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It has been recently reported that the reciprocity of real-life weighted networks is very pronounced, however
its impact on dynamical processes is poorly understood. In this paper, we study random walks in a scale-free
directed weighted network with a trap at the central hub node, where the weight of each directed edge is
dominated by a parameter controlling the extent of network reciprocity. We derive two expressions for the
mean first passage time (MFPT) to the trap, by using two different techniques, the results of which agree well
with each other. We also analytically determine all the eigenvalues as well as their multiplicities for the
fundamental matrix of the dynamical process, and show that the largest eigenvalue has an identical
dominant scaling as that of the MFPT.We find that the weight parameter has a substantial effect on the
MFPT, which behaves as a power-law function of the system size with the power exponent dependent on the
parameter, signaling the crucial role of reciprocity in random walks occurring in weighted networks.

A
s an emerging science, complex networks have witnessed substantial progress in the past years1. One of the
ultimate goals in the study of complex networks is to uncover the influences of various structural
properties on the function or dynamical processes taking place on them. Among different dynamical

processes, random walks lie at the core, since they are a fundamental mechanism for a wealth of other dynamic
processes, such as navigation2, search3,4, and cooperative control5. Except for the importance in the area of
network science, random walks also provide a paradigmatic model for analyzing and understanding a large
variety of real-world phenomena, for example, animal6 and human7 mobility. Thus far, random walks have found
numerous applications8 in many aspects of interdisciplinary sciences, including image segmentation9, commun-
ity detection10,11, collaborative recommendation12, and signal propagation in proteins13 to name a few.

A highly desirable quantity for random walks is first passage time (FPT)14, defined as the expected time for a
random walker going from a starting node to a given target averaged over all possible trajectories. The mean of
FPTs over all starting nodes to the target is called mean first passage time (MFPT), which is an important
characteristic of random walks due to the first encounter properties in numerous realistic situations. In the past
years, the study of MFPT has triggered an increasing attention from the scientific community15,16. One focus of
theoretical activity is to develop general methods to efficiently compute MFPT17–20. Another direction is to unveil
how the behavior of MFPT is affected by different structural properties of the underlying systems, such as
heterogeneity of degree21 or strength22, fractality23, and modularity24.

Previous studies proposed several frameworks for evaluating MFPT and uncovered the discernible effects of
some nontrivial structural aspects on the target search efficiency measured by MFPT. However, most existing
works ignore the impact of link reciprocity, the tendency of node pairs to form mutual connection in directed
networks, on the behavior of random walks, despite the fact that reciprocity is a common characteristic of many
realistic networks25, such as the World-Wide Web26, e-mail networks27,28, and world trade web29. In addition to
binary networks, the nontrivial pattern reciprocity is also ubiquitous in real-life systems described by weighted
networks30–32. It has been shown the ubiquitous link reciprocity strongly affects dynamical processes in binary
networks, for example, spread of computer viruses28 or information33, and percolation34. By contrast, the influ-
ence of reciprocity on dynamical processes in weighted networks has attracted much less attention, although it is
suggested that reciprocity could play a crucial role in network dynamics. In particular, the lack of analytical results
in this field limits our understanding of the impact of weight reciprocity on the function of weighted networks32.

In this paper, we propose a weighted directed scale-free network through replacing each edge in the previous
binary network35,36 by double links with opposite directions and different weights. In the weighted network, the
link weights are adjusted by a parameter characterizing the weight reciprocity of network. We then study random
walks in the weighted network in the presence of a perfect trap at the central large-degree node. During the
process of random walks, the transition probability is dependent on the weight parameter. We derive two
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formulas for the MFPT to the target by using two disparate
approaches, the results of which completely agree with each other.
We also determine all the eigenvalues and their multiplicities of the
fundamental matrix characterizing the random-walk process, and
show that the largest eigenvalue has the same leading scaling as that
of the MFPT. The obtained results demonstrate that the behavior of
MFPT to the trap depends on the weighted parameter, implying a
drastic influence of the weight reciprocity on random walks defining
on weighted networks.

Results
Network models and properties. Before introducing the weighted
directed network with scale-free fractal properties. We first give a
brief introduction to a binary scale-free fractal network, which has
the same topology as the weighted network.

Model and properties of binary network. The binary network is con-
structed in an iterative way35,36. Let Fg (g $ 0) represent the network
after g iterations (generations). For g 5 0, F0 is an edge linked by two
nodes. In each successive iteration g $ 1, Fg is constructed from Fg21

by performing the following operations on every existing edge in
Fg21 as shown in Fig. 1: two new nodes (called external nodes) are
firstly created and attached, respectively, to both endpoints of the
edge; then, the edge is broken, another new node (referred to as an
internal node) is placed in its middle and linked to both endpoints of
the original edge. Figure 2 illustrates the first several construction
processes of the network. The structure of Fg is enciphered in its
adjacency matrix Ag, the entries Ag(i, j) of which are defined by
Ag(i, j) 5 1 if two nodes i and j are adjacent in Fg, or Ag(i, j) 5 0
otherwise.

The particular construction of the network allows to calculate
exactly its relevant properties. At each generation gi (gi $ 1), the
number of newly created nodes is Ugi~3:4gi{1. Let �Lgi be the set
of nodes generated at iteration gi, then �Lgi can be further classified
into two sets �Lgi,ext and �Lgi,int satisfying �Lgi~

�Lgi,ext|�Lgi,int, among
which �Lgi,ext is the set of external nodes and �Lgi,int is the set of internal
nodes. We use jVj to stand for the cardinality of a set V. Because
�Lgi,ext

�� ��~2 �Lgi,in

�� ��, it is easy to derive �Lgi,int

�� ��~4gi{1 and �Lgi,ext

�� ��~
2:4gi{1. We represent the set of nodes in Fg as Lg. Hence, the number
of nodes and edges in Fg is Ng~ Lg

�� ��~X
g
gi~0Ugi~4gz1 and Eg 5

Ng 2 1 5 4g, respectively. Let ki(g) denote the degree of an arbitrary
node i in Fg that was generated at generation gi (gi $ 0), then ki(g 1 1)
5 2 ki(g). Hence, after each new iteration the degree of every node
doubles.

This resultant network displays the remarkable scale-free37 and
fractal38 features as observed in diverse real-life systems. It has a
power law degree distribution with an exponent 3, and its fractal
dimension is 2.

Model and properties of weighted directed network. The above intro-
duced binary network Fg can be extended to a weighted directed
network with nonnegative and asymmetrical edge weights. Let ~Fg

denote the weighted directed network corresponding to Fg. Both~Fg

and Fg have an identical topological structure. The only difference
between~Fg and Fg is that every undirected edge in Fg is replaced by
two directed edges with opposite directions and distinct positive
weights. We use Wg to represent the nonnegative and asymmetrical

weight matrix for ~Fg such that Wij(g) . 0 if and only if there is a
directed edge (arc) pointing to node j from node i. The weight of each
arc in the weighted directed network is defined recursively in the
following way. When g 5 0,~F0 has two nodes, denoted by a and b,
and the weights of arcs e! a,bð Þ and e! b,að Þ are defined to be Wab(0)
5 Wba(0) 5 1. When g $ 1, by construction, Fg is obtained from Fg21

by substituting each undirected edge e(u, v) in Fg21 with two undir-
ected edges e(u, w) and e(w, v), and generating two additional nodes,
x and y, attaching to u and v, respectively. The weights of resultant
arcs in~Fg are defined as: Wuw(g) 5 Wuv(g 2 1), Wvw(g) 5 Wvu(g 2

1), Wwu(g) 5 Wwv(g) 5 1, Wxu(g) 5 1, Wyv(g) 5 1, Wux(g) 5

hWuv(g21), and Wvy(g) 5 hWvu(g21). Here h is a tunable positive
real number, that is, h . 0. The weight parameter is of paramount
importance since it characterizes the weight reciprocity of network
~Fg . When h 5 1,~Fg reduces to Fg, and the weights in two directions
between any pair of adjacent nodes are completely reciprocated;
when h ? 1, the weights are non-reciprocated30–32: the larger the
deviation of h from 1, the smaller the level of weight reciprocity.

In fact, the introduced weight parameter h acts as a similar role of
energetic funnel in dendrimers controlling the MFPT to the cen-
ter39–41. It has been shown theoretically39,42 that the MFPT of
Cayley trees as models of dendrimers can be influenced by both
geometrical and energetic features. However, for complex systems
with scale-free and fractal properties, it is still not well-understood
how to superimpose an energetic funnel on their topological archi-
tecture, so that the MFPT depends on the interplay between struc-
tural and energetic properties. The main purpose of this work is to fill
the gap, uncovering the collective impacts of topological and ener-
getic aspects on dynamical processes, especially MFPT of random
walks.

In undirected weighted networks43, node strength is a key quantity
characterizing the property of a node. Here we extend the definition
of strength of a node to the directed weighted network~Fg by defining
the out-strength and in-strength of node i in ~Fg as

szi gð Þ~
X Ng

j~1 Wij gð Þ and s{i gð Þ~
X Ng

j~1 Wji gð Þ, respectively.

For ~Fg , we can obtain the out-strength for an arbitrary node i that
entered the network at generation gi (gi $ 0). If i was an external node
when it entered the network, szi gð Þ~ hz1ð Þg{gi ; otherwise, if i was
an internal node when it was born, szi gð Þ~2 hz1ð Þg{gi . Therefore,
after each new iteration, the out-strength of a node increases by a
factor of h. It is easy to obtain that the node out-strength in~Fg obeys a
distribution of power law form with the exponent being

1z
2 ln 2

ln hz1ð Þ . Note that in some realistic networks, the node

strength also display a broad distribution43.

Formulation of biased walks in the weighted directed network.
After introducing the construction and properties of the weighted
directed network ~Fg , we now define and study biased discrete-time

Figure 1 | Illustration of construction of the binary network. The next

generation is obtained from current generation by replacing each edge with

the cluster on the right-hand side of the arrow, where w is a new internal

node, while x and y are external nodes.

Figure 2 | Iterative growth processes for the first several generations.
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random walks performing~Fg . Let rij gð Þ~Wij gð Þ
�

szi gð Þ denote the
transition probability that a particle jumps from node i to its
neighboring node j per time step. Note that rij(g) constitutes an
entry of transition matrix Rg 5 (Sg)21Wg, where Sg is the diagonal
out-strength matrix of ~Fg , with the ith diagonal entry of Sg being
szi gð Þ.

In this paper, we focus on a specific case of biased random walks,
often called trapping problem, in~Fg in the presence of a trap placed at
the central hub node, i.e., the internal node generated at the first
iteration. To facilitate the description of the following text, all the
Ng nodes in ~Fg are labeled sequentially as 1, 2, …, Ng 2 1, Ng as

follows. For ~F1, the newly generated internal node is labeled 1, the
initial two nodes in ~F0 are labeled as 2 and 3, while the two new
external nodes are labeled by 4 and 5. For each new iteration gi .

1, we label consecutively the new nodes born at this iteration from
Ngi{1z1 to Ngi , while we keep the labels of those nodes created
before iteration gi unchanged.

For the trapping problem, what we are concerned with are the

trapping time and the average trapping time. Let T gð Þ
i represent the

trapping time for a particle initially placed at node i (i ? 1) in~Fg to
arrive at the trap node for the first time, which is equal to the FPT
from the i to the trap. The average trapping time, ÆTæg, is actually the

MFPT to the trap, defined as the mean of T gð Þ
i over all non-trap initial

nodes in network Fg:

Th ig~
1

Ng{1

XNg

i~2

T gð Þ
i : ð1Þ

Below we will show how to compute the two quantities T gð Þ
i and ÆTæg.

For T gð Þ
i , it obeys the relation

T gð Þ
i ~1z

XNg

j~2

rijT
gð Þ

j , ð2Þ

which can be recast in matrix form as:

T~ez�Rg T, ð3Þ

where T~ T gð Þ
2 ,T gð Þ

3 , . . . ,T gð Þ
Ng

� �>
is an (Ng 2 1)-dimensional vector,

e 5 (1, 1, …, 1)T is the (Ng21)-dimensional vector of all ones, and �Rg

is a matrix of order Ng21, which a submatrix of Rg and obtained from
Rg by deleting the first row and the first column corresponding to the
trap. From equation (3) we have

T~ I{�Rg
� �{1

e~Kg e, ð4Þ

where I is the (Ng21) 3 (Ng21) identity matrix, matrix

Kg~ I{�Rg
� �{1

is the fundamental matrix44 of the addressed trap-
ping problem. Equation (4) implies

T gð Þ
i ~

XNg

j~2

Kg i,jð Þ, ð5Þ

where Kg(i, j) is the ijth entry of matrix Kg, representing the expected
number of visitations to node j by a particle starting from node i
before being absorbed by the trap. Plugging equation (5) into equa-
tion (1) yields

Th ig~
1

Ng{1

XNg

i~2

XNg

j~2

Kg i,jð Þ: ð6Þ

Equation (6) indicates that the computation of MFPT ÆTæg can
be reduced to finding the sum of all entries of the corresponding

fundamental matrix. A disadvantage of this method is that it
demands a large computational effort when the network is very large.
However, equation (6) provides exact results for ÆTæg that can be
applied to check the results for MFPT obtained using other tech-
niques. Next we analytically determine the closed-form expression
for MFPT ÆTæg using an alternative approach, the results of which are
consistent with those of equation (6). It should be noted that MFPT
for other deterministic scale-free unweighed networks have been
previously addressed45–47.

Exact solution to the MFPT ÆTæg. The particular selection of trap
location and the specific network structure allow to determine
exactly the MFPT ÆTæg for arbitrary g. In order to obtain a close-

form expression for ÆTæg, we first establish the dependence of T gð Þ
i on

iteration g. For a node i in~Fg , at iteration g 1 1, its degree doubles,
increasing from ki(g) to 2ki(g). All these 2ki(g) neighboring nodes are
created at iteration g 1 1, among which one half are external nodes
with a single degree, and the other half are internal nodes with degree
2.

We now consider the trapping problem in~Fgz1. Let A be the FPT
for a particle starting from node i to any of its ki(g) old neighbors, that
is, those nodes adjacent to i at iteration g; let B (resp. C) be the FPT for
a particle staring from any of the ki(g) internal (resp. external) neigh-
bors of i to one of its ki(g) old neighbors. Then the FPTs obey rela-
tions:

A~
h

hz1
1zCð Þz 1

hz1
1zBð Þ,

B~
1
2
z

1
2

1zAð Þ,
C~1zA:

8>>>><
>>>>:

ð7Þ

Eliminating B and C in equation (7), we obtain A 5 4(h 1 1).
Therefore, when the network grows from iteration g to iteration g
1 1, the FPT from any node i i[~Fg

� �
to another node j j[~Fg

� �
increases by a factor of 4(h 1 1). Hence, T gz1ð Þ

i ~4 hz1ð ÞT gð Þ
i hold

for any g, which is a useful for deriving the exact expression for
MFPT.

Having obtained the scaling dominating the evolution for FPTs,
we continue determining the MFPT ÆTæg. For this purpose, we intro-

duce two intermediary quantities for any n # g: T gð Þ
n,tot~

X
i[Ln

T gð Þ
i

and �T gð Þ
n,tot~

X
i[�Ln

T gð Þ
i . Then,

T gð Þ
g,tot~T gð Þ

g{1,totz
�T gð Þ

g,tot~ 4hz4ð ÞT g{1ð Þ
g{1,totz

�T gð Þ
g,tot: ð8Þ

By definition, Th ig~
1

Ng{1
T gð Þ

g,tot. To find T gð Þ
g,tot, it is necessary to

explicitly determine the quantity �T gð Þ
g,tot. To this end, we define

two additional quantities for n # g: �T gð Þ
n,int~

X
i[�Ln,int

T gð Þ
i and

�T gð Þ
n,ext~

X
i[�Ln,ext

T gð Þ
i . Obviously, �T gð Þ

g,tot~�T gð Þ
g,intz

�T gð Þ
g,ext. Thus, in

order to find �T gð Þ
g,tot, one may alternatively evaluate �T gð Þ

n,int and �T gð Þ
n,ext.

We first establish the relationship between �T gð Þ
n,int and �T gð Þ

n,ext. By
construction (see Fig. 1), at a given generation, each edge connecting
two nodes u and v will give rise three new nodes (w, x, and y) in the
next generation. The two external nodes x and y are separately
attached to u and v, while the only internal node w is linked
simultaneously to u and v. For any iteration g, the FPTs for the
three new nodes satisfy: T gð Þ

x ~1zT gð Þ
u , T gð Þ

y ~1zT gð Þ
v , and

T gð Þ
w ~

1
2

1zT gð Þ
u

h i
z

1
2

1zT gð Þ
v

h i
. Therefore, T gð Þ

x zT gð Þ
y ~2T gð Þ

w .

Summing this relation over all old edges at the generation before

growth, we find that for all n # g, �T gð Þ
n,ext~2�T gð Þ

n,int always holds. In

www.nature.com/scientificreports
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this way, the issue of determining �T gð Þ
g,tot is reduced to finding �T gð Þ

g,ext

that can be obtained as follows.
For an arbitrary external node iext in~Fg , which is created at gen-

eration g and attached to an old node i, we have T gð Þ
iext

~1zT gð Þ
i , a

relation valid for any node pair containing an old node and one of its

new external adjacent nodes. By applying relation T gð Þ
iext

~1zT gð Þ
i to

two sum (the first one is over a given old node and all its new adjacent
external nodes, the other is summing the first one over all old nodes),
we obtain

�T gð Þ
g,ext~

�Lg,ext

�� ��z X
i[Lg{1

ki g{1ð Þ|T gð Þ
i

� �

~ �Lg,ext

�� ��z �T gð Þ
g{1,extz2�T gð Þ

g{1,int

� �
z 2�T gð Þ

g{2,extz4�T gð Þ
g{2,int

� �
z � � �

z 2g{2 �T gð Þ
1,extz2g{1 �T gð Þ

1,int

� �
~2|4g{1z2�T gð Þ

g{1,extz4�T gð Þ
g{2,extz � � �z2g{1 �T gð Þ

1,ext

ð9Þ

From equation (9), one can derive the recursive relation

�T gz1ð Þ
gz1,ext~16 hz1ð Þ�T gð Þ

g,ext{ 4hz2ð Þ4g : ð10Þ

Considering the initial condition �T 2ð Þ
2,ext~48h2z80hz40, equation

(10) is solved to yield

�T gð Þ
g,ext~

12h2z17hz7
hz1ð Þ 4hz3ð Þ 24g {4 hz1ð Þgz 2hz1

4hz3
22g {1: ð11Þ

Because �T gð Þ
g,tot~�T gð Þ

g,intz
�T gð Þ

g,ext and �T gð Þ
g,ext~2�T gð Þ

g,int, we have

�T gð Þ
g,tot~

36h2z51hz21
hz1ð Þ 4hz3ð Þ 24g {5 hz1ð Þgz 6hz3

4hz3
22g{2: ð12Þ

Inserting equation (12) into equation (8) leads to

T gð Þ
g,tot~ 4hz4ð ÞT g{1ð Þ

g{1,totz
6hz3
4hz3

22g {2

z
36h2z51hz21

hz1ð Þ 4hz3ð Þ 24g {5 hz1ð Þg :
ð13Þ

Using T 1ð Þ
1,tot~8hz6, equation (13) is solved to get

T gð Þ
g,tot~

12h3z17h2z7h

h hz1ð Þ 4hz3ð Þ 24g{3 hz1ð Þg

z
16h3z28h2z20hz6

h hz1ð Þ 4hz3ð Þ 22g {3 hz1ð Þg

{
3 hz1ð Þ 2hz1ð Þ
h hz1ð Þ 4hz3ð Þ 22g {2:

ð14Þ

Then, the rigorous expression for the MFPT ÆTæg of the weighted
directed network~Fg is

Th ig~
12h3z17h2z7h

8h hz1ð Þ 4hz3ð Þ 22g hz1ð Þg

z
16h3z28h2z20hz6

8h hz1ð Þ 4hz3ð Þ hz1ð Þg{ 3 hz1ð Þ 2hz1ð Þ
4h hz1ð Þ 4hz3ð Þ :

ð15Þ

We have checked the analytical solution in equation (15) against
extensive numerical results obtained from equation (6), see Fig. 3.
For different h and g, both the analytical and numerical results are in
full agreement with each other, indicating that the explicit expression

in equation (15) is correct. In addition, for the particular case h 5 1,
the network ~Fg is reduced to Fg, and equation (15) recovers the
result23 previously obtained for Fg. This also validates equation (15).

We proceed to express ÆTæg in terms of the network size Ng, in
order to uncover how ÆTæg scales with Ng. From Ng 5 4g 1 1, we have
g 5 log4(Ng 2 1). Then,

Th ig~
12h3z17h2z7h

8h hz1ð Þ 4hz3ð Þ Ng{1
� �1zlog4 hz1ð Þ

z
16h3z28h2z20hz6

8h hz1ð Þ 4hz3ð Þ Ng{1
� �log4 hz1ð Þ

{
3 hz1ð Þ 2hz1ð Þ

4h hz1ð Þ 4hz3ð Þ :

ð16Þ

For a very large network (i.e., Ng R ‘), the leading term of ÆTæg can be
represented as:

Th ig* Ng
� �1zlog4 hz1ð Þ

: ð17Þ

Equation (17) shows that for the directed weighted network~Fg , the
MFPT ÆTæg behaves as a power-law function of the network size Ng,
with the exponent g(h) 5 1 1 log4(h 1 1) increasing with the weight
parameter h. Thus, the weight reciprocity has an essential effect on
the efficiency of the trapping problem, measured by the MFPT.

Eigenvalues of the fundamental matrix. We now study the
eigenvalues of the fundamental matrix Kn of the trapping problem
addressed above. We will determine all the eigenvalues of the
fundamental matrix as well as their multiplicities. Moreover, we
will show that the largest eigenvalue has the same leading scaling
as that of ÆTæg. To attain this goal, we introduce matrix Pg defined by
Pg~K{1

g . Let li(g) and si(g), where i 5 1, 2, …, Nn21, denote the
eigenvalues of Pg and Kg, such that l1 gð Þƒl2 gð Þƒl3 gð Þ . . .
ƒlNg {1 gð Þ and s1 gð Þ§s2 gð Þ§s3 gð Þ§ . . . §sNn{1 gð Þ. Then,
the one-to-one relation li(g) 5 1/si(g) holds. Thus, to compute the
eigenvalues of matrix Kn, we can alternatively determine the
eigenvalues for Pg. In the sequel, we will use the decimation
method48,49 to find all the eigenvalues of matrix Pg.

Full spectrum of fundamental matrix. The decimation procedure48,49

makes it possible to obtain the eigenvalues for related matrix of the
current iteration from those of the previous iteration.

We now consider the eigenvalue problem for matrix Pg11. Let a

denote the set of nodes in network~Fg , and b the set of nodes created
at iteration g 1 1. Suppose that li(g 1 1) is an eigenvalue of Pg11, and

u~ ua,ub

� �>
is an eigenvector associated with li(g 1 1), where ua

and ub correspond to nodes belonging to sets a and b, respectively.
Then, eigenvalue equation for matrix Pg11 can be represented in a
block form:

Pa,a Pa,b

Pb,a Pb,b

� 	
ua

ub

� 	
~li gz1ð Þ

ua

ub

� 	
, ð18Þ

where Pa,a and Pb,b are the identity matrix.
Equation (18) can be expressed as two equations:

Pa,auazPa,bub~li gz1ð Þua, ð19Þ

Pb,auazPb,bub~li gz1ð Þub: ð20Þ

Equation (20) implies

ub~
1

li gz1ð Þ{1
Pb,aua, ð21Þ
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provided that li(g 1 1) ? 1. Inserting equation (21) into equation
(19) yields

Pa,bPb,aua~ li gz1ð Þ{1½ �2ua: ð22Þ

In this way, we reduce the problem of determining the eigenvalue li(g
1 1) for matrix Pg11 of order 4g11 to finding the eigenvalue problem
of matrix Pa,bPb,a with a smaller order 4g.

We can prove (see Methods) that

Pa,bPb,a~Ig{
1

2hz2
Pg , ð23Þ

where Ig is the identity matrix of order 4g, identical to that of Pg.
Equation (23) relates the product matrix Pa,bPb,a to matrix Pg.
Therefore, the eigenvalues of matrix Pg11 can be expressed in terms
of those of matrix Pg.

We next show how to obtain the eigenvalues of Pg11 through the
eigenvalues of Pg. According to equations (22) and (23), we can
derive

Pg ua~{ 2hz2ð Þ l2
i gz1ð Þ{2li gz1ð Þ


 �
ua: ð24Þ

Hence, if li(g) is an eigenvalue of Pg associated with eigenvector ua,
equation (24) indicates

li gð Þ~{ 2hz2ð Þ li gz1ð Þ2{2li gz1ð Þ

 �

: ð25Þ

Solving the above quadratic equation in the variable li(g 1 1) given
by equation (25), one obtains the two roots:

li,1 gz1ð Þ~1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

li gð Þ
2hz2

r
, ð26Þ

and

li,2 gz1ð Þ~1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

li gð Þ
2hz2

r
: ð27Þ

Equations (26) and (27) relate li(g 1 1) to li(g), with each eigenvalue
li(g) of Pg giving rise two different eigenvalues of Pg11. As a matter of
fact, all eigenvalues of the Pg11 can be obtained by these two recursive
relations. In Methods, we determine the multiplicity of each eigen-
value and show that all the eigenvalues can be found by equations
(26) and (27).

Since there is a one-to-one relation between the eigenvalues of Pg

and the fundamental matrix Kg, we thus have also found all the
eigenvalues of Kg.

The largest eigenvalue of fundamental matrix and MFPT. In the above,
we have determined all eigenvalues for the inverse Pg of the fundamental
matrix Kg and thus all eigenvalues of Kg. Here we continue to estimate
the greatest eigenvalue smax(g) of the fundamental matrix Kg, which
actually equals the reciprocal of the smallest eigenvalue for matrix Pg,
denoted by lmin(g). Below we will show that in a large network the
leading behavior of the MFPT ÆTæg for trapping in~Fg and the reciprocal
of lmin(g) is identical, that is, ÆTæg , 1/lmin(g) 5 smax(g).

We begin by providing some useful properties of eigenvalues
for matrix Pg. Assume that Dg is the set of the 4g eigenvalues of
matrix Pg, namely, Dg~ l1 gð Þ,l2 gð Þ,l3 gð Þ, � � � ,l4g gð Þf g. According
to the above analysis, Dg can be categorized into two subsets
D 1ð Þ

g and D 2ð Þ
g satisfying Dg~D 1ð Þ

g |D 2ð Þ
g , where D 1ð Þ

g consists of all

eigenvalues 1, while D 2ð Þ
g contains the rest eigenvalues. Thus,

D 1ð Þ
g ~ 1,1,1, . . . ,1,1f g|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

2|4g{1

: ð28Þ

These 2 3 4g21 eigenvalues are labeled sequentially by
l4g{1z1 gð Þ,l4g{1z2 gð Þ, � � � ,l3|4g{1 gð Þ, since they provide a natural
increasing order of all eigenvalues for Pg, as will be shown.

The remaining 2 3 4g21 eigenvalues in set D 2ð Þ
g are all determined

by equations (26) and (27). Let l1 g{1ð Þ,l2 g{1ð Þ,l3 g{1ð Þ,
� � � ,l4g{1 g{1ð Þ be the 4g21 eigenvalues of matrix Pg21, arranged
in an increasing order l1 g{1ð Þƒl2 g{1ð Þƒl3 g{1ð Þƒ . . .
ƒl4g{1 g{1ð Þ. Then, for each eigenvalue li(g 2 1) of Pg21, equations
(26) and (27) produce two eigenvalues of Pg, which are labeled as
li(g) and l4g{iz1 gð Þ:

li gð Þ~1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

li g{1ð Þ
2hz2

r
ð29Þ

and

l4g{iz1 gð Þ~1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

li g{1ð Þ
2hz2

r
: ð30Þ

Plugging each eigenvalue of Pg21 into equations (26) and (27) gen-
erates all eigenvalues in D 2ð Þ

g .
It is easy to see that li(g) given by equation (29) monotonously

increases with li(g 2 1) and belongs to interval (0, 1), while l4g{iz1 gð Þ
provided by equation (30) monotonously decreases with li(g 2 1)
and lies in interval (1, 2). Thus, l1 gð Þ,l2 gð Þ,l3 gð Þ, � � � ,l4g gð Þ pro-
vide an increasing order of all eigenvalues for matrix Pg.

We hasten to estimate lmin(g) of matrix Pg. From the above argu-
ments, the smallest eigenvalue lmin(g) must be the one generated
from lmin(g 2 1) through equation (29):

lmin gð Þ~1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

lmin g{1ð Þ
2hz2

r
: ð31Þ

Using Taylor’s formula, we have

lmin gð Þ<1{ 1{
lmin g{1ð Þ

4hz4

� 	
~

lmin g{1ð Þ
4hz4

: ð32Þ

Considering lmin 1ð Þ~1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r
, equation (32) is solved to

yield

lmin gð Þ< 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r !
4hz4ð Þ1{g : ð33Þ

Figure 3 | MFPT ÆTæg as a function of g for different networks with
various h. The filled symbols are the data obtained by direct calculation

from equation (6); while the empty symbols are those exact analytical

values given by equation (15).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7460 | DOI: 10.1038/srep07460 5



Thus,

1
lmin gð Þ<

1

4 hz1ð Þ2
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r !
4g hz1ð Þg , ð34Þ

which, together with equation (15), means that
1

lmin gð Þ and ÆTæg have

the same dominating term and thus identical leading scaling.

Discussion
Real-life weighted networks exhibit a rich and diverse reciprocity
structure. In this paper, we have proposed a scale-free weighted
directed network with asymmetric edge weights, which are con-
trolled by a parameter characterizing the network reciprocity. We
then studied random walks performed on the network with a trap
fixed at the central hub node. Applying two different approaches, we
have evaluated the MFPT to the trap. Moreover, based on the self-
similar architecture of the network, we have found all the eigenvalues
and their multiplicities of the fundamental matrix describing the
random-walk process, the largest one of which has the same leading
scaling as that of the MFPT. The obtained results indicate that the
MFPT scales as a power-law function of the the system size, with the
power exponent increasing with the weight parameter, revealing that
the reciprocity has a significant impact on dynamical processes
running on weighted networks. Finally, it should be mentioned that
although we have only studied a particular network, our methods can
also be applied to other self-similar networks, obtaining analogous
results. Thus, our work deepens the understanding of random-walk
dynamics in complex systems and opens a novel avenue to control
random walks in a weighted network by changing its reciprocity.

Methods
Proof of equation (23). In order to prove equation (23), we rewrite Pa,b and Pb,a in the
block form as

Pa,b~ U1,U2, � � � ,UEg

� �
ð35Þ

and

Pb,a~

V1

V2

..

.

VEg

0
BBBB@

1
CCCCA, ð36Þ

respectively. In equations (35) and (36), Eg 5 4g is the number of edges in Fg; Ui (1 # i
# Eg) is a 4g 3 3 matrix describing the transition probability from the 4g non-trap
nodes of Fg to the three nodes newly generated by the ith edge of Fg; similarly, Vi (1 # i
# Eg) is a 3 3 4g matrix indicating the transition probability from the three new nodes
created by the ith edge to those 4g old non-trap nodes belonging to Fg. Then,

Pa,bPb,a~
XEg

i~1

UiVi

~
XEg

i~1

ai

hz1
eli z

bi

hz1
eri ,

h

hz1
aieli ,

h

hz1
bieri

� �
|

{
e>li

ze>ri

2

{e>li

{e>ri

0
BBBB@

1
CCCCA

~{
1

2hz2
|

XEg

i~1

2hz1ð Þ aieli e
>
li zbieri e

>
ri

� �
zaieli e

>
ri
zbieri e

>
li

h i

~Ig{
1

2hz2
Pg ,

ð37Þ

which completes the proof of equation (23). Note that in equation (37), li and ri are the
two endpoints of the ith edge of Fg; ei is a vector having only one nonzero element 1 at

ith entry with other entries being zeros; ai and bi are two entries of Pg corresponding to
edges (li, ri) and (ri, li), respectively.

Alternative proof of equation (23). Equation (23) can also be proved using another

technique. Assume that Rg 5 Pa,bPb,a and Qg~Ig{
1

2hz2
Pg . In order to prove

Pa,bPb,a~Ig{
1

2hz2
Pg , it suffices to show that the entries of Rg are equal to their

counterparts of Qg. For matrix Qg, it is easy to see that its entries are: Qg i,ið Þ~ 2hz1
2hz2

for i 5 j and Qg i,jð Þ~{
1

2hz2
Pg i,jð Þ otherwise. If Pg11(i, j) denotes the (i, j) entry of

matrix Pg11, the entries of Rg(i, j) of matrix Rg can be evaluated by distinguishing two
cases: i 5 j and i ? j.

For the case of i 5 j, the diagonal element of Rg is

Rg i,ið Þ~

~
X
z[b

Pgz1 i,zð ÞPgz1 z,ið Þ~
X
z[b

Wiz gz1ð Þ
szi gz1ð Þ

Wzi gz1ð Þ
szz gz1ð Þ

~
1
2

X
z[b,i*z

kz gz1ð Þ~2

Wiz gz1ð Þ
szi gz1ð Þ z

X
z[b,i*z

kz gz1ð Þ~1

Wiz gz1ð Þ
szi gz1ð Þ

~
1
2

szi gð Þ
szi gz1ð Þz

hszi ðgÞ
szi gz1ð Þ

~
2hz1
2hz2

~Qg i,ið Þ,

ð38Þ

where the relation szi gz1ð Þ~ hz1ð Þszi gð Þ is used. In equation (38), i , z indicates
that two nodes i and z are adjacent in network Fg11.

For the other case of i ? j, the non-diagonal element of Rg is

Rg i,jð Þ~
X
z[b

Pgz1 i,zð ÞPgz1 z,jð Þ

~
X

Agz1 i,zð Þ~1
Agz1 z,jð Þ~1

Wiz gz1ð Þ
szi gz1ð Þ

Wzj gz1ð Þ
szz gz1ð Þ

~
1
2

Wij gð Þ
szi gz1ð Þ~{

1
2hz2

Pg i,jð Þ

~Qg i,jð Þ,

ð39Þ

which, together with (38) proves equation (23).

Multiplicities of eigenvalues. By numerically computing the eigenvalues for the first
several iterations, we can observe some important phenomena and properties about

the structure of the eigenvalues. When g 5 1, the eigenvalues of P1 are 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r
and 1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r
, both of which have a multiplicity of 2. When g 5 2, P2 have 16

eigenvalues: eigenvalue 1 with degeneracy 8 and 4 two-fold other eigenvalues

generated by 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r
and 1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r
. When g $ 3, all the eigenvalues Pg

can be put into two classes. The first class includes eigenvalue 1 and those generated
by 1, which display the following feature that each eigenvalue appearing at a given
iteration gi will continue to appear at all subsequent generations greater than gi. The
second class contains those eigenvalues generated by the two eigenvalues

1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r
and 1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
hz1

r
of P1. Each eigenvalue in this class is two-fold,

and each eigenvalue of a given iteration gi does not appear at any of subsequent
iterations larger than gi. For the two eigenvalue classes, each eigenvalue (other than 1)
of current generation keeps the multiplicity of its father of the previous generation.

Using the above-observed properties of the eigenvalue structure, we can determine
the multiplicities of all eigenvalues. Let Mg(l) denote the multiplicity of eigenvalue l
of matrix Pg. We first determine the number of eigenvalue 1 for Pg. To this end, let r(X)
denote the rank of matrix X. Then

Mg l~1ð Þ~4g{r Pg{1|Ig
� �

: ð40Þ

For g 5 1, M1(1) 5 0; for g 5 2, M2(1) 5 8. For g $ 2, it is obvious that r(Pg11 2 Ig11)
5 r(Pa,b) 1 r(Pb,a), where r(Pa,b) and r(Pb,a) can be determined in the following way.

We first show that Pb,a is a full column rank matrix. Let

w~ w1,w2, � � � ,w3|4gð Þ>~
X
i[a
i=1

kiMi, ð41Þ

where Mi is the column vector of Pb,a representing the ith column of Pb,a. Let
Mi~ M1,i,M2,i, � � � ,M3|4g ,ið Þ> . Suppose that w 5 0. Then, we can prove that for an
arbitrary ki, ki 5 0 always holds. By construction, for any old node i g a, there exists a
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new leaf node l g b attached to i. Then, for wl~k1M1,lzk2M2,l , � � � ,zk3|4g M3|4g ,l ,
only Mi,l ? 0 but all Mx,l 5 0 for x ? i. From wl 5 0, we have ki 5 0. Therefore, r(Pb,a)
5 4g. Analogously, we can verify that Pa,b is a full row rank matrix and r(Pa,b) 5 4g.

Combining the above results, the multiplicity of eigenvalue 1 of Pg is

Mg l~1ð Þ~
0, g~1,

2|4g{1, g§2:

�
ð42Þ

We proceed to compute the multiplicities of other eigenvalues generated by 1 that are
in the first eigenvalue class. Since every eigenvalue at a given iteration keeps the
multiplicity of its father at the preceding iteration, for matrix Pg, the multiplicity of
each first-generation descendant of eigenvalue 1 is 2 3 4g22, the multiplicity of each
second-generation descendant of eigenvalue 1 is 2 3 4g23, and the multiplicity of each
(g 2 2)nd generation descendant of eigenvalue 1 is 2 3 4. Moreover, we can derive
that that the number of the ith (0 # i # g 2 2) generation distinct descendants of
eigenvalue is 2i, where 0th generation descendants refer to the 2 3 4g21 eigenvalues 1
themselves. Finally, it is easy to verify that the number of all the eigenvalues in the
second eigenvalue class is 4 3 2g21. Hence, the total number of eigenvalues of matrix
Pg is

Xg{2

i~0

2|4g{1{i
� �

|2i

 �

z4|2g{1~4g , ð43Þ

indicating that all the eigenvalues of Pg are successfully found.
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29. Serrano, M. Á. & Boguñá, M. Topology of the world trade web. Phys. Rev. E 68,
015101 (2003).

30. Akoglu, L., Vaz de Melo, P. O. S. & Faloutsos, C. Quantifying reciprocity in large
weighted communication networks. Lect. Notes Comput. Sci. 7302, 85–96 (2012).

31. Wang, C. et al. A dyadic reciprocity index for repeated interaction networks. Netw.
Sci. 1, 31–48 (2013).

32. Squartini, T., Picciolo, F., Ruzzenenti, F. & Garlaschelli, D. Reciprocity of weighted
networks. Sci. Rep. 3, 2729 (2013).

33. Zhu, Y. X. et al. Influence of reciprocal links in social networks. PLoS ONE 9,
e103007 (2014).
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