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Prefrontal neuronal dynamics in the absence
of task execution

Shusen Pu 1,2,6,Wenhao Dang1,6, Xue-LianQi3 &Christos Constantinidis 1,4,5

Prefrontal cortical activity represents stimuli in working memory tasks in a
low-dimensional manifold that transforms over the course of a trial. Such
transformations reflect specific cognitive operations, so that, for example, the
rotation of stimulus representations is thought to reduce interference by
distractor stimuli. Here we show that rotations occur in the low-dimensional
activity space of prefrontal neurons in naïve male monkeys (Macaca mulatta),
while passively viewing familiar stimuli. Moreover, some aspects of these
rotations remain remarkably unchanged after training to perform working
memory tasks. Significant training effects are still present in population
dynamics, which further distinguish correct and error trials during task
execution. Our results reveal automatic functions of prefrontal neural circuits
allow transformations that may aid cognitive flexibility.

Neurons in the prefrontal cortex (PFC) represent sensory stimuli in a
dynamic, task-specific manner1–3. Analysis of population activity with
methods of dimensionality reduction reveals that stimuli are typically
represented in a lowdimensional space, ormanifold, with themajority
of the firing rate variance captured by a few dimensions4,5. Further-
more, the representation of stimuli in the reduced space changes
dynamically during the course of a trial, as the subjects perform a
cognitive operation according to task demands; the stimulusmanifold
may therefore be projected to a different subspace, rotated, or
otherwise geometrically transformed6–8. Orthogonal rotation of a sti-
mulus representation has been proposed as a possible mechanism for
reducing interference between sensory and memory representations,
protecting thememory of an initial stimulus from the interference of a
subsequent stimulus presentation9. The same stimuli are represented
in different subspaceswhen used in the context of different tasks10 and
errors are characterized by changes in stimulus representation
geometry11.

While it is clear that geometric transformation of stimulus infor-
mation in neuronal populations occurs during cognitive operations12,
less is known on how the acquisition of a cognitive task may alter
stimulus representation geometry.We thus addressed this question by
analyzing prefrontal populations, both before and after subjects were
trained to perform working memory tasks involving identical stimuli.

We examined multiple aspects of the activity space, including sub-
space alignment, geometrical similarity, and dynamics, to determine
the relative contribution of training and regional specificity in the
formation of the observed low dimensional geometry.

Results
Neurophysiological recordings were collected from the lateral PFC of
six monkeys in total; pre-training data were acquired from all animals,
and post-training data were recorded from three of these six subjects
(Table S1)13,14. Once fully trained, the monkeys viewed two stimuli
appearing in sequence with intervening delay periods between them
and reported whether the second stimulus (sample) was the same as
the first stimulus (cue) and constituted a match, or was different and
constituted a nonmatch (Fig. 1A, B). The stimulus sets used in these
experiments varied in terms of spatial location or shape (Fig. 1A, B).
Recordings were also obtained from these animals, viewing the same
stimuli presentedwith the same timing prior to any training in the task.
A total of 1164 neurons from six monkeys in five prefrontal subdivi-
sions (Fig. 1C) were recorded during the passive, pre-training viewing
of spatial stimuli; 847 neurons were recorded during the passive, pre-
training viewing of feature stimuli. Additionally, 1031 neurons from
three monkeys were obtained after training, when the animals per-
formed actively the spatial working memory task; 796 neurons were
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obtained during the active feature working memory task (see Sup-
plementary Table S1).

Spatial stimuli are geometrically arranged in a low-dimensional
subspace
We applied Principal Component Analysis (PCA) on the covariance
matrix of the zero-centered data, and selected eigenvectors sorted in
decreasing order in terms of explained variance. In agreement with
previous studies suggesting that prefrontal neurons represent stimuli
in a low-dimensional manifold4,5, we found that, on average, 73% of the
variance across brain regions and training phases could be explained
by the first three principal components across brain regions and
training phases (Fig. S1A and Table S2). This result validated our
approach of visualizing and measuring geometry structure in low-
dimensional space.

Previous studies have also revealed that spatial information is
arranged in a well-structured geometry resembling the physical
appearance of visual stimuli in working memory6,15, however, it is not
clear whether task trainingmay be responsible for the development of
this geometry. Our analysis revealed that the geometrical arrangement
of spatial stimuli in the neural population space exhibited a ring-like
pattern (Fig. 2). This observation was made within the subspace
defined by the first two principal components, which preserved the
relative position of stimuli in the low-dimensional subspace (Fig. 2A).
In contrast, shape stimuli did not demonstrate this pattern (see
Fig. S12).

While no task training was required for the establishment of this
geometric structure, we investigated if training could enhance its
order regularity.More specifically, we exploredwhether training could
increase the order similarity between the empirical geometry order of
the eight stimulus conditions and the natural order of eight vertices in
an octagon (Fig. 2A). To quantify this similarity, we calculated the
unexplained variance between the empirical geometry order and the
‘standard’ order that maximizes the distance between diametric loca-
tions. The order regularity was defined by the difference in the unex-
plained variance between the empirical dataset and an order-shuffled
dataset. By comparing different prefrontal subdivisions, we found that
for the cue period, the anterior and middle regions of PFC already
exhibited a strong alignment with the ‘standard’ order before training,
while for the first delay period, all areas showed little to no order
regularity before the animals were trained for working memory tasks.
We also found that in general, training increased the “order regularity”

for mid-posterior regions, for both the cue and the delay period. This
was most pronounced for the delay period in the mid-dorsal and
posterior-dorsal subdivisions (Fig. 2B, nonparametric bootstrap test,
for pre- vs. post-training order regularity, MD, PD, and PV, p < 0.001 in
each case).

Some subspace transformations are task independent
Since low-dimensional stimulus representations in neuronal popula-
tion activity are transformedduring cognitive operations7–9, we sought
to test how such transformations differ systematically before and after
training to perform a cognitive task. Previous research suggested that
the rotation under different contexts is beneficial for the task, since
when twosubspaces are orthogonal variation inone subspacewill have
near zero variation in the other (Fig. 3A2). For example, when one
plane in a 3-dimentional space is viewed from the space spanned by
another plane, it would have amuch larger projection if the two planes
are parallel to each other, whereas if they are orthogonal the first plane
would only project as a line to the other. We thus quantified trans-
formations based on the rotation of subspaces in different epochs.
This was done by measuring the primary angle between the low-
dimensional subspaces that accounted for the most variance in dif-
ferent contexts (Fig. 3A1). Measured rotation angles were compared to
a baseline rotation, to control for the difference in response variation
and selectivity for various PFC subdivisions. This baseline rotation was
measured by calculating the rotation between the empirical dataset,
and a synthetic dataset made of simulated units, of equal mean firing
rate to the real units for each stimulus condition (see Methods:
Dimensionality reduction and rotationof subspaces). Alternatively, the
empirical data were split into two halves and the rotation angle was
quantified between these two halves. The two methods gave qualita-
tively similar results (Figs. 3, 4 vs. Fig. S2), and we present results from
the first method in most following figures. We examined specifically
the geometry of our stimulus set in neuronal activity during the cue
presentation and the delay period that followed it; during the cue and
match presentations; and during the match and nonmatch presenta-
tions. (see “Dimensionality reduction and rotation of subspaces” in
Methods).

Strikingly, even before any task training, representations of the
same stimuli during the cue and match period already exhibited sig-
nificant rotation angles inmultiple brain areas, for both the spatial and
feature sets (Fig. 3B1, B2). Our analysis further revealed that the pattern
of transformation between the cue and match stimuli was highly area-
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Fig. 1 | Task structure and recording areas.The animalswere required tomaintain
center fixation throughout both active and passive task trials. At the end of active
tasks trials,monkeyswere required tomake a saccade toa green target if the stimuli
matched or to a blue target if the stimuli did not match.A Spatial match-to-sample
task; theeight cue locations analyzed are shown in the inset.BShape featurematch-

to-sample task; eight possible shapes in a session shown are shown in the inset.
C Neurons were recorded from 5 subdivisions of lateral PFC, which we refer to as
Anterior Dorsal (AD), Anterior Ventral (AV),Mid-Dorsal (MD), Posterior Dorsal (PD),
and Posterior Ventral (PV).
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specific. In other words, rotation angles differed across regions, while
similar angles were seen in the same subdivision before and after
training (Fig. 3B1, B2, Fig. S3, left). Our analysis of plane rotations was
replicated in higher-order subspaces as well (Fig. S1B, C), with quali-
tatively similar results, though for area PV, the rotation angle increased
considerably post-training when we considered higher dimensions.
Similar to the cue vs match trials, we found that substantial rotations
between the cue and nonmatch representations already were evident
in naïve animals (Fig. S4C), and the rotation angles remained quite
consistent across different subdivisions and training status.

To further substantiate the subspace orthogonality observed in
the angle measure, we calculated the variance accounted for (VAF)
ratio between the cue and the match period (Fig. S5A, B, top panel).
The VAF, with a value range from 0 to 1, is a measurement of subspace
alignment. Higher VAF values indicate better alignment, while VAF
values close to 0 indicate orthogonality (see Methods: variance
accounted for ratio - VAF). The results in Fig. S5 qualitatively agreewith

the analysis of rotation angles (Figs. 3 and 4), with higher angle mea-
surements consistently corresponding to lowerVAF ratios.Once again,
we found that the relative order of values across subdivisions was
preserved between the pre- and post-training phases. This result
indicates that populations of neurons in different subregions of the
prefrontal cortex transform matching stimuli in a stereotypical fash-
ion, independent of training and task execution.

We were also interested in how single-cell properties contributed
to the rotation phenomenon observed at the population level. We
examined repetition suppression, the phenomenon of decreased
response to a stimulus that is repeated in a trial (match, in the context
of our task) over a stimulus that is not repeated (nonmatch)16. This
turned out not to have a substantial impact on population rotation
measurements; removing the most suppressed cells still yielded
results that were highly correlated with the original dataset (Fig. S6).
Similarly, we investigated whether the number of cells contributing to
the low-dimensional subspace that accounted for most variance
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A Graphical illustration of how representational geometry order was compared.
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maximizes thedistancebetweenmatch andnonmatch stimulus pairs (seeMethods:
Geometry of low-dimensional representation). B Training increased the orderly
structure in the delay period of the spatial task. Geometrical similarity to the
hypothetical configuration for both tasks in the cue and the first delay period was
quantified by the unexplained variance after fitting to a standard geometry. To
quantify the contribution of the factor of representation arrangement order (e.g. 1,
2, 3, 4 vs. 3, 2, 1, 4 on a ring) independent of the factor of geometrical shape
(deviation from vertices of an octagon), the difference in unexplained variance
between the empirical and an identity-label-shuffled dataset was compared. Color
filled boxes represent post-training data; empty bars represent pre-training data.

Solid line boxes represent empirical data and dashed line bars represent the simi-
larity measure after shuffling location/shape labels, as a control (100 control and
100 empirical bootstrappedmeasurements were compared using a nonparametric
shuffling test to derive statistics, n shuffle = 1000). Dot and horizontal line in the
boxplot represent themean andmedian, respectively; The bottomand top edge of
eachboxare the 25th and 75th percentiles of the sample. Thewhisker represents 1.5
times the interquartile range. A larger difference between the filled and the dashed
boxes indicates a higher order similarity between the standard hypothetical geo-
metry order and the empirical measurement. Test statistics for difference between
this order similarity from the pre- and post- training phase in Table S3. Statistically
significant differences detected by a two-sided nonparametric test are indicated by
an asterisk (*) above the corresponding bars. Source data are provided as a Source
Data file.
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(participation ratio) changed across different contexts, or if the tuning
of individual neurons to stimuli changed acrossdifferent contexts. Our
analysis showed that the former, difference in participation ratio in
various contexts, better explained the rotation angle: areas with
highest rotation angles typically exhibited the greatest difference in
participation ratio (Fig. S7B, C top).

Although we have emphasized so far the task-independent nature
of rotations, some representation transformations were only observed
after training, for example involving the representation of stimuli in
match and nonmatch conditions. In the spatial task, the angle of
rotation between the match and nonmatch representations changed
considerably after training (Fig. 4, left) in the most spatially selective,
mid-dorsal region17. Consequently, across areas, there was little cor-
relation between the plane angles observed before and after training
across areas, Fig. S3 middle). The VAF ratio measurement agreed with
anglemeasurement in this case too, evidenced by amajor decrease for
the mid-dorsal region in the spatial task (Fig. S5A middle). Similar
training effects were observed for the subspace angle between the cue
and the first delay period, with anterior prefrontal areas exhibiting
increased rotation, particularly for the spatial task (Fig. S4A).

Task-dependent and independent representation geometry
In addition to subspace transformations, we also used two indexes to
examine the within-subspace geometry in different contexts. The
first index employed is the unexplained variance, which quantified
geometrical structure similarity after controlling for differences in
scale and orientation of representation in their respective subspaces.
The second index we used was the scale factor, which intuitively
represents the ratio of the areas covered by two geometries in
respective subspace (i.e. the ratio between the blue and green circle
in Fig. 4C1). A within epoch measure was used as a control (i.e.,
comparing the geometry of data from the same dataset to itself, see
Methods: Dimensionality reduction and rotation of subspaces). For
the unexplained variance, greater similarity between two conditions
would result in measurements closer to 0, while for the scale factor,
greater similarity between two conditions would result in values
closer to 1.

In the geometry similarity analysis, we found that the effect of
training for the most selective subdivision, the mid-dorsal PFC, was a
decrease in similarity between epochs. This was true for the cue vs
match comparison: the spatial unexplained variance increased from a
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data are provided as a Source Data file.
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pre-training value of 0.097 ± 0.06 (mean± std), to a post-training value
of 0.25 ± 0.06 while the feature pre-training unexplained variance
similarly increased from a pre-training value of 0.11 ± 0.01, to a post-
training value of 0.22 ± 0.06 (Fig. 4C2). The same relationship held
between the cue stimulus andfirst delayperiod epochs: the spatial pre-
training unexplained variance increased from 0.10 ±0.003 to a post-
training value of 0.22 ± 0.007 (Fig. S4B).

The representation scale measured across the cue and match
epochs aggregated around 1 both before and after training (Fig. 4C,
and Fig. S8A). This means that the stimulus representation generally
spanned roughly the same amount of area in the respective subspace,
either when compared between the cue and match, or between the
match and nonmatch conditions (Fig. 4B and Fig. S8B), thus indicating
a stable magnitude of population responses. For the cue vs. delay
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comparison, the scale factor measure fell below 1 (Fig. S4B) partially
due to the fact that even when accounting for persistent delay activity,
the mean delay period firing rate was lower compared to the stimulus
presentation epochs. The stability of the scale factor during the sti-
mulus presentation periods implies that any changes in the correlation
structure induced by training did not result in an overall increase of
stimulus-driven firing rate deviation from the mean. Instead, the
amplitude of stimulus representation remained relatively stable at the
population level.

We also compared the dynamic trajectory of population activity
before and after training. As expected, pre-training activity was largely
confined to a narrow subspace during the delay period, while post-
training activity became increasingly dynamic in an expanded space
(Fig. S9A, B). To further quantify this change, we randomly sampled
half of the trials from all periods and calculated PCA space as the base
to project the remaining trials (seeMethods: Dimensionality reduction
and rotationof subspaces). Themean ratios of thedecoding space area
between fixation, first delay and second delay period (using the fixa-
tion period as reference) were 1: 1.07: 1.26 for the pre-training data and
1: 8.62: 1.83 for the post-training data (Fig. S9C–E).

Subspace rotation and dynamics correlates with behavior
performance
To test whether the post-training population rotation in the match
relative to the nonmatch condition was linked to improved task per-
formance, we compared the subspace rotation angle in correct and
error trials in a subset of neurons with sufficient error trials across
conditions (n = 295 in the spatial working memory task, and n = 201 in
the feature working memory task), pooling data across all areas (see
Methods: Analysis of error trials). In correct trials (Fig. 5A, C), the low
dimensional PC subspaces ofmatch and nonmatch epochswere nearly
orthogonal to each other (79.9 ± 5.4 and 78.0 ± 14.5 degrees for the
spatial and feature stimuli, respectively), consistent with the post-
training findings of the full population (Fig. 4). In error trials, this
rotation was significantly reduced: Fig. 5B, D, 19.7 ± 9.0 and 18.8 ± 14.5
respectively (t-test for spatial: t100 = 57.4, p <0.0001, feature:
t100 = 28.9, p <0.0001). To determine how population responses
evolved across the length of the trial, we investigated representation
dynamics for match and nonmatch trials in the reduced PCA space.
Example trajectories for a single stimulus condition for the mid-dorsal
area are plotted in Fig. 5E. These also resembled the trajectories in
state space described previously for neuronal activity in animals
trained to perform perceptual decision tasks8. In correct trials, as
expected, match and nonmatch trajectories stayed close to each other
until the sample period and then diverged during the sample pre-
sentation and the delay period that followed it. In error trials, an
abnormal rotation was already present in the cue period and match

and nonmatch trajectories were less-distinguishable (Fig. S10).
Importantly, in error trials, the neural patternwe observedwas not the
reverse of that of correct trials. Instead, when the animal wrongly
reported the matching status, the match and nonmatch trajectories
were similar to each other but distinct from either the match or non-
match condition in correct trials (Fig. S11). The result suggests that
incomplete rotation of the stimulus subspace is more likely to result in
errors. However, this aberrant trajectory emerged early in the trial and
wasnot specifically dependent on incomplete orthogonalization of the
nonmatch stimulus, which, as we showed here, was present even in
naïve animals.

Discussion
Computation in neural activity is characterized by the transformation
of representations across stages of processing12. Our results demon-
strate that neuronal populations transform stimulus representations
and exhibit dynamics shown to represent cognitive operations5,8–10,
even in the absence of task execution, in animals naïve to any such
training. Our results in the same dataset from trained animals corro-
borated previous findings: in somedivisions of the PFC, sequential cue
andmatch stimuli from the same trialswere represented in orthogonal
planes; match and nonmatch stimuli exhibited large state space
separations; and error trials exhibited smaller plane rotations than
correct ones. Our results indicate that some dynamic transformations
of population-based stimulus representations are not caused by task
operations requiring explicit training.

Neural basis of cognitive flexibility
Natural plasticity allows for significant training-induced improvements
of workingmemory, particularly through changes in PFC activity, over
long periods of training18–22. Representation of stimuli in neural activity
has also been shown to be dynamic at much faster timescales, during
the time course of a single behavioral session23 or, depending on trial
events, on a moment-by-moment basis1. The transformation of sti-
mulus representations has been shown to be indicative of flexible task
execution, e.g. rotating representations may minimize interference
between multiple stimuli, thus allowing additional stimuli to be
encoded, or learning of associations between stimuli, otherwise pre-
sented passively9. Our current results suggest that the prefrontal cor-
tex may perform these operations automatically, even in the absence
of task execution, or learning novel stimuli. Furthermore, the scale of
stimulus representation was largely unchanged after training. The idea
of stable population information under shifting neural responses over
days is an increasingly appreciated phenomenon in studies involving
post-learning plasiticity24,25.

Regardless of transformations, data across prefrontal areas and
task conditions were generally well fit by low dimensional

Fig. 4 | Subspace rotation between the match and nonmatch conditions.
A Primary angles between the match and nonmatch in different PFC subdivisions
for the spatial and the feature task (pre vs post, two-sided nonparametric test:
spatial AD p =0.24; spatial AV p =0.384; spatial MD p <0.001; spatial PD p =0.822;
spatial PV p =0.071; feature MD p =0.023; feature PD p =0.254; feature PV
p =0.305). The bottom and top edge of each box are the 25th and 75th percentiles
of the sample, and the whisker represents 1.5 times the interquartile range. As a
control we generated surrogate data from a particular task epoch (empirical: solid
bars; control: dashed bars). In this comparison, the control angles were measured
by fitting a Poisson distribution to the firing rates in the match trials. All empirical
angles were significantly larger than the corresponding control angle measure-
ments (two-sidednonparametric test,p <0.01, to correct formultiple comparisons,
Table S6) 100 control and 100 empirical bootstrapped measurements were com-
pared using nonparametric shuffling test to derive statistics, n shuffle=1000.
BGeometrical similarity betweenmatch and nonmatch inMD. Solid bars represent
results from the match-nonmatch dataset, while hatched bars are results from the
within-match period control group. Bar height indicates mean; overlaid black

circles represent individual measurements from each bootstrap sampling. The
difference of the two reflects the change in population geometry between two
periods. Scale factor andunexplained variancemeasurement for other subdivisions
are presented in Fig. S8B. Statistical test results of pre vs. post-training phase, in
Table S7. C1 Graphical summary of subspace geometrical similarity. The scale
factor is the ratio between within-subspace to total variance. The unexplained
variance quantifies geometrical structure similarity after controlling for scale and
orientation differences in respective subspaces. C2 Geometrical similarity in the
MD subdivision. Solid bars represent results from the cue-match dataset; hatched
bars are results from the within-cue period control group. Bar height indicates
mean, overlaid black circles represent individual measurements from each boot-
strap sampling. Difference between the two reflects the change in population
geometry between two periods. Scale factor and unexplained variance measure-
ment for other subdivisions presented in Fig. S8A. Number of bootstrap resam-
pling=100 for C1 and C2. Statistics test results of pre vs. post-training phase
presented in Table S5. Source data are provided as a Source Data file.
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representations. Low dimensionality in working memory representa-
tions is considered a hallmark of generalizability, while high dimen-
sionality is correlated with better discriminability26. In our experiment,
stimuli were highly discriminable fromeach other from the outset, and

task training involved incorporating them into the context of a new
task rather than learning fine features of the stimuli27, suggesting that
an increase in dimensionality was not required to perform the task
after training.
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Fig. 5 | Population representations in correct and error trials. A Representation
of spatial stimuli during the match and nonmatch period in correct trials (n = 295
neurons). Rotation φ = 76°. B Representation of spatial stimuli during the match
and nonmatch period in the error trials (same population as in panel A). Rotation
φ = 15°.C Representation of feature stimuli during thematch and nonmatchperiod
in correct trials (n = 201 neurons). Rotation φ = 84°. D Representation of feature

stimuli during thematch andnonmatchperiod in error trials (samepopulation as in
panel C). Rotation φ = 7°. E Dynamics of stimulus representations in correct and
error trials, for one example spatial location. Solid blue: match in correct trials,
solid red: nonmatch in correct trials, dashed blue: match in error trials, dashed red:
nonmatch in error trials. The same cells are plotted across all conditions (n = 295
neurons). Source data are provided as a Source Data file.
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Mechanisms and interpretations of rotations
The mechanisms of the population rotation phenomenon are still
under debate. Sequential activation of individual neurons in themotor
cortex can create an apparent rotation at the population level28,
although the rotation observed experimentally cannot fully be
accounted by this phenomenon29. In the prefrontal cortex, neuronal
activation is less sequential in nature compared to that of the motor
cortex and the orthogonality we observed between contexts could be
caused by the activationof largely nonoverlapping coding populations
or a change of tuning to stimuli (Fig. S6). Similarly, the interpretation
of the functional significance of this low-dimensional rotation, is
multifaceted. Previous research has suggested that one of the func-
tions of this rotation may be to reduce the interference between
representations, and notably such rotations may appear as mice learn
the structure of a stimulus set, without needing to perform an actual
comparison based on working memory9. Our finding supports this
conclusion by comparing rotations in response to the same stimuli
before and after they were incorporated into a working memory task.
The monkeys in our cohort were familiar with the stimulus sets and
structure of the passive “task” (i.e. sequence of two stimulus pre-
sentation and their relative timing) by the time recordings in the
“naïve” state began. It is therefore possible that the rotations emerged
after the animals had discovered this regularity. Future studies may
address this question. In any case, our results show that rotations in
some PFC regions are task-independent and track information related
to the temporal structure of the task, by low dimensional rotation,
even when that information is not behaviorally relevant. This auto-
matic tracking of variables changing in the natural world without
explicitly prompt could be essential for learning.

Regional Specialization
Prior studies have debated if and how different types of information
may be represented across the dorsal-ventral and anterior-posterior
axes of the prefrontal cortex30–33. Converging evidence, however,
suggests that anterior subdivisions of the prefrontal cortex generally
representmore abstract information, and their activation depends to a
greater extent on the task subjects have been trained to perform34.
Consistent with this idea, we observed that anterior areas consistently
exhibited high rotation values formatch and nonmatch stimuli relative
to the cue (and relative to each other), both before and after training.
Our results raise the possibility that this innate stimulus transforma-
tion endows anterior areas of the prefrontal cortex with greater
capacity for cognitive flexibility.

Methods
Data obtained from six male rhesus monkeys (Macaca mulatta), ages
5–9 years old, weighing 5–12 kg, were analyzed in this study. None of
these animals had any prior experimentation experience at the onset
of our study. Monkeys were either single-housed or pair-housed in
communal rooms with sensory interactions with other monkeys. All
experimental procedures followed guidelines set by the U.S. Public
Health Service Policy on Humane Care and Use of Laboratory Animals
and the National Research Council’s Guide for the Care and Use of
Laboratory Animals and were reviewed and approved by the Wake
Forest University Institutional Animal Care and Use Committee under
protocol numbers A06-033, A09-002, A14-196 and A17-139.

Monkeys satwith their headsfixed in aprimate chairwhile viewing
a monitor positioned 68 cm away from their eyes with dim ambient
illumination and were required to fixate on a 0.2° white square
appearing in the center of the screen. During each trial, the animals
were required to maintain fixation while visual stimuli were presented
either at a peripheral location or over the fovea, in order to receive a
liquid reward (typically fruit juice). Any break of fixation immediately
terminated the trial and no reward was given. Eye position was mon-
itored throughout the trial using a non-invasive, infrared eye position

scanning system (model RK-716; ISCAN, Burlington, MA). The system
achieved a <0.3° resolution around the center of vision. Eye position
was sampled at 240Hz, digitized and recorded. The visual stimulus
display, monitoring of eye position, and synchronization of stimuli
with neurophysiological data was performed with in-house software
implemented in the MATLAB environment (Mathworks, Natick, MA),
utilizing the Psychophysics Toolbox35.

Pre-training task
Following a brief period of fixation training and acclimation to the
stimuli, monkeys were required to fixate on a center position while
stimuli were displayed on the screen. The stimuli shown in the pre-
training, passive, spatial task consisted of white 2° squares, pre-
sented in one of nine possible locations arranged in a 3 × 3 grid with
10° of distance between adjacent stimuli. Only the eight peripheral
locations are analyzed here, as the center location never appeared
as a nonmatch. The stimuli shown in the pre-training passive feature
task consisted of white 2° geometric shapes drawn from a set
comprising a circle, a diamond, the letter H, the hashtag symbol, the
plus sign, a square, a triangle, and an inverted Y-letter. These stimuli
could be presented in one of the possible locations of the spa-
tial grid.

The presentation beganwith a fixation interval of 1 s where only the
fixationpointwasdisplayed, followedbya 500msstimuluspresentation
(referred to hereafter as cue), followed by a 1.5 s “delay” epoch where,
again, only the fixation point was displayed. A second stimulus (sample)
was subsequently shown for 500ms. In the spatial task, this sample
would be either identical in location to the initial stimulus, or diame-
trically opposite. In the feature task, the sample would appear in the
same location as the cue and would either be an identical shape or the
corresponding nonmatch shape (each shape was paired with one non-
match shape). Only one nonmatch samplewas pairedwith eachpossible
cue, so that the number of match and nonmatch trials were balanced in
each set. Inboth the spatial and feature task, this sample stimulusdisplay
was followed by another “delay” period of 1.5 s where only the fixation
point was displayed. The location and identity of stimuli were of no
behavioral relevance to the monkeys during the “pre-training” phase, as
fixation was the only necessary action for obtaining rewards.

Post-training task
Three monkeys, the data of which are analyzed here, were trained to
perform active workingmemory tasks that involved the presentation of
identical stimuli as the spatial and feature tasks during the “pre-training”
phase. Monkeys were required to remember the spatial location and/or
shape of the first presented stimulus, and report whether the second
stimulus was identical to the first or not, via saccading to one of two
target stimuli (green for matching stimuli, blue for nonmatching). Each
target stimulus could appear at one of two locations orthogonal to the
cue/sample stimuli, pseudo-randomized in each trial.

Surgery and neurophysiology
The animals were initially implanted with a headpost device. Surgical
anesthesia was induced with an intramuscular injection of ketamine
(5mg/kg) and maintained with inhalant isoflurane (1-3%). Opioid
analgesics were administered after the surgery and the animals were
allowed to recover for at least three weeks before behavioral sessions
began. A second surgerywas subsequently performed, under the same
anesthetic and analgesic regimen, in which a 20mm diameter cra-
niotomy over the PFC was performed and a recording cylinder was
implanted over the site. A 20mmdiameter craniotomywas performed
over the PFC and a recording cylinder was implanted over the site. The
location of the cylinder was visualized through anatomical magnetic
resonance imaging (MRI) and stereotaxic coordinates post-surgery.
For two of the four monkeys that were trained to complete active
spatial and feature working memory tasks, the recording cylinder was
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moved after an initial round of recordings in the post-training phase to
sample an additional surface of the PFC.

Anatomical localization
Each monkey underwent an MRI scan prior to neurophysiological
recordings. Electrode penetrations were mapped onto the cortical
surface. We identified six lateral PFC regions: a posterior-dorsal region
that included area 8 A, a mid-dorsal region that included areas 8B and
9/46, an anterior-dorsal region that included area 9 and area 46, a
posterior-ventral region that included area 45, an anterior-ventral
region that included area 47/12, and a frontopolar region that included
area 10. However, the frontopolar region was not sampled sufficiently
to be included in the present analyses.

Neuronal recordings
Neural recordings were carried out in the aforementioned areas of the
PFC both before and after training in each WM task. Extracellular
recordings were performed with multiple microelectrodes that were
either glass- or epoxylite-coated tungsten, with a 100-250μmdiameter
and 1–4MΩ impedance at 1 kHz (Alpha-Omega Engineering, Nazareth,
Israel). A Microdrive system (EPS drive, Alpha- Omega Engineering)
advanced arrays of up to 8 microelectrodes, spaced 0.2–1.5mm apart,
through the dura and into the PFC. The signal from each electrodewas
amplified and band-pass filtered between 500Hz and 8 kHz while
being recorded with a modular data acquisition system (APM system,
FHC, Bowdoin, ME). Waveforms that exceeded a user-defined thresh-
old were sampled at 25 μs resolution, digitized, and stored for offline
analysis. Neuronswere sampled in an unbiased fashion, collecting data
from all units isolated from our electrodes, with no regard to the
response properties of the isolated neurons. A semi-automated cluster
analysis relied on the KlustaKwik algorithm, which applied principal
component analysis of the waveforms to sort recorded spike wave-
forms into separate units. To ensure a stable firing rate in the analyzed
recordings,we identified recordings inwhicha significant effect of trial
sequencewas evident at the baselinefiring rate (ANOVA,p <0.05), e.g.,
due to a neuron disappearing or appearing during a run, as we were
collecting data from multiple electrodes. Data from these sessions
were truncated so that analysis was only performed on a range of trials
with stable firing rates. Less than 10% of neurons were corrected in this
way. Identical data collection procedures, recording equipment, and
spike sorting algorithmswereusedbefore and after training in order to
prevent any analytical confounds.

Statistics and reproducibility
Analysis involvedmeasures of firing rate fromneurons recorded before
and after training. Due to the nature of the study, the Investigators were
not blinded to allocation during experiments and outcome assessment.
All available recordings were used for analysis, provided they had at
least 12 trials at each stimulus condition (so that bootstrap analyses
could be performed using subsets of trials from each neuron), and at
least 4 but less than 400 spike events available between the cue onset
and end of the trial when these were averaged across trials from all
experiment conditions (to avoid outliers with either very low or very
high firing rate and balance the pre- and post-training datasets in terms
of firing rate range). A minimum of 16 available trials per condition was
required for some analyses. No statistical method was used to pre-
determine sample size. Analysis methods relied on bootstrap tests and
surrogate data (described in more detail below) to ensure that results
and conclusions obtained were robust and reproducible.

Dimensionality reduction and rotation of subspaces
Weapplied principal components analysis (PCA) to visualize the neural
population activitymanifolds during the spatial and feature tasks. PCA
was performed on the mean firing rate of neurons across different
prefrontal regions, for data collected both before and after training.

We examined the submanifolds of neural activity as a function of the
spatial and feature stimulus sets.

In the spatial task, we collected data from five prefrontal regions
before and after the monkeys were trained to perform the task. In
each region, trials were collected when the cue stimuli appeared at
L = 8 locations. For each neuron, the average firing rate of the match
trials (and nonmatch trials) during a given period at the eight loca-
tions formed a column entry (8 × 1 vector) for the population activity
matrixA1 (A2 for nonmatch trials). During each task epochwe defined
the corresponding activity matrix A1 (A2) for each prefrontal region
as an 8×N matrix, where 8 is the number of locations where the cue
occurred and N is the number of neurons. To find the rotation angle
between low-dimensional representations in two task epochs, we
aligned the activity matrix into one single matrix B, which is a 16 × N
matrix with the first eight rows containing the activities in one period
and the rest containing another period. Then we normalized B by
subtracting the mean across each column to guarantee the matrix
was zero-centered. PCA was applied to the centered data using sin-
gular value decomposition (SVD). We selected the first three eigen-
vectors of the covariancematrix of the zero-centereddata and sorted
them by decreasing order in terms of explaining the variance. The
first three principal components explained an average of 73% of the
response matrix variance across all examined periods and locations.
Similar procedures were applied to visualize the responses in the
feature task, where we grouped the data according to the shape of
the cue stimulus. Specifically, there were eight different shapes in the
feature task. Therefore, the corresponding activity matrix had a
dimension of 8 × N, in which N is the number of neurons, and each
row stands for a shape in the feature task (see Fig. 1B). For each pair of
comparison for the rotations, we aligned the data in the same way as
described above.

To calculate the subspace rotation between different contexts, in
three or higher dimensions, we projected the trial averaged activity
matrix into an N-dimensional PCA space (N = 3 in Figs. 2–5; N = 3-15 in
Fig. S1). After projection, the population representations of the eight
spatial locations (and eight shapes in the feature task) in a particular
epoch (e.g. the cue period) formed eight points represented by an 8xN
matrix. Next, we determined the 2D subspaces (2xNmatrix) defined by
the first two PCA axes of the 8xNmatrix. We repeated that process for
two conditions under comparison (e.g. cue and match), and defined
the corresponding 2D subspaces as u and w. We performed singular
valuedecomposition of thematrix uwT, andgot singular values a andb.
The angle between two 2D planes under comparison was defined as
arccos(min[a,b]). Geometrically, the procedure above calculates the
principal angles between the pairs of the canonical basis of two sub-
spaces. When N= 3, one of the angles is zero because, two sets of 2D
subspaces necessarily share one axis. When we reduced the dimen-
sionality to 3, a high proportion of variance was explained by the fitted
plane, as demonstrated in Table S2 (e.g. for the PD area in the cue
presentation epoch pre-training: 89.1% ± 3.3%; post-training PD
85.1% ± 3.6%). This validated our hypothesis that the reduced space
could effectively be presented in 2D.

We defined the angles between different conditions based on the
best-fit planes that we constructed above. Given the vectors spanning
the best-fit plane (P1) for one period are~v1 and~v2 (obtained from the
PCs of the reduced eight points), and the best-fit plane (P2) for another
period in the same region are~v3 and~v4, the angle between P1 and P2

was calculated as follows:

P1,P2

� �
= cos�1 jð~v1 ×~v2Þ � ð~v3 ×~v4Þj

j~v1 ×~v2j � j~v3 ×~v4j

� �
ð1Þ

where “ P1,P2

� �
” denotes the angle between P1 and P2, cos

�1 is the
inverse cosine function, and “~v1 ×~v2” is the cross product that finds the
vector that is perpendicular to the plane spanned by~v1 and~v2, the “�”
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sign stands for the dot product, and “|x | ” returns the absolute value
(for a scaler) or length (for a vector) of x.

To distinguish between an authentic large rotation of stimulus
representation and an incidental rotation arising in a population of
neurons with low selectivity and high variability, we employed two
methods to create a control condition for each rotation-angle mea-
surement. In the first method, we calculated the mean firing rate from
n trials for each cell and each stimulus class across different task
epochs. For example, we computed themean firing rate during the cue
period from the 16 trials of cell #1 located in the anterior dorsal area
during the pre-training spatial task and stored this mean as λ. Subse-
quently, we generated a Poisson distribution with the same mean (λ)
and randomly produced n sample values from it, simulating n trials
from the cue period of this specific cell in the anterior dorsal area
during the pre-training spatial task. This control dataset mirrored the
firing rate and selectivity statistics of the empirical dataset, thus
forming a baseline for rotation within each epoch, and providing a
reference for angle and geometry measurements. Control conditions
for rotation angle and geometry measurements are plotted with
dashed boxes, whereas empirical data are indicated by solid frame
boxes, as illustrated in Fig. 3B1, B2 and Fig. 4A. Only cells with at least 6
match and 6 nonmatch trials for each stimulus condition were inclu-
ded in the rotation angle analysis. We assessed variability by randomly
drawing 80% of the cells from each prefrontal subdivision over 1000
iterations.

With the secondmethod (Fig. S2), we randomly split all trials into
two halves, and then, as the control, we calculate the rotation angle
between the split trials of the same task condition. For instance, to find
the control of rotation angles between the cue period and sample
match in the pre-training spatial task, we randomly partitioned trials in
all cells into two halves. The rotation angle between the two subspaces
formed by the cue period from these halves was then calculated as one
observation of the control for cue. A similar approach was applied to
determine the control for the rotation angle of the sample match. We
repeated the random division (into halves) 100 times to establish the
distribution of the control angles for cue and sample match. This
method halves the sample available, therefore we only used neurons
with at least 16 trials per condition. As some areas did not have enough
trials for comparison, we pooled data into three areas: anterior
(comprising the AD and AV subregions), middle (comprising the MD
subregion) and posterior (comprising the PD and PV subregions).

We implemented a nonparametric bootstrap method to assess
the statistical significance of the differences between empirical angles
at different training phases (pre vs. post), as well as between empirical
angles and control rotation angles. First, the underlying true angle
difference was calculated using the angle difference derived from all
trials and cells. Then we conducted the bootstrap procedure. In each
iteration, we shuffled the training status labels of all cells under com-
parison, followed by the recalculation the angle difference post-
shuffle. This process was repeated 1000 times. The p-value for the
observed difference was estimated based on the proportion of values
in the shuffled data that exceeded true empirical value.

Variance accounted for ratio (VAF)
To cross-check the rotation angle between the 2D subspace of differ-
ent task epochs, we measured the Variance Accounted For (VAF) ratio
for each angle measurement15. The VAF ratio for epoch subspace pair
(1,2) was defined as follows:

VAF 1,2 =
Varðv2vT2 v1LT1 Þ

Varðv1LT1 Þ
ð2Þ

Where vi ði = 1,2Þ is a 3 × 2matrix representing two subspace axes,
and L1 represents the stimulus projection in the first subspace. VAF
ranges from0 to 1; large values indicate better alignment of subspaces,

while values close to 0 suggest orthogonality. Only cells with at least 6
match and 6 nonmatch trials for each stimulus categorywere included
in the VAF analysis.

Single cell basis of coding subspace
To characterize the geometric relationship between single-cell axes
and the low-dimensional subspace in certain contexts, we aimed to
measure the alignment of single cells’ selectivity with the low dimen-
sional subspace. Geometrically, better alignment corresponds to a
smaller angle between a vector and a subspace. This also implies that
variance in the vector would yield significant variance within the sub-
space. Intuitively, a better-aligned vector will have a larger projection
onto the subspace15. In accordance with this concept, we projected a
unit vector i from the neuron under question onto the coding sub-
space of a specific context. The resultant projection vector onto the
subspace is denoted by A, and the angle between A and a specific
stimulus vector (we chose the first location/shape) is φ, so A and φ
satisfy:

ðq1ÞT i=Acos φð Þ ð3Þ

ðq2ÞT i=Asin φð Þ ð4Þ

in which q1 and q2 represent the first two PCs of the subspace. Thus, A
measures the degree of alignment, or the strength of contribution
from the cell, and φ indicates the turning direction of the cell in the
coding subspace. We also employed a quantity called normalized
participation ratio (PR)15 to quantify how distributed the subspace is
across the population, as follows:

PR=
ðPN

i= 1 A
2Þ2

N
PN

i= 1 A
4

ð5Þ

This quantity ranges from 0 to 1, with 0 indicating very sparse
coding and 1 indicating evenly distributed coding across the whole
population.

To examine the contribution of repetition suppression on the
observed subspace rotation, cells with prominent repetition suppres-
sion were removed from the database, and the rotation angle was
recalculated. Specifically, the top 10% of cells with the largest reduc-
tion in firing rate from the cue to the match epoch was excluded from
this analysis.

Geometrical order in low-dimensional representation. A matrix L of
size 8 × 2 was used to represent the projection of 8 locations or shapes
on the 2D plane, with each row representing a stimulus in the 2D PCA
space. To compare the geometric order with a hypothetical order on
an octagon (Fig. 2, Fig. S12), we first projected the 8 stimuli onto a
circle. Specifically, we aligned the 8 points uniformly on an imaginary
circle by equalizing the arrangement as follows

D = S
1 0

0
max Sð:,1Þð Þ�minðSð:,2Þ Þ
max Sð:,2Þð Þ�minðSð:,2ÞÞ

" #
ð6Þ

T = CD�1 ð7Þ

Here, S represents the score matrix and C the coefficient matrix,
both obtained from the PCAof L. Here, S(:,i) is the ith columnof S, andT
is the new matrix representing the 8 stimuli in the reduced space.
Subsequently, we determined the circular order of the stimuli by
computing the angles of vectors from the center to each point, with
the angle for the ith stimulus defined as θi = arccot(I), where I denotes
the vector from the center to the ith point.
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Focusing solely on the sequential order, we aligned the stimuli to
the vertices of an ideal octagon in the order obtained from the circular
projection. This realignment is defined as N(orank,:) = M(ohypothetical,:),
where orank and ohypothetical are vectors containing the measured sti-
mulus order in the low dimensional space and the hypothetical order,
respectively. M contains coordinates of a unit-size octagon, and N is a
low-dimensional representation of the 8 stimuli, reshaped to a stan-
dard octagon.

We quantified “order regularity” by the unexplained variance
determined by the Kabsch algorithm36, which finds the optimal rota-
tionmatrix R thatminimizes the rootmean squared deviationbetween
M and N. The Kabsch algorithm was implemented as follows

R=V
1 0

0 d

� �
UT ð8Þ

d = sign det VUT
� 	� 	

ð9Þ

where U and V come from the singular value decomposition of the
covariance matrix of M and N. Unexplained variance between two set
of coordinates, referred to as Cfirst and Csecond, is defined as

Unexplained variance=
2 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP ðCf irst � CsecondÞ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p

P
q C

2
f irstðp, qÞ

q
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p

P
q C

2
secondðp, qÞ

q
ð10Þ

A lower value of unexplained variance indicates a higher con-
gruence, signifying greater “order regularity.”

When comparing the empirical geometry with a hypothetical
geometry (Fig. 2, Fig. S12), we hypothesized that the distance between
each cue and its nonmatch pair should be maximized. For the spatial
task, thematch-nonmatch structure is symmetric (e.g. when A is cue, B
is nonmatch; and when B is cue A is nonmatch). These two assump-
tions should lead to a predicted arrangement similar to the physical
appearance of the spatial stimuli, where the nonmatch pair always
perfectly falls on two ends of a diagonal line.

For geometrical comparisons between two task epochs (Fig. 4),
the geometries from the same neural population were used, con-
sidering both the order and the location variation. To quantify the
amplitude of stimuli representations across two conditions, we used a
scale factor defined as the variance ratio between two geometrical
arrangements, calculated as follows

Scale factor =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p

P
q C

2
secondðp,qÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p

P
q C

2
f irstðp, qÞ

q ð11Þ

C p,qð Þ = L p, qð Þ � �L ð12Þ
Where Cf irst and Csecond represent mean-subtracted projections

on a 2D plane of the first and second condition in a comparison,
respectively, andwherep=1,…,8 andq = 1,2, represent two coordinates
for eight shapes in a 2D subspace. Only cellswith at least 6match and 6
nonmatch trials for each stimulus category were included in the geo-
metrical similarity analysis. Standard error was measured by random
drawing 80% of cells in each subdivision over 100 iterations.

Time course of subspace rotation
In addition to visualizing the rotation between different phases of the
WMtask,we investigated thedynamics of presentations in the reduced
PCA space. To construct the trajectory, we discretized the whole task
with a timestep of Δt = 50ms and an interval of lt =250ms. For each
timestep k, we recorded the mean firing rates for the match and

nonmatch trials in the interval [t0 + ðk � 1ÞΔt � 250, t0 + ðk � 1ÞΔt] as
the entries for the population activity matrix A1 and A2 (defined in the
above section). Similar as the procedure of constructing the PCA
space, we projected the neural responses for each condition into their
first three principal components. To plot the trajectories, we started
from 250milliseconds after the start of fixation, i.e., set the initial time
t0 = 250ms. Consequently, the first interval we considered spans from
0 to 250 milliseconds in fixation. We also used the first three PCAs in
the match trials during the cue period as the common basis to calcu-
late the coordinates. In other words, we projected the activity matrix
into the same common subspace spanned by the PCA space of the
match trials. As illustrated in Fig. 3A2, we explored the dynamics of
representation for each location (shape) in the spatial (feature) task,
where we plot every six points from the dynamics, i.e., we set an
increment of dt =300ms for the purpose of visualization.

To further investigate the changes in decoding spaces, we ran-
domly sampled half of the trials from all periods (fixation, cue, delay1,
sample and delay2) and calculated its PCA space as the base to project
the remaining half trials. The area of the projection for a given period
indicates howmuch information the state space contains fromall eight
locations, which we defined as the decoding subspace (St). For
example, in the reduced space formedbyPC1 andPC2, the eight spatial
task locations were presented by eight points. To quantify the size of
our decoding subspace, we first found the boundaries of the eight
points, whichwas a set of points representing a single conforming to a
2-D boundary around the eight points. Then we calculated the areas of
the polygons defined by the boundary points, which we defined as the
areas of the decoding space (At). We calculated the ratios of the areas
of decoding spaces based on the fixation period (Af ix). For example,
the ratios (R) between fixation, delay1 and delay2 were defined as
follows:

R=
Af ix

Af ix
:
Adelay1

Af ix
:
Adelay2

Af ix
ð13Þ

Note that we divided each area by that computed at the fixation
period to normalize the data so that we could compare the ratios from
different samples. We repeated the random sampling across 10,000
iterations, and the statistics of the ratios were reported in the results
section.

Significance testing of rotations with bootstrap
Our previous analysis was based on all data recorded from neurons
that hadmore than 16 trials for all cue conditions and in each region in
Fig. 1C. To test the significance and robustness of the representation
rotations, we applied a bootstrap method to sample 100 iterations
from the original data. On each iteration, 80% of the cells were drawn
with replacement. The angles were calculated following the same
procedure as above. Mean and median angles from 100 iterations
obtained frombootstrapwere representedby dots andhorizontal bars
within the box plots, while the interquartile range and five percent
extreme values were indicated by box border and whiskers,
respectively.

Analysis of error trials
In the post-training spatial task, most cells did not have error trials for
all conditions. Therefore, the corresponding activitymatrix (as defined
above) for the error trials was very sparse. In the spatial task, there
were 295 neurons where error trials presented at more than half of the
eight locations, i.e., 295 rows of the population activity matrix had
more than four non-empty entries. We selected those 295 neurons for
the error trial analysis in the spatial task. Following the same criterion,
we selected 201 neurons containing error trials in the feature task. We
first aligned the activity matrix for both cases in the same order, i.e.,
the same neuron occupied the same row in both matrices. In most
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cases, for a given stimulus, there were more correct trials than error
trials, which led to a larger number of samples in most entries of the
activity matrix. Each entry of the activity matrix was calculated from
themean activity across all trials.We thusmatched thenumber of trials
in each entry to allow comparison between correct and error trials.
Specifically, for each empty entry in the error matrix, we removed the
corresponding entry in the correct matrix. Additionally, we selected
the same number (minimum of the corresponding entries) of trials in
both cases to ensure the same number of samples in both the correct
and error trials.

Dimensionality reduction was performed on the error trials using
PCA. Given that there are several possible versions of PCA for a sparse
matrix, we relied on a probabilistic principal component (PPCA) with
variational Bayesian learning37 as this method worked best for our
neural data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the individual figures are provided in the Source
Data Files. The full data set used for analysis has been made available
at: https://codeocean.com/capsule/2817512/tree/v2. Source data are
provided with this paper.

Code availability
Analysis code for the current project is available at: https://codeocean.
com/capsule/2817512/tree/v2.
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