
ARTICLE

Cross-cancer evaluation of polygenic risk scores for
16 cancer types in two large cohorts
Rebecca E. Graff 1,2,3, Taylor B. Cavazos 4, Khanh K. Thai2, Linda Kachuri1, Sara R. Rashkin 1,

Joshua D. Hoffman1, Stacey E. Alexeeff2, Maruta Blatchins 2, Travis J. Meyers1, Lancelote Leong1,

Caroline G. Tai1, Nima C. Emami1,4, Douglas A. Corley2, Lawrence H. Kushi 2, Elad Ziv3,5,6,

Stephen K. Van Den Eeden 2,7, Eric Jorgenson 2, Thomas J. Hoffmann 1,2,5, Laurel A. Habel2,

John S. Witte1,3,5,7,9✉ & Lori C. Sakoda 2,8,9✉

Even distinct cancer types share biological hallmarks. Here, we investigate polygenic risk

score (PRS)-specific pleiotropy across 16 cancers in European ancestry individuals from the

Genetic Epidemiology Research on Adult Health and Aging cohort (16,012 cases, 50,552

controls) and UK Biobank (48,969 cases, 359,802 controls). Within cohorts, each PRS is

evaluated in multivariable logistic regression models against all other cancer types. Results

are then meta-analyzed across cohorts. Ten positive and one inverse cross-cancer associa-

tions are found after multiple testing correction. Two pairs show bidirectional associations;

the melanoma PRS is positively associated with oral cavity/pharyngeal cancer and vice versa,

whereas the lung cancer PRS is positively associated with oral cavity/pharyngeal cancer, and

the oral cavity/pharyngeal cancer PRS is inversely associated with lung cancer. Overall, we

validate known, and uncover previously unreported, patterns of pleiotropy that have the

potential to inform investigations of risk prediction, shared etiology, and precision cancer

prevention strategies.
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Neoplasms are remarkably diverse in their clinical pre-
sentation, but they share biological hallmarks acquired
during the transformation of normal cells into neoplastic

ones1. Inherited genetic factors underpinning shared hallmarks
could alter cancer risk in a pleiotropic manner. Several high-
penetrance mutations have been shown to exhibit pleiotropy
across multiple cancers; BRCA2, for example, a gene involved
in DNA repair, has been implicated in cancers of the breast,
ovary, pancreas, and prostate2. Genome-wide association studies
(GWAS) of individual cancer types have also identified loci
associated with multiple cancer types, including 5p15 (TERT-
CLPTM1L)3, 6p21 (HLA complex)4,5, and 8q246. Non-GWAS
approaches have yielded further pleiotropic cancer risk
variants7–27, and genetic correlation studies have identified cancer
pairs with shared heritability28–31.

Polygenic risk scores (PRS) capture a different aspect of
pleiotropy. By combining variants into scores that summarize
genetic susceptibility, PRS typically explain a larger proportion of
disease risk than single low-penetrance variants. Relative to
genetic correlations, PRS offer greater specificity by selecting a
refined set of disease-specific risk variants. PRS analyses therefore
have the potential to enhance clinical risk assessment; given
diagnosis with the first of two cancers with known shared genetic
susceptibility, it could prove prudent to more aggressively con-
sider primary prevention and screening efforts for second cancer
in the pair. Beyond prediction, biological insights into underlying
etiologic mechanisms may be gained by investigating the func-
tionality of shared variants. Although PRS have been extensively
investigated for individual cancers, the cross-cancer portability of
PRS has been less well studied.

In this work, we comprehensively investigate pleiotropy across
cancers by leveraging results from 257 published GWAS to sys-
tematically construct PRS specific to 16 cancer types. We then
evaluate associations between each PRS and the risk of each
cancer type in European ancestry individuals from two large
independent cohorts with genome-wide array data—the Genetic
Epidemiology Research on Adult Health and Aging (GERA)
cohort and the UK Biobank. We also assess associations between
each genetic variant contributing to a PRS and the risk of each
cancer type and, among UK Biobank participants, characterize
pleiotropy between each PRS and 20 cancer risk factors or bio-
markers. We validate known and uncover previously unreported
patterns of pleiotropy that have the potential to inform investi-
gations of risk prediction, shared etiology, and precision cancer
prevention strategies.

Results
In a first step toward development of PRS for each of 16 cancer
types, we abstracted 17,717 genome-wide significant associations
from 257 published GWAS (Supplementary Data 1). Of the
selected set of 867 risk variants independent (r2 < 0.3) within the
16 cancer types, 798 variants were independent across all cancer
types (Supplementary Data 2a–p). Endometrial cancer had the
fewest independent risk variants (n= 9), and breast cancer had
the most (n= 187) (Fig. 1).

Participants were more commonly female than male (Supple-
mentary Table 1). GERA participants were older than UK Biobank
participants (mean age in years: cases, 69 versus 60; controls, 62
versus 57). Case counts ranged from 665 for pancreatic cancer to
17,901 for breast cancer (Fig. 1; we restricted to cancers with at least
650 cases across cohorts). Meta-analyses of non-sex-specific cancers
included 410,354 controls. Female-specific meta-analyses included
219,648 controls. Meta-analyses of prostate cancer included 190,706
male controls. For testicular cancer, analyses included 169,967 male
controls (UK Biobank only).

PRS replication within cancer types. Initial analyses assessed each
of the 16 PRS in relation to the cancer for which it was developed.
All PRS replicated at a nominal significance level (p < 0.05; dark
gray cells in Fig. 1) for their corresponding cancer outcomes. The
largest effect sizes per standard deviation increase in the PRS were
observed for testicular (odds ratio (OR)= 2.29; p= 6.82 × 10−105)
and thyroid cancers (OR= 1.55; p= 6.38 × 10−33). The smallest
were observed for ovarian (OR= 1.14; p= 2.72 × 10−6) and oral
cavity/pharyngeal cancers (OR= 1.08; p= 0.007). None of these
replicative associations demonstrated significant heterogeneity
across cohorts (pCochran’s-Q < 0.05). Supplementary Data 3a–c
include summary statistics from the meta-analyses, GERA, and UK
Biobank, respectively.

Cross-cancer PRS associations. Next, we evaluated each PRS in
relation to each of the other 15 cancer types. Eleven associations
between a PRS and cross-cancer outcome were found after cor-
rection for multiple testing (p < 0.05/16= 0.0031; Fig. 1). Results
remained materially unchanged correcting for the false discovery
rate at q < 0.05 (Supplementary Fig. 1). Ten pairs showed a posi-
tive association: bladder cancer PRS with cervical cancer (OR=
1.04; p= 9.04 × 10−4); endometrial cancer PRS with prostate
cancer (OR= 1.06; p= 5.34 × 10−9); lung cancer PRS with non-
Hodgkin’s lymphoma (NHL; OR= 1.11; p= 5.57 × 10−7),
colorectal cancer (OR= 1.04; p= 1.22 × 10−3), and oral cavity/
pharyngeal cancer (OR= 1.11; p= 1.06 × 10−4); lymphocytic leu-
kemia PRS with NHL (OR= 1.08; p= 1.48 × 10−4); melanoma PRS
with breast (OR= 1.04; p= 6.33 × 10−7) and oral cavity/pharyngeal
cancers (OR= 1.10; p= 7.84 × 10−4); and oral cavity/pharyngeal
cancer PRS with melanoma (OR= 1.04; p= 2.04 × 10−3) and NHL
(OR= 1.10; p= 2.67 × 10−6). The oral cavity/pharyngeal cancer
PRS was inversely associated with lung cancer (OR= 0.93; p=
6.25 × 10−4). Only the melanoma PRS-breast cancer association
demonstrated heterogeneity (I2= 0.79; pCochran’s-Q= 0.029). Thirty
additional associations (24 positive, six inverse) were nominally
significant (p < 0.05).

In sensitivity analyses removing variants from the exposure
PRS in linkage disequilibrium (LD) with variants known to be
associated with the outcome cancer type (Supplementary Data 4
and Supplementary Table 2), 8 out of the 11 significant
associations remained materially unchanged (Supplementary
Table 3). Three relationships, however, were seemingly driven
by variants in LD: endometrial cancer PRS with prostate cancer
(OR= 1.00; p= 0.96); oral cavity/pharyngeal cancer PRS with
melanoma (OR= 1.02; p= 0.075); and oral cavity/pharyngeal
cancer PRS with lung cancer (OR= 0.98; p= 0.25). The original
oral cavity/pharyngeal cancer PRS was significantly associated with
lung adenocarcinoma (1006 cases; OR= 0.89; p= 1.13 × 10−4) but
not squamous cell carcinoma (488 cases; OR= 0.94; p= 0.20).
When restricting the lymphocytic leukemia PRS to variants
discovered in GWAS of chronic lymphocytic leukemia (CLL), the
relationship with NHL became more pronounced (OR= 1.10; p=
1.97 × 10−6). When excluding 20 lung cancer risk variants
associated with tobacco use32, associations of the lung cancer PRS
with non-Hodgkin’s lymphoma (OR= 1.11; p= 6.26 × 10−8),
colorectal cancer (OR= 1.05; p= 6.11 × 10−5), and oral cavity/
pharyngeal cancer (OR= 1.12; p= 3.95 × 10−5) remained
unchanged. No other PRS implicated in cross-cancer associations
included tobacco-associated variants.

Cross-cancer risk variant associations. We further assessed
associations between each variant contributing to a PRS and all
cancer types (Supplementary Data 5a–p). In total, 141 cross-
cancer associations were detected at a threshold corrected for the
number of effective independent tests (p < 0.05/798= 6.3 × 10−5;
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Supplementary Data 6; includes 18 duplicate associations in
which the same variant originated from multiple PRS). They
included associations for 55 variants in LD with previously
identified risk variants for the outcome cancer. Among the
remaining 86 associations, 60 were previously unreported, in that
prior literature had not reported the variant (or variants with r2 >
0.3 in the 1000 Genomes EUR superpopulation reference panel)
to be associated with the outcome cancer at p < 1 × 10−6 (Fig. 2a
and 2b; includes five duplicate associations originating from
multiple PRS). The cancer types with the largest number of such
risk variants were prostate (n= 15), NHL (n= 14; includes one
variant originating from multiple PRS), and cervix (n= 12).

Several genomic regions were overrepresented among pleio-
tropic variants compared with all PRS variants (Fig. 2c). Across
the 141 cross-cancer associations, pleiotropic variants were most
commonly found in TERT-CLPTM1L (16% versus 3.0%) and
HLA (6p21.32: 16% versus 3.6%; 6p21.33: 13% versus 3.6%).
Additional regions enriched for pleiotropy included 9q34.2 (2.1%
versus 0.23%), 10q24.33 (4.2% versus 0.46%), 12q24.12 (1.1%
versus 0.11%), and 17q12 (5.3% versus 0.69%). These regions
remained enriched following normalization by region size
(Supplementary Fig. 2).

Cancer PRS and cancer risk factors or biomarkers. Upon
evaluating relationships between each cancer PRS and 20 cancer
risk factors or biomarkers in the UK Biobank, we identified
62 statistically significant associations (p < 0.05/20= 0.0025; Fig. 3,
Supplementary Data 7). The lung cancer PRS was associated with
the most (12) phenotypes. Positively associated phenotypes inclu-
ded cigarettes per day in smokers (p= 6.06 × 10−32), pulmonary
obstruction (decreasing forced expiratory volume in 1 s [FEV1]/
forced vital capacity [FVC]; p= 1.97 × 10−25), glycated hemoglobin

(HbA1c; p= 1.59 × 10−22), height (p= 1.30 × 10−4), and multiple
metrics of adiposity (e.g., body mass index (BMI): p= 7.63 × 10−9).
The lung cancer PRS was associated with lower levels of insulin-like
growth factor-1 (IGF-1) (p= 8.58 × 10−18) and high-density lipo-
protein (HDL) cholesterol (p= 3.94 × 10−17). The NHL and oral
cavity/pharyngeal cancer PRS were each associated with nine sec-
ondary phenotypes. Among the associations for the former were
increasing levels of low-density lipoprotein (LDL) cholesterol (p=
1.53 × 10−21), IGF-1 (p= 2.13 × 10−9), and C-reactive protein
(CRP; p= 5.50 × 10−7). The latter was associated with increasing
alcohol intake (p= 7.28 × 10−11) and pulmonary obstruction (p=
1.26 × 10−10). PRS for breast, prostate, and ovarian cancers were
not clearly associated with any secondary phenotypes. Among the
secondary phenotypes, height showed the most cancer PRS asso-
ciations (n= 8; 4 positive, 4 inverse), followed by HbA1c (n= 7; 5
positive, 2 inverse), and BMI (4 positive, 2 inverse) and LDL (2
positive, 4 inverse) (n= 6 each).

Discussion
In this comprehensive study of PRS-specific cancer pleiotropy, we
constructed 16 PRS based on systematic review of the cancer GWAS
literature. Analyses identified 11 statistically significant cross-cancer
PRS associations, as well as previously unreported cancer associa-
tions with 55 unique risk variants in known susceptibility regions.
We further identified 62 cancer PRS associations with selected non-
cancer phenotypes.

Of all PRS evaluated, the oral cavity/pharyngeal and lung
cancer PRS were most commonly implicated in associations with
cross-cancer and non-cancer phenotypes. These results support
existing evidence of cancer pleiotropy, given that the PRS for both
cancers included variants in two well-known pleiotropic cancer
regions—TERT-CLPTM1L3 and HLA4,5. Notwithstanding shared

Fig. 1 Odds ratios for at least nominally significant associations between cancer-specific polygenic risk scores (PRS) and cancer outcomes, based
on meta-analyses of European ancestry participants from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and UK
Biobank. Odds ratios were estimated from logistic regression models, p values were calculated from two-sided Wald tests, and statistical significance
(p < 0.05/16= 0.0031) was determined accounting for multiple testing. Cancers are ordered based on hierarchical clustering of the odds ratios for each
PRS across cancer outcomes.
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Fig. 2 Pleiotropic risk variants from the 16 cancer-specific polygenic risk scores (PRS). a Circos plot describing each previously unreported positive
association between a known risk variant for one cancer type and another cancer phenotype. b Circos plot describing each previously unreported inverse
association between a known risk variant for one cancer type and another cancer phenotype. Each line in a and b represents a significant association
between a risk variant for the cancer from which the line originates (denoted by line color) and the cancer type to which the line connects. Odds
ratios were estimated from logistic regression models, p values were calculated from two-sided Wald tests, and statistical significance (p < 0.05/798=
6.3 × 10−5) was determined correcting for the number of effective independent tests. Cancers are organized by organ site. c Region enrichment for
141 significant previously unreported and known associations compared to all PRS variants.

Fig. 3 Associations between each cancer-specific polygenic risk score (PRS) and 20 cancer risk factors and related serum biomarkers. All associations
were estimated in cancer-free controls in the UK Biobank. Circles denote positive associations between the PRS and the secondary phenotype; crosses
denote an inverse direction of the association. Odds ratios (ever/never smoking status) were estimated from logistic regression models, and p values were
calculated from two-sided Wald tests. Risk ratios (remaining phenotypes) were estimated from linear regression models, and p values were calculated
from two-sided t tests. The dashed line indicates the significance threshold corrected for multiple testing (p < 0.05/20= 0.0025).
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susceptibility regions, the relationship between oral cavity/phar-
yngeal and lung cancers was inconsistent. In one direction, the
oral cavity/pharyngeal cancer PRS was inversely associated with
lung cancer. The negative pleiotropy was at least partly attribu-
table to two oral cavity/pharyngeal PRS variants (rs467095 and
rs10462706; Supplementary Data 4 and Supplementary Table 2),
both expression quantitative trait loci for TERT and CLPTM1L,
which were inversely associated with lung cancer risk and in LD
(r2= 0.96 and 0.66, respectively) with variants in the lung cancer
PRS. The oral cavity/pharyngeal cancer PRS was also associated
with increasing alcohol intake, an established risk factor for such
cancers33. In contrast, the relationship between alcohol intake
and lung cancer remains controversial, with the possibility of an
inverse or J-shaped relationship34,35. In the other direction, the
lung cancer PRS was positively associated with oral cavity/phar-
yngeal cancer risk. The positive pleiotropy may be partially
explained by the association between both cancers and pulmon-
ary obstruction (i.e., decreasing FEV1/FVC), as well as higher
HbA1c and lower IGF-1 levels, both of which indicate insulin
resistance. The association remained largely unchanged after
excluding smoking-associated variants, suggesting that tobacco
use unlikely explains it.

Oral cavity/pharyngeal cancer also showed a bidirectional,
positive relationship with melanoma, even though the two PRS
share only one pair of variants in LD in TERT-CLPTM1L (Sup-
plementary Data 4 and Supplementary Table 2). PRS for both
cancer types were inversely associated with height, which is
somewhat surprising since increasing height has been strongly
associated with melanoma risk36.

The lung cancer PRS was positively associated with colorectal
cancer and NHL. The former association did not appear to be
driven by variants in LD; only two out of 109 lung cancer risk
variants (rs2853677 and rs1333040) are in high LD (r2= 0.62 and
0.49, respectively) with colorectal cancer risk variants (rs2735940
and rs1537372, respectively), and neither was strongly associated
with colorectal cancer risk in our data. Given that the lung cancer
PRS was associated with increasing BMI, body fat, and cigarettes
per day, its association with colorectal cancer risk coheres with
known risk factors. As five of the lung cancer variants in HLA are
in LD with NHL risk variants, LD structure likely played a larger
role in the latter association, though it was only slightly weaker
after excluding all SNPs in LD. One possible shared mechanism is
insulin resistance, as both the lung cancer and NHL PRS were
associated with increasing HbA1c levels. We also identified a
previously unreported association between a lung cancer risk
variant and NHL; rs652888 (6p21.33 in EHMT2) has been linked
to several autoimmune and infectious diseases37,38, as well as
infection with Epstein-Barr virus39, a known NHL risk factor40.
Although we did not find an association between the NHL PRS
and lung cancer risk, the NHL PRS included only 19 SNPs
(relative to 109 variants in the lung cancer PRS).

Among the remaining significant cross-cancer PRS associa-
tions, two included cancers with PRS variants that were com-
pletely independent at the r2= 0.3 threshold: the bladder cancer
PRS with cervical cancer and the oral cavity/pharyngeal cancer
PRS with NHL. Cervical cancer and NHL were among the cancers
with the most previously unreported risk variants. Although none
of the 15 bladder cancer variants are in LD with known genome-
wide significant risk variants for cervical cancer, one CLPTM1L
variant (rs401681-C) was associated with increased cervical can-
cer risk at a genome-wide significance level in our study, con-
firming a suggestive association signal reported previously22.
Similarly, two oral cavity/pharyngeal cancer variants in HLA
(rs9271378 and rs3135006), a region that has previously been
implicated in NHL41, were strongly associated with NHL risk in
our analyses.

Increasing NHL risk was also associated with the overall
lymphocytic leukemia and CLL PRS. Out of 64 lymphocytic
leukemia risk variants, only one (rs4987855) is in LD (r2= 0.95)
with an NHL risk variant (rs17749561). Our results align with
those from Sampson et al.30, which showed an association
between a PRS for CLL and the risk of diffuse large B-cell lym-
phoma, the most common NHL subtype. Both CLL and NHL
arise from B-cells, and recent classifications account for their
similar origin42.

The association between the endometrial cancer PRS and
prostate cancer risk, which we attributed to one endometrial
cancer variant (rs11263763) in LD with a prostate cancer risk
variant (rs4430796), also validated results from Sampson
et al.30. The remaining cross-cancer association from our
study—between the melanoma PRS and breast cancer—was not
evaluated in theirs. Their study did, however, identify two
associations that our analyses did not validate: (1) a lung cancer
PRS and bladder cancer risk, and (2) an endometrial cancer
PRS and testicular cancer risk. Given differences in study design
and the many additional SNPs that have been discovered since
2015, it is not especially surprising that some results are
distinct.

Overall, the results of our cross-cancer PRS analyses demon-
strated unique patterns of pleiotropy relative to studies focused
on array-based shared heritability or genetic correlations28–31. In
GERA and the UK Biobank, our group previously found sug-
gestive evidence of positive correlations between bladder and
breast cancers, melanoma and testicular cancer, and prostate and
thyroid cancers and negative correlations between endometrial
and testicular cancers, lung cancer and melanoma, and NHL and
prostate cancer31. These pairs did not surface in our cross-cancer
PRS analyses in these same cohorts, except suggestive evidence of
bidirectional positive associations between melanoma and testi-
cular cancer. By capturing a broad polygenic signal, genetic
correlations offer an overall sense of genetic sharing between two
cancers. In contrast, PRS capture only the strongest risk variants
for a given phenotype (which may in part be informed by the
number of cases examined in contributing discovery GWAS).
PRS thus enable more targeted analyses of cross-cancer suscept-
ibility loci and have more clinical potential for individual risk
assessment.

Our analyses identifying genomic regions overrepresented
among pleiotropic variants solidify results that have been syn-
thesized from GWAS of individual cancers. In addition to TERT-
CLPTM1L and HLA, 9q34.2, 10q24.33, 12q24.12, and 17q12 have
been implicated in susceptibility for multiple cancer types. Var-
iants in the breast43 and pancreatic cancer44 susceptibility locus
9q34.2 influence estrogen receptor signaling and insulin resis-
tance, and were recently associated with protein biomarkers
affecting carcinogenesis45. The 10q24.33 region containing
OBFC1, a known telomere maintenance gene, has been implicated
in lymphocytic leukemia, melanoma, and kidney, ovarian, and
thyroid cancers46–51. A previous cross-cancer analysis linked
12q24.12 to both colorectal and endometrial cancer risk52. This
locus includes SH2B3, a gene involved in regulating signaling
pathways related to hematopoiesis, inflammation, and cell
migration. The 17q12 locus includes HNF1B, which has been
extensively characterized with respect to hormonally driven
cancers53.

The non-cancer phenotypes that most frequently surfaced in
associations with cancer PRS offer additional mechanistic insights.
For example, the lymphocytic leukemia, NHL, and kidney, lung,
oral cavity/pharyngeal, and pancreatic cancer PRS were associated
with at least one anthropometric trait and showed directionally
consistent associations with HbA1c and IGF-1 levels. Obesity-
induced chronic inflammation and oxidative stress create a milieu
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conducive to malignant transformation54. Furthermore, the
metabolic reprogramming necessary to meet the increased energy
requirements of proliferating malignant cells is a known hallmark
of cancer1. There is also complex interplay between genetic
determinants of adiposity and smoking behaviors55. Taken toge-
ther, the findings further implicate obesity-related metabolic
dysregulation in susceptibility to multiple types of cancer. The PRS
for some types of cancer, however, were not associated with any
secondary phenotypes. In the case of the prostate cancer PRS,
lacking associations could be a reflection of the very few estab-
lished risk factors for disease. For the breast and ovarian cancer
PRS, it is perhaps more likely that the distinct risk variants reflect
heterogeneous etiologies.

Among the limitations of our study was the inclusion of
exclusively European ancestry individuals; results may not be
generalizable to diverse populations. We were also limited by
modest numbers for some cancers. We favored their inclusion in
an effort to evaluate more cancer types than previous investiga-
tions. Because they tend to be rarer cancers across study popu-
lations, the GWAS in which their risk variants have been
identified have had smaller sample sizes than those for more
common cancers. As a result, fewer risk variants have been dis-
covered and our associated PRS may be less precise. Nonetheless,
the thyroid cancer PRS, which included only 12 variants, was
among the most strongly associated with the cancer for which it
was developed. We note that our analyses included prevalent and
incident cases. However, results from a posteriori cross-cancer
PRS analyses restricted to incident and, separately, prevalent cases
mirrored those from the primary analyses (Supplementary
Data 8). Our findings are thus unlikely to be driven by associa-
tions with survival rather than risk. We also note that our PRS
were comprised of exclusively genome-wide significant variants.
Although a less-stringent threshold for inclusion might have
yielded more signal, it would not have been based on convincing
a priori evidence. Finally, although all PRS replicated for their
target cancers, some individual risk variants did not. Nevertheless,
93% had effect estimates with consistent directionality relative to
the published literature.

Among the strengths of our study was the use of two large
cohorts with abundant individual-level genetic and phenotypic
data, independent of those from which risk variants were iden-
tified in prior cancer GWAS (except the use of GERA data in
Hoffmann et al.56 and limited use of UK Biobank data in Huyghe
et al.57; see Methods). We also comprehensively reviewed the
contemporary literature to identify genome-wide significant risk
variants for 16 cancer types. Evaluating risk variants identified for
one cancer with respect to risk for others enabled the discovery of
susceptibility loci that would not otherwise meet the strict criteria
for genome-wide significance. By additionally evaluating asso-
ciations with cancer risk factors, we generated insights into
pathways that may be influenced by genetic variants implicated in
cancer.

Our work expands the repertoire of genetic susceptibility
variants for multiple cancers, which can guide future investi-
gations of their biological and clinical relevance. Although the
precise biological mechanisms underpinning the associations
remain ambiguous, our findings may still be leveraged toward a
more integrated model of cancer risk prediction that considers
cross-phenotype effects in addition to cancer-specific risk fac-
tors. An approach that incorporates genetic susceptibility pro-
files may have the greatest potential to aid in risk prediction for
cancers with few modifiable risk factors. Combined with future
research that investigates pleiotropy in cancer subgroups (e.g.,
by smoking status or histology) and clinical applications of PRS,
our results may inform new strategies toward reducing the
burden of cancer.

Methods
Study populations. GERA is a prospective cohort of 102,979 adults drawn from
>400,000 Kaiser Permanente Northern California (KPNC) health plan members
who participated in the Research Program on Genes, Environment and Health.
Participants answered a baseline survey regarding lifestyle and medical history,
provided a saliva specimen between 2008 and 2011, and were successfully
genotyped58,59. Following quality control (QC; described below), the GERA ana-
lytic population included 16,012 cases and 50,552 controls.

The UK Biobank is a population-based prospective cohort of 502,611
individuals from the United Kingdom, ages 40–69 at recruitment between 2006
and 201060. Participants were evaluated at baseline visits during which assessment
center staff introduced a touch-screen questionnaire, conducted a brief interview,
gathered physical measurements, and collected biological samples. Following QC,
the UK Biobank analytic population included 48,969 cases and 359,802 controls.

This study was approved by the KPNC and University of California
Institutional Review Boards and the KP Research Bank and UK Biobank data
access committees.

Phenotyping. GERA cancer cases were identified using the KPNC Cancer Registry.
Following Surveillance, Epidemiology, and End Results Program (SEER) standards,
the KPNC Cancer Registry contains data on all primary cancers (i.e., diagnoses that
are not secondary metastases of other cancer sites; excluding non-melanoma skin
cancer) diagnosed or treated at any KPNC facility since 1988. In this study, we
captured all diagnoses recorded through June 2016. Cancer cases in the UK Bio-
bank were identified via linkage to various national cancer registries60. Diagnoses
go as far back as the early 1970s, and the latest cancer diagnosis in our data from
the UK Biobank occurred in August 2015.

In both cohorts, individuals with at least one recorded prevalent or incident
diagnosis of a borderline, in situ, or malignant primary cancer were defined as
cases. To align with GERA, we converted all UK Biobank diagnoses described by
International Classification of Diseases (ICD)-9 or ICD-10 codes into ICD-O-3
codes. We then classified cancers in both cohorts by organ site according to the
SEER site recode paradigm61. Because second and subsequent cancers could have
been miscoded metastases of first cancer or a direct result of prior cancer
treatment, we evaluated only the first primary cancer diagnosed for each individual.
The analyses did, however, include 23 GERA participants and 64 UK Biobank
participants who had two primary cancers diagnosed on the same date. To ensure
sufficient statistical power, we grouped all oral cavity and pharyngeal cancers into
single site codes. Overall, our analyses included the 16 most common site codes
(>650 cases; excluding non-melanoma skin cancer) across both cohorts. Data on
testicular cancer cases were obtained from the UK Biobank only owing to the small
number of cases in GERA.

Controls were restricted to individuals who had no record of cancer in any of
the relevant registries, who did not self-report a prior history of cancer (other than
non-melanoma skin cancer) by survey, and, if deceased, who did not have cancer
listed as a cause of death. For analyses of sex-specific cancer outcomes (breast,
cervix, endometrium, ovary, prostate, and testis), controls were restricted to
individuals of the relevant sex.

We examined PRS associations with anthropometric traits, physical measures,
self-reported health-related behaviors, and serum biomarkers in the UK Biobank,
where relevant data were readily available. Physical assessments yielded measures
of height (Field ID: 50.0), BMI (Field ID: 21001.0), waist to hip ratio (Field ID: 48.0
divided by Field ID: 49.0), diastolic blood pressure (Field ID: 4079.0), and systolic
blood pressure (Field ID: 4080.0). Body fat percentage (Field ID: 23104.0) was
quantified with whole-body bio-impedance measures using the Tanita BC418MA
body composition analyzer. Self-reported data on cigarette smoking and alcohol
consumption were used to derive variables for smoking status (ever/never),
cigarettes per day, and weekly alcohol intake (grams). We additionally evaluated
eight serum biomarkers, as measured according to protocols that have been
previously described62: CRP (mg/L), HDL cholesterol (mmol/L), LDL cholesterol
(mmol/L), HbA1c (mmol/mol), IGF-1 (nmol/L), sex hormone-binding globulin
(nmol/L), testosterone (nmol/L) in men, and testosterone (nmol/L) in women. All
biomarker analyses were restricted to samples from the first aliquot, as these
samples were least affected by unintended sample dilution issues62. We excluded
values outside the bioanalyzer reportable range, as well as measures that required
additional analytic correction due to sample handling or processing issues. CRP,
HbA1c, and IGF-1 were log-transformed to achieve a normal distribution.

Phenotyping was completed using SAS v9.4 (https://support.sas.com/software/94/)
and R v3.2.2 or v3.3.3 (http://www.r-project.org/).

Genotyping and imputation. For GERA, genotyping was performed using one of
four Affymetrix Axiom arrays (Affymetrix, Santa Clara, CA, USA) optimized for
individuals of African, East Asian, European, and Latino race/ethnicity. Details
about the array design, estimated genome-wide coverage, and QC procedures have
been published previously59,63,64. Variants that were not directly genotyped (or
excluded by QC procedures) were imputed to generate genotypic probability
estimates. After pre-phasing genotypes with SHAPE-IT v2.565, IMPUTE2 v2.3.1
was used to impute variants relative to the cosmopolitan reference panel from the
1000 Genomes Project (phase I integrated release; http://1000genomes.org/)66.
Ancestry principal components (PCs) were computed using Eigenstrat v4.258,67.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21288-z

6 NATURE COMMUNICATIONS |          (2021) 12:970 | https://doi.org/10.1038/s41467-021-21288-z | www.nature.com/naturecommunications

https://support.sas.com/software/94/
http://www.r-project.org/
http://1000genomes.org/
www.nature.com/naturecommunications


For the UK Biobank, genotyping was conducted for 436,839 individuals with
the UK Biobank Axiom array and for 49,747 individuals with the UK BiLEVE
array60. The former is an updated version of the latter, such that the two arrays
share over 95% of their marker content. UK Biobank investigators undertook a
rigorous QC protocol60. Imputation was performed primarily based on the
Haplotype Reference Consortium reference panel, and the merged UK10K and
1000 Genomes Project (phase 3) reference panels were used for secondary data60.
Ancestry PCs were computed using fastPCA68 based on a set of 407,219 unrelated
samples and 147,604 genetic markers60.

Quality control. Additional QC procedures included restricting to self-reported
European ancestry individuals with matching self-reported and genetic sex. To
further minimize population stratification, we excluded individuals for whom
either of the first two ancestry PCs fell >5 standard deviations outside of the mean.
We also removed samples with call rates <97%, heterozygosity >5 standard
deviations from the mean, and/or first-degree relatives in the datasets.

QC was completed using a combination of R v3.2.2 or v3.3.3 (http://www.r-
project.org/), PLINK v1.9 (https://www.cog-genomics.org/plink2), and KING v2.0
(http://people.virginia.edu/~wc9c/KING/).

Variant selection for PRS. PRS were constructed based on variants associated
with each cancer type in existing published GWAS. To identify relevant GWAS, we
began by searching the National Human Genome Research Institute-European
Bioinformatics Institute Catalog of published GWAS69. For every GWAS of cancer
of interest (or one of its sub-phenotypes; e.g., poorly differentiated prostate cancer)
that discovered at least one genome-wide significant (p ≤ 5 × 10−8) risk variant, we
reviewed both the original primary manuscript and supplementary materials. We
then identified additional relevant GWAS by (1) reviewing the reference section of
each article and (2) searching PubMed to find other studies in which each article
had been cited (Supplementary Data 1). Only two out of 257 studies identified
included data that overlapped with ours. GERA was used in Hoffmann et al.56,
which contributed effect estimates for four out of 161 variants in our prostate
cancer PRS. UK Biobank data accounted for 21% of the Huyghe et al.57 study
population and was only used in the second stage of their colorectal cancer GWAS.

After abstracting genome-wide significant variants from all studies published by
30 June 2018, we reduced the file to include one log-additive association per
combination of variant identifier, phenotype/sub-phenotype, and ancestry group
(Supplementary Fig. 3). For associations reported in more than one study of the
same ancestry, we selected the one with a known risk allele and effect estimate with
the smallest p value.

We retained only autosomal variants identified in populations of at least 70%
European ancestry. We then excluded 2979 associations for which the source
literature did not report an effect estimate and/or for which an effect allele could not
be determined. For the remaining 13,793 associations, we assessed variant availability
in both the GERA and UK Biobank genotypic data using QCTOOL v2 (https://www.
well.ox.ac.uk/~gav/qctool_v2/) and VCFtools (http://vcftools.sourceforge.net/). For
lead variants that could not be identified by variant identifier or position, we used
LDlink70 and HaploReg71 to identify proxy variants with r2 ≥ 0.8. From original or
proxy variants available in GERA and UK Biobank, we excluded any not in a 1000
Genomes reference population or with minor allele frequencies (MAF) that differed
by >0.10, and we further restricted to biallelic risk variants with MAF ≥ 0.01. In the
last step prior to LD pruning, we excluded A/T and C/G variants with MAF ≥ 0.45—
due to strand flips, the appropriate effect alleles in our data could not be determined.

We used PriorityPruner72 and LDlink70 to select a set of independent risk variants
with LD < 0.3 for each cancer type. (We did not require that risk variants across
cancer types be independent.) The process preferentially selected variants with the
smallest p values and highest imputation scores associated with the broadest
phenotype (e.g., overall prostate cancer over poorly differentiated prostate cancer).

Statistical analysis. For each cancer type, we calculated the PRS based on additive
dosages of the individual risk variants: ∑(no. risk alleles*logOR from the literature)
for i= 1 to n risk alleles. Each PRS was then standardized based on its mean and
standard deviation, and evaluated in multivariable logistic regression models with
respect to the cancer for which it was developed and each of the other cancer types.
ORs were estimated per standard deviation increase in the PRS. Models were
adjusted for age at specimen collection, first 10 ancestry PCs, sex (except models
for sex-specific cancers), reagent kit used for genotyping (Axiom v1 or v2; GERA
only), and genotyping array (UK Biobank only). After conducting analyses by
cohort, we combined results across cohorts using fixed effects meta-analyses.
Heterogeneity was assessed based on I2 and Cochran’s Q.

For cross-cancer relationships that were statistically significant upon meta-
analysis, we conducted sensitivity analyses in which we removed variants from the
exposure PRS that are in LD with variants known to be associated with the
outcome cancer type. To further aid in interpreting observed associations, we also
conducted sensitivity analyses examining a lymphocytic leukemia PRS that was
restricted to variants discovered in GWAS of CLL specifically and PRS for each
cancer that excluded smoking-associated variants. The latter selected variants for
exclusion based on genome-wide significant associations in recently published
meta-analyses of current versus former smoking, ever versus never smoking,

cigarettes per day, and age started smoking32. Seventy-eight variants were
unavailable from the summary statistics, but none were genome-wide significantly
associated with tobacco-related phenotypes in the UK Biobank. In addition, we
evaluated each PRS in relation to lung adenocarcinoma and squamous cell
carcinoma separately.

For variants contributing to any of the 16 PRS, we estimated their associated
risk with each cancer type using logistic regression adjusted for the aforementioned
covariables. Variants were modeled individually on a log-additive scale. Results
from both cohorts were meta-analyzed. We then visualized the genomic regions
that were overrepresented among pleiotropic variants relative to all PRS variants.

In secondary analyses, we used the UK Biobank to explore associations between
each PRS and 20 cancer risk factors or serum biomarkers. Logistic (ever/never
smoking status) or linear (remaining phenotypes) regression models were
restricted to cancer-free controls and adjusted for the covariables noted above, as
well as cigarette pack-years (FEV1/FVC), assay date (serum biomarkers), and use of
medications to lower cholesterol (HDL and LDL), control blood pressure (systolic
and diastolic blood pressure), and regulate insulin (HbA1c).

All statistical analyses were performed using R v3.2.2 or v3.3.3 (http://www.r-
project.org/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All results from this study are available from the article or Supplementary Materials.
GERA data are available via the application with a local collaborator at https://
researchbank.kaiserpermanente.org/our-research/for-researchers/. UK Biobank data are
publicly available from https://www.ukbiobank.ac.uk.
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