaging group at the National Institutes of Health (NIH) 
explored transfer learning of CifarNet, AlexNet, VGGNet, Overfeat, 
and GoogLeNet for image classification on lymph node detection and 
interstitial lung disease diagnosis13 and found that models pretrained 
on ImageNet, an extensive database of miscellaneous images,14 
outperformed models trained from scratch, and achieved expert-level 
performance. Thus, we pretrained our feature extractor, MobileNetV2, 
on ImageNet.

Architectures
We use two architectures in our CASA system – MobileNetV2 and SSD.

The original MobileNet is a feature extraction network optimized 
for fast predictions on mobile devices.11 MobileNetV2 is an updated 
version composed of a fully convolutional layer with thirty-two 3 × 3 
filters, and then 19 residual bottleneck layers, taking advantage of 
depth-wise convolutions for speed, and linear bottlenecks for memory 
efficiency. This results in a lightweight, small, and fast network while 
maintaining an acceptable standard of accuracy. By selecting this 
network for our feature extraction network, we optimize for speed 
over accuracy.

The SSD is an object detection network which makes the use of the 
convolutional layers of VGG16, appending additional convolutional 
layers, and extracting feature maps at each layer for prediction. 
These feature maps are a variety of sizes, which allow for predictions 
at a variety of scales. This utilizes the Multibox algorithm,12 which 
generates 8732 default box proposals, at predetermined distributed 
locations and sizes. The model then classifies each proposal as either 
a spermatozoon or background and regresses the bounding box shape 
to match identified component objects.

Loss
The loss function is a numerical measure of the performance of the 
model and is minimized through backpropagation. SSD uses a loss 
function composed of the sum of a regularization loss and a weighted 
average of a classification loss and a localization loss (Equation 1, 
Supplementary Information). The classification loss represents 
how accurate the network is at identifying a given object in an image 
as belonging to the correct class (e.g., sperm or background) and is 
given by a softmax loss between the predicted and actual classes for 
each bounding box (Equation 2, Supplementary Information). The 
localization loss represents how precise the network is determining the 
coordinates of the bounding box and is given by the sum of smoothed 
distances between the center XY coordinates, width, and height of 
each predicted bounding box with the corresponding coordinates of 
the actual bounding box (Equation 3, Supplementary Information). 
We also add a regularization loss LR which is given by the square of the 
L2 norm of the weights in the network, multiplied by a regularization 
strength hyperparameter (Equation 4, Supplementary Information). 
This regularization loss serves the pragmatic function of penalizing 
overly large values for model parameters and mitigates model overfitting.

Training and tuning
The model was trained on our dataset on Google Cloud in 8 h on an 
NVIDIA K80 GPU, using minibatch gradient descent. The RMSProp 
optimizer, which accumulates a moving average for the first-order 
momentum across batches, was used to update our weights (Equation 
5, Supplementary Information). This smoothens training updates 
compared to standard stochastic gradient descent optimization while 
preventing slow training.

We then used model performance on the validation data to tune 
the hyperparameters of the model. The main goal of the model was 

to automate manual sperm identification. Thus, the model has to 
make rapid predictions on quickly changing microscopy images. 
Furthermore, for patients with severe male factor infertility where no 
sperm is found in the semen, it must err on the side of high sensitivity.

Nonmaximal suppression
Due to the design of SSD, the output of the model on any given image 
is 8732 predictions, the vast majority of which correspond to the 
“background” class. Because these boxes have significant overlap with 
one another, we applied nonmaximal suppression,12 a technique which 
keeps only the most confident prediction of each set of overlapping 
boxes, to declutter the resulting image.

Metrics
Following the standard of Microsoft’s Common Objects in Context 
(COCO) challenge, the following metrics were used to assess model 
performance:

The IOU, also known as the Jaccard Index (Figure 2), is a measure 
of how well a given bounding box aligns with another bounding 
box. It is equal to the percentage of the overlapping area of the two 
boxes. The IOU was used to determine if a given model prediction 
was correct; any bounding box with an IOU of greater than some 
set threshold, generally 0.5 (i.e., an overlap of 50%), is considered a 
correct bounding box.

Mean average precision (mAP) is a measure of the precision-recall 
trade-off of a model. We used the COCO mAP metric, which averages 
the precision over 101 evenly distributed recall values, from 0 to 1, to 
calculate the mAP.

Average recall (AR) is a measure of the sensitivity of a model at 
a given number of detections per image. In this paper, we used 100 
detections per image, i.e., after nonmaximal suppression, only the 100 
most confident detections out of all 8732 detections were assessed and 
all other detections were removed. We used the COCO AR metric, 
which is defined as the maximum recall given this fixed number of 
detections per image, averaged over categories and IOUs. In keeping 
with the COCO standard, 10 IOU thresholds were used (50%, 55%, 
60%, 65%, …, 95%).15

The F1 score is an overall measure of the accuracy of our classifier 
and is defined as the harmonic mean of precision (mAP) and recall 
(AR).

RESULTS
Benchmarks
While our training dataset was labeled by a single embryologist, we 
wanted to compare the performance of our model against human error 
rates. Thus, three embryologists independently labeled, with bounding 
boxes, our test dataset of 110 images, containing 111 sperm, with the 
VIA Image Annotator.16 These annotations were then parsed to form a 

Figure 2: The visual calculation of the intersection-over-union ratio (IOU).
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ground-truth set of labels, where, if in a given image, at least two out of 
three embryologists drew bounding boxes with at least 0.5 IOU, then we 
took the ground truth to be a bounding box with the average coordinates 
of the embryologists’ labels (Figure 3). We then calculated IOUs from 
each embryologist’s prediction for the corresponding bounding box in our 
ground truth and then calculated mAP and AR for human performance.

Model assessment
We calculated mAP and AR on our test set, with our tuned 
hyperparameters. We also report the F1 score, which is the harmonic 
mean of the precision and recall. The performance of our model is 
given in Table 1.

Qualitative results and limitations
The sample output from our model is shown in Figure 4. The 

model has a difficult time identifying distorted sperm, particularly 
those with bent tails, deformities, or those occluded by microscopy 
artifacts. Detection rates and localization performance on sperm with 
normal and subnormal morphology, our primary use case, align with 
embryologist-level performance.

Furthermore, the determinations were made on random static 
images. The accuracy of the deep neural network is lower than that 
of the embryologists; however, the model has the potential to be 
significantly more time efficient. On our GPU hardware, the model 
makes a prediction on all 702 images in the dataset in approximately 
25 s, whereas it took three embryologists total of approximately 129 
600 s (approximately 36 h) in comparison to manually identify and 
label all 702 images. In a clinical setting, without the need to label the 
images, it would take embryologists several (approximately 2–3) hours 
to visually identify sperm in these images, several orders of magnitude 
longer than the speed of the model.

DISCUSSION
Object detection via deep convolutional neural networks is an active and 
robust field of research. Robust models for object detection have been 
trained for a variety of image modalities – magnetic resonance imaging 
(MRI), computed tomography (CT), X-ray, and mammography – for a 
variety of tasks – detection, diagnosis, and assistive labeling.17

Computer vision tasks appear in a variety of medical imaging 
domains. Since medical images often contain nuanced and high-
level features in localizable parts of the image, and the classification 
(assessment, diagnosis, and monitoring) task is often abstract, deep 
convolutional neural networks are the method of choice.18–21

As such, the confluence of deep convolutional neural networks 
and existing object detection architectures are well suited for sperm 
identification and morphological classification. Currently, TESE 
success rates vary between centers.8 While patient demographics play 
a role, we know that the laboratory also plays a significant role in 
determining the success of a sperm extraction.22 Our results indicate 
that deep learning-based technologies can improve the efficiency of 
finding sperm in testicular biopsy samples. Deep learning algorithms 
can help improve the efficiency and accuracy of sperm identification by 
reducing the tedium of the procedure. However, for cell identification 
deep learning-based vision technologies to be successful for micro-
TESE, these systems must possess some specific characteristics:

Figure 3: A (faux) visual example of the methodology behind how the ground-
truth labels were built. Top: if at least 2 embryologists labeled the same 
area (blue), then a ground-truth bounding box is created from the average of 
embryologist labels (red). Bottom: if only 1 embryologist labeled an area, it 
is not added to the ground-truth labels.

Table 1: Comparison of performance of architecture on test set

Feature extractor Object detector mAP AR F1 Score

Human eye (embryologists) Occipital cortex 0.925a 0.642 0.758

MobileNet V2 (CNN) SSD 0.741 0.376 0.499

Reported mAP is at 0.5 IOU, and AR is at 100 detections per image. aWe report the 
raw precision here. Under the assumption that humans predict with 100% confidence, 
raw precision is equivalent to mAP. mAP: mean average precision; AR: average recall; 
SSD: single-shot detector; IOU: intersection-over-union ratio

Figure 4: Example predictions from SSD MobileNetV2 on two spermatozoon-rich images. (a) Model detections on sample 1. (b) Embryologist labels on sample 
1. (c) Model detections on sample 2. (d) Embryologist labels on sample 2. SSD: single-shot detector.
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1. Since the number of sperm present in the sample is typically low, 
the system should err on the side of false positives

2. The system should be able to account for variation in the samples 
in terms of the constituents of the sample

3. The final clinical utilization of the system must be simple, cost-
effective, and require low maintenance.

For this study, we trained a deep learning architecture on a novel dataset 
of testicular biopsy images, and achieved a mAP at IOU 0.5 of 0.741, 
with an AR at 100 detections per image of 0.376. This is likely because 
deformed sperm are not well represented in our dataset and exist as a small 
subclass within the sperm class and thereby suffer from the effects of class 
imbalance. Given that MobileNetV2 is optimized for speed rather than 
accuracy, this is a robust result. For example, on the MS COCO dataset, 
a dataset used to benchmark object detection models, MobileNetV2 
achieved a mAP of only 0.22.23 Our model achieves subhuman 
performance but at extremely high throughput, thus we suspect our 
model will be a useful “prefiltering” step to assist embryologists in quickly 
finding areas of interest in testicular biopsy samples.

We emphasize that our aim is to create a practical tool for real-time 
sperm identification. A properly functioning network might not be accurate 
enough to outperform an embryologist on the number of spermatozoa 
found in each microscopy image but must be fast and accurate enough 
to outperform an embryologist in the amount of time it takes to find 
spermatozoa in a sample. We expect that future work will focus on locating 
and identifying sperm in TESE samples in tandem with embryologists.

We note that MobileNetV2 is optimized for fast inference; on a 
Google Pixel I smartphone, the model processes an image every 75 ms,11 
and on dedicated hardware, the model can make much faster predictions 
– we speculate that the practical limitation will only be based on the 
imaging speed of the microscope. These deep learning architectures 
can be applied to the micro-TESE procedure without a great deal of 
difficulty by integrating with existing imaging software. Using automated 
technologies, the potential exists to minimize the need for skilled tissue 
processing personnel, while at the same time increasing the efficiency 
and consistency of the process, leading to increased sperm recovery rates.

After initial testing of the model, it will be deployed in an academic in vitro 
fertilization center as a research tool for further testing. We intend to deploy 
the model as a real-time video classification pipeline, which automatically 
identifies sperm in testicular tissue. Our novel tool will improve the efficiency 
of searching for sperm in testicular biopsy samples, which is currently a labor-
intensive process dependent on the skill of the embryologist.
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