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Introduction
MicroRNAs (miRNAs) are highly conserved small RNAs 
that have diverse functions, including regulation of cellular 
differentiation, proliferation, and apoptosis.1,2 These RNA 
molecules exert their function by inhibiting translation 
or inducing degradation of their target messenger RNAs. 
A given miRNA is able to pair with hundreds of transcripts by 
its seed miRNA nucleotides, allowing it to regulate complex 
gene-expression programs and induce global physiological 
changes.3 Dysfunction of these miRNA molecules has been 
linked to several human diseases, including different types 
of cancer. Virtually, all examined tumor types have globally 
abnormal miRNA expression patterns, where miRNAs play 
regulatory roles as potential oncogenes or oncosuppressor 

genes.4–6 Genome-wide profiling showed that about half of 
miRNA genes are localized in cancer-related genomic regions 
or fragile loci,7 where mutations, deletions, or amplifications 
occur in many human tumors. These observations indicate 
that miRNAs are candidate genes for tumorigenesis and 
cancer progression. An essential step and major challenge to 
understanding the functions of miRNAs in cancer is identifi-
cation of their target genes. Many computational and experi-
mental approaches have been used to improve the reliability of 
miRNA-target prediction. TargetScan,8–10 PicTar,11 DIANA-
microT,12 miRanda,13 and TargetS14,15 are examples of compu-
tational approaches that are based on an analysis of miRNA 
and mRNA sequences. Generally, they use the following 
principles to predict miRNA targets:
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1.	 Seed matches: the Waston-Crick pairing between the 5′ 
region of the miRNA centered on nucleotides 2–7 and 
the 3′ untranslated region (UTR) of the target mRNA.

2.	 Degree of conservation: a functional miRNA target is 
preferentially conserved across multiple species.

3.	 Thermodynamic stability, measured by the hybridization 
energy between miRNA and its candidate target site. It 
is believed that the total free energy of a functional tar-
geting must be thermodynamically favorable, ie, negative 
valued.

4.	 Accessibility energy, which is the free energy required to 
unpair the nucleotides on the target site to make the tar-
get accessible to the miRNA.

5.	 Target site context, including local AU content; the tar-
get position within 3′ UTR; and the residue pairing at 3′ 
of the putative target site.9

These computational methods, which integrate mul-
tiple types of sequence and structural features, however, 
have low specificity and a high number of false positives for 
miRNA-target prediction. More importantly, predictions 
based on sequence and structural features only represent static 
miRNA–mRNA interactions. It is not clear to what extent 
these predicted interactions align with functional miRNA 
regulation in a particular phenotype or pathological condition. 
Thus, expression profiling has been proposed as an important 
information resource for discovering miRNA targets under 
different conditions. On the basis of this idea, some novel 
approaches have been developed to predict miRNA targets by 
integrating expression data into sequence-based prediction. 
Among them are GeneMiR++,16,17 TaLasso,18 HOCTAR,19 
BLasso,20 MAGIA,21 and HCTarget.22 They mainly use 
paired miRNA and mRNA expression data from the same 
set of samples to refine the sequence-based prediction results 
and obtain more reliable miRNA targets. However, these 
approaches do not consider the full spectrum of available 
sequence and structural features of putative miRNA targets. 
Instead, they view all potential targets in sequence-based pre-
diction results as equally biologically meaningful. Recently, 
Xu et al systematically evaluated the effects of sequence and 
structural features on miRNA-target prediction using the 
pSILAC dataset as a benchmark.14,15 It was found that all 
these features were important for improving the accuracy of 
miRNA-target identification.

In this study, we combined the paired expression data 
of miRNAs and mRNAs from liver cancer patients, and 
the sequence and structural features of miRNA targeting 
to improve miRNA-target prediction. Our approach was 
based on a Bayesian linear regression model coupled with 
the Markov chain Monte Carlo (MCMC) algorithm. It 
uses both sequence and structural feature information to 
establish a prior probability of a miRNA-target interaction 
being functional, and paired miRNA and mRNA expression 
data to compute the likelihood of a putative miRNA-target 

interaction. By combining these two sources of information, 
our Bayesian method allows us to effectively sample from 
the large search space of putative miRNA–mRNA interac-
tions and compute the posterior probability of each putative 
miRNA target. It represents a powerful means of recon-
structing miRNA–mRNA interaction networks, specifically 
in liver cancer samples, and might help us uncover the mech-
anisms of tumorigenesis and progression in liver cancer.

Methods
Given a set of expression data of miRNA and mRNA, we 
modeled the interaction between miRNAs and target mRNAs 
using a linear model. The log-conditional likelihood function 
of data can be written in the following form, assuming a nor-
mal distribution:

	
p y X N X Ig g g g g N( , , ) ( , )| β σ β σ2 2= 	 (1)

where yg ∈ RN represents the collection of mRNA expression 
data with N number of samples. X ∈ RN×M is the collection of 
miRNA expression data, where M is the number of miRNAs, 
and σ g

2 is the noise. β g
MR∈  is the regression coefficient vec-

tor of the gth mRNA.
Without additional sequence and structural feature 

information. The goal of this analysis is to identify a small 
subset of miRNA–mRNA interactions that are biologically 
meaningful. In the framework of variable selection,23,24 an 
indicator matrix is defined as
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Here, rmg is a binary indicator of whether the interaction 
between the mth miRNA and the gth mRNA is functional. 
In this model (without sequence and structural feature infor-
mation), we only incorporated the computationally predicted, 
sequence-based miRNA-target information as prior informa-
tion. We used an additional indicator matrix, C, in the current 
model, where the entry cmg is an indicator whose value is 1 if the 
gth mRNA is a potential target of the mth miRNA in the data-
base and 0 otherwise. We focused on the entries with cmg = 1. 
We also assumed that rmg is independent of each other and fol-
lows a Bernoulli distribution, as in the following equation:

	
11 0 1( )( | ) ~ ( ) ,mg mgc rc r

mgp r mg mgπ π π π−− ≤ ≤ 	 (3)

Here π can be regarded as the proportion of the true tar-
gets in databases.

We used a non-informative prior for β σg g, 2:

	 p g g g( , )β σ σ2 2∼ − 	 (4)
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The joint posterior distribution is written as
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To efficiently search the parameter space of rmg using 
MCMC sampling, we integrate βg and σ g

2 out; the marginal 
distribution of rmg is proportional to
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where p is the total number of miRNAs in the model, which 
is equal to sum c rg g( ).. .  Because of independence of rmg, we can 
infer an individual rmg conditional on r-mg, where r-mg is the 
vector of r.g without the mth element and
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Because rmg is binary, we can define its marginal dis-
tribution as a Bernoulli distribution with a success prob-
ability of
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Here, we implemented a Gibbs sampler to sample each 
rmg. We initialized the vector r.g at random and then sampled 
each entry of rmg with other entries r-mg fixed on the basis of the 
Bernoulli distribution, with a success probability λ.

With additional sequence and structural features as 
prior information. To incorporate the sequence and structural 
features of miRNA-target sites into the model, we introduced 
an F-dimensional vector f f f fmg mg mg mg

F= ( )1 2, …  that was com-
posed of F features associated with each miRNA–mRNA pair 
(m,g). We denoted 1 1( | , , )mg mg mg mgp r c f wπ = = =  as the prior 
probability of rmg = 1 given F features. To simplify the model, 
we assumed that each of the F features independently contrib-
utes to πmg with a weight of wf, where f = 1, …, F. Here, w is 
an unknown parameter with positive values. We defined the 
prior as
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We further specified a hyperprior on w as gamma dis-
tribution w∼Gamma(a,b), ensuring the positivity of the para
meter. In this work, we included four types of features that 
play crucial roles in miRNA target recognition (Please see the 
Results section for the details of the features included in our 
model.). Therefore, the feature vector f has four dimensions, 
the same as w. These features should be normalized to obtain 
positive values that lie in the same range, with a bigger value 
corresponding to a higher prior probability.

Following the Gibbs sampling of rmg given a success 
probability πmg, we sampled w using Metropolis steps25 so that 
we can update πmg, depending on the value of the sequence 
features. The proposal is made via a truncated normal ran-
dom walk kernel. The proposed wnew is then accepted with the 
probability
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where q w wj
old

j
new;( ) is a truncated normal with mean 

w j
new and is truncated at 0, given the positive nature of w. The 

variance of this distribution has to be set to accommodate an 
appropriate acceptance rate during MCMC sampling. The 
sampling of rmg and w was iterated until the MCMC chain 
was converged. Using the MCMC sampling procedure, we 
could explore the search space and find the most relevant pre-
dictions using a stochastic search variable selection method. 
The posterior probability of an miRNA–mRNA interaction, 
that is, p r c Y Xmg mg( , , )= =1 1| , can be estimated directly 
from the MCMC sampling results by taking the proportion 
of MCMC iterations for which rmg = 1.

Results
We studied the regulatory roles of miRNAs in a dataset of 
matched miRNA and mRNA expression data for 125 patients 
with liver cancer from The Cancer Genome Atlas (TCGA). We 
log-transformed the expression data to ensure that they approxi-
mately followed normal distribution during the data preprocessing 
step. The computationally predicted miRNA–mRNA interac-
tions were extracted from TargetScanHuman (release 6.1)10 and 
mapped to the expression dataset.10 This yielded 67,798  inter-
actions between 170 human miRNAs and 4973 mRNA tran-
scripts, which were used as the prior information for our first 
model without the addition of miRNA features.

To determine the effects of the additional sequence and 
structural features of miRNA on target prediction, we obtained 
context scores and aggregated probability of conserved targeting 
scores for each miRNA–mRNA pair from TargetScanHuman. 
The probability of conserved targeting score is a target site con-
servation score and has been used to measure the degree of 
miRNA target sequence conservation across multiple species. 
We also calculated the thermodynamic stability (∆G) and the 
accessibility energy (∆∆G) for each putative miRNA–mRNA 
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interaction.14,15 Therefore, totally four sequence and structural 
features were integrated into our model to establish the prior 
probability of a miRNA-target interaction being biologically 
functional. We then compared this algorithm to the method 
without the addition of these four features. The miRNA-target 
interaction set with the highest scores from each approach was 
selected and compared in terms of its enrichment results in an 
experimentally validated interaction.

In our Bayesian framework without additional miRNA 
features, the parameter π of the Bernoulli distribution reflects 
the prior belief about the proportion of true targets in the 
computationally predicted miRNA–mRNA interactions. 
Since there were 67,798 putative miRNA–mRNA interac-
tions included in the liver cancer dataset, we set π  =  0.07, 
indicating that 7% of putative interactions are true; thus, the 
expected number of miRNA–mRNA interactions for each 
mRNA would be approximately equal to 1. In our model with 
the miRNA sequence and structural features, we tuned the 
prior probability of each interaction according to the values 
of their corresponding features. We set the hyperparameters 
for the gamma distribution of weights as a = 1.5 and b = 0.05, 
and the variance of the truncated normal proposal distribu-
tion of wj to 0.01 so that we could obtain an acceptance rate 
close to 25%. Figure 1 shows the summary trace plots for the 
number of rgm samplings and the corresponding log-posterior 
probabilities for our two models (with and without the addi-
tional features). In this application, the MCMC chain was 
run for 106 iterations, starting from a randomly chosen set 
of 5000 miRNA–mRNA interactions, so that each gene was 
targeted by approximately one miRNA on average, which is 
consistent with our prior specification.

To assess the performance of our approach, we evaluated 
the enrichment scores of the results from experimentally 
validated miRNA–mRNA interactions. If the top-ranked 
miRNA and mRNA interactions identified from an algo-
rithm include more experimentally validated targets, this 
algorithm will be considered to have better performance 
because more predicted interactions can be validated. Here, 
we extracted the experimentally validated target information 
from TarBase 6.0, which includes more than 65,000 manually 

curated, experimentally validated miRNA-gene interactions 
from eight species.26 To examine the overlaps between the 
TarBase information and our prediction results, we mapped 
all miRNAs in our dataset to the miRNA families in TarBase 
using the annotations in miRBase. In the liver cancer expres-
sion dataset, 609  miRNA–mRNA interactions have been 
biologically verified. We found that 68 and 79 of these inter-
actions, without and with the addition of miRNA features, 
respectively, overlapped with the top 5000 targets detected by 
our model; the well-known GenMiR++ method only iden-
tified 56  interactions. On the basis of this observation, we 
obtained the numbers of false positives and false negatives, 
and calculated the corresponding statistical significance of the 
number of true targets identified by different methods using 
the hypergeometric distribution. For a given number of iden-
tified true targets, the smaller the P-value, the more enriched 
the predicted set of targets in the experimentally validated 
interaction. The results demonstrate that our model with the 
addition of miRNA sequence and structural features resulted 
in a most significant P-value, compared to the non-feature 
model and the GenMiR++ method, as shown in Table 1. We 
also examined the top 500 targets and observed similar results. 
The experimentally validated targets that were predicted by at 
least two of the three methods are listed in Table 2.

To further investigate the function of our predicted tar-
gets and the potential regulatory roles of miRNA in patients 
with liver cancer, we analyzed the biological relevance of the 
target genes in a KEGG pathway enrichment study.27 We used 
the KEGG pathway annotation to measure the enrichment of 
the top 200 genes predicted by different methods using the 
GeneCodis 3.0 tool. As a result, several KEGG pathways were 
found to be significantly enriched in the results obtained from 
our models and GenMiR++ (Table  3). Both of our models 
(with and without additional features) resulted in significantly 
enriched pathways related to cancer and focal adhesion. For 
GeneMiR++, the two most prominent pathways were related 
to cell cycle and focal adhesion.

Among the miRNAs shown in Table  2, hsa-miR-145 
and hsa-miR-21 are key regulators during hepatocellular 
carcinoma genesis.28,29 In particular, hsa-miR-145 func-
tions as a tumor suppressor in liver cancer by targeting the 
chromatin modification enzyme, histone deacetylase.28 In 
this study, we discovered many novel functional targets of 
hsa-miR-145, including MUC1. We used the pair hsa-miR-
145-MUC1 to illustrate the effectiveness of our model. We 
grouped liver cancer patients by their hsa-miR-145 expression 
level (higher or lower than average). The patients in the high 
hsa-miR-145 group had significantly lower MUC1 expres-
sion than those in the other group (the P-value was 0.06, 
one-sided Wilcoxon test). Their cumulative distributions 
displayed a negative shift of MUC1 (Fig. 2). This example 
further confirms the gene down-regulatory effect of hsa-
miR-145 and indicates that MUC1 is a reliable target gene. 
It is expected that the hsa-miR-145-MUC1 pair will provide 
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iterations.
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Table 1. Enrichment values of experimentally validated targets obtained from our feature-dependent model (feature-MCMC), the model without 
additional features (non-feature), and the GenMiR++ method. In the top 5000 or 500 predicted interactions, the numbers of experimentally 
validated targets (true positives), false positives, false negatives, and enrichment significance (P-value) are given. P-values were calculated on 
the basis of the hypergeometric distribution.

Model Top True positive False positive False negatives P-value

Feature-MCMC 5000 79 4921 530 2.23E-06

500 15 485 594 7.90E-05

Non-feature 5000 68 4932 521 1.51E-04

500 15 485 594 7.90E-05

GenMiR++ 5000 56 4944 553 2.31E-02

500 10 490 599 5.41E-03

 

Table 2. Predicted experimentally validated targets obtained from our feature-dependent model (feature-MCMC), the model without additional 
features (non-feature), and the GenMiR++ method.

miRNA Gene Feature-MCMC Non-feature GenMiR++

hsa-miR-103a-3p Smarce1 × ×

hsa-miR-103a-3p FKBP1A × ×

hsa-miR-103a-3p BCKDK × ×

hsa-miR-103a-3p CCNE1 × ×

hsa-miR-103a-3p aadat × ×

hsa-miR-103a-3p SCAF1 × ×

hsa-miR-10a-5p NDUFB6 × ×

hsa-miR-145–5p aph1a × ×

hsa-miR-145–5p MUC1 × ×

hsa-miR-16–5p CCNE1 × × ×

hsa-miR-16–5p Tppp3 × ×

hsa-miR-185–5p CCNE1 × ×

hsa-miR-186–5p TMEM183A × ×

hsa-miR-191–5p Mpst × ×

hsa-miR-19b-3p WBP2 × ×

hsa-miR-21–5p TPM1 × × ×

hsa-miR-22–3p BTF3L1 × ×

hsa-miR-24–3p vps25 × ×

hsa-miR-24–3p MARCKSL1 × ×

hsa-miR-29a-3p DNMT3A × ×

hsa-miR-32–5p Hivep1 × ×

hsa-miR-32–5p BCAT2 × ×

hsa-miR-34a-5p MAGEA12 × × ×

hsa-miR-34a-5p Magea6 × × ×

hsa-miR-7–5p TCOF1 × ×

hsa-miR-7–5p Pole4 × ×

hsa-miR-7–5p c18orf10 × ×

hsa-miR-7–5p dtymk × × ×

hsa-miR-93–5p Gramd1a × ×
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novel hypotheses for testing the roles of MUC1 in liver can-
cer development. If successful, it can serve as a biomarker for 
better directing the diagnosis and treatment of liver cancer 
patients.

Conclusions
In this study, we integrated matched miRNA and mRNA 
expression data with the sequence and structural features of 
miRNA seeds to improve miRNA target prediction. Com-
pared to previous approaches,25 our model restricts our search 
space to the putative miRNA targets obtained from a well-
known miRNA target prediction database; thus, our model 
led to significantly less computational complexity but higher 

target prediction specificity. In addition, using a Bayesian lin-
ear regression model, we successfully incorporated four key 
features of miRNA–mRNA interactions; each assigned a dif-
ferent weight by the MCMC sampling procedure, as the prior 
knowledge in our model. Our investigation of paired miRNA 
and mRNA expression profiles in liver cancer patients 
successfully demonstrated the advantages of our feature-
dependent model. Our results showed that the top interactions 
identified by our feature-dependent model are significantly 
more enriched in experimentally validated targets and are 
more biologically meaningful than are those identified by the 
GenMiR++ method or the model without additional feature 
information.

Table 3 Top 10 enriched KEGG pathways from our feature-dependent model (feature-MCMC), the model without additional features (non-
feature), and the GenMiR++ method.

Feature-MCMC model Number of genes P-value

Pathways in cancer 14 5.32E-07

Focal adhesion 10 8.61E-06

Regulation of actin cytoskeleton 9 5.32E-05

Leukocyte transendothelial migration 6 0.0003

Pathways in cancer, focal adhesion 6 0.0001

Leukocyte transendothelial migration, adhere junction 4 4.04E-05

Adhere junction, bacterial invasion of epithelial cells 4 3.94E-05

Leukocyte transendothelial migration, adhere junction, tight junction 3 0.0002

Long-term depression, progesterone-mediated oocyte maturation 3 0.0002

Regulation of actin cytoskeleton, focal adhesion, leukocyte transendothelial migration, adhere junction 3 0.0001

Non-feature model Number of genes P-value

Pathways in cancer 8 0.0001

Focal adhesion 8 2.27E-05

Regulation of actin cytoskeleton 7 0.00022

Huntington’s disease 6 0.0002

Pathways in cancer, focal adhesion 5 0.0001

Regulation of actin cytoskeleton, focal adhesion 5 0.0001

Pathway in cancer, focal adhesion, small cell lung cancer 4 0.0001

Pathway in cancer, focal adhesion, ECM-receptor interaction 3 0.0003

Regulation of actin cytoskeleton, focal adhesion, leukocyte transendothelial migration, bacterial invasion  
of epithelial cells

3 0.0001

Adhere junction, bacterial invasion of epithelial cells 0.0001

GenMiR++ Number of genes P-value

Cell cycle 10 6.41E-08

Focal adhesion 7 0.0003

Pyrimidine metabolism 6 8.34E-05

Focal adhesion, amoebiasis 6 1.83E-06

Pathways in cancer, small cell lung cancer 5 0.0003

Focal adhesion, ECM-receptor interaction 5 3.58E-05

DNA replication 4 0.0002

Pathways in cancer, focal adhesion, amoebiasis 4 9.02E-05

Focal adhesion, ECM-receptor interaction, amoebiasis 4 9.02E-05

DNA replication, cell cycle 3 5.44E-05
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In addition, with the recent intensive research in this 
field, a large body of experimentally verified miRNA target 
information has accumulated in available databases, such as 
StarBase30 and miRWalk.31 There is a strong interest in lever-
aging this information to improve target prediction sensitivity 
and accuracy, and this will be the focus of our future work. 
From a Bayesian perspective, we expect to be able to easily 
incorporate this information by assigning different prior dis-
tributions to the information sources according to their reli-
ability, as in a proposed prior Lasso framework.32

Author Contributions
Conceived and designed the experiments: ZW, YL. Analyzed 
the data: ZW, WX, HZ. Wrote the first draft of the manu-
script: ZW, YL. Contributed to the writing of the manuscript: 
ZW, YL. Agree with manuscript results and conclusions: ZW, 
XW, HZ, YL. Jointly developed the structure and arguments 
for the paper: ZW, YL. Made critical revisions and approved 
final version: ZW, XW, HZ, YL. All authors reviewed and 
approved of the final manuscript.

References
	 1.	 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 

2004;116(2):281–97.
	 2.	 Lee G, Sehgal R, Wang Z, et  al. Essential role of grim-led programmed cell 

death for the establishment of corazonin-producing peptidergic nervous system 
during embryogenesis and metamorphosis in Drosophila melanogaster. Biol 
Open. 2013;2(3):283–94.

	 3.	 Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 
Widespread changes in protein synthesis induced by microRNAs. Nature. 
2008;455(7209):58–63.

	 4.	 Chen D, Sun Y, Yuan Y, et al. miR-100 induces epithelial-mesenchymal tran-
sition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 
2014;10(2):e1004177.

–2 0
0.0

0.2

0.4

0.6

Patients with highly expressed has-miR-145

Other patients
0.8

1.0

2 4

Expression

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy

6 8 10

Figure 2. Down-regulatory effect of hsa-miR-154 on MUC1.The liver 
cancer patients were grouped according to their hsa-miR-145 expression 
levels (higher or lower than average).The cumulative distribution of the 
MUC1 expression levels in these two groups of patients was plotted, 
respectively (high hsa-miR-154, red dashed line; low hsa-miR-154, 
blue solid line). The x-axis represents the MUC1 expression levels 
represented by the Reads Per Kilobase of transcript per Million mapped 
reads (RPKM) values from the RNA-seq data.

	 5.	 Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, 
monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 
2012;4(3):143–59.

	 6.	 Lee G, Wang Z, Sehgal R, et al. Drosophila caspases involved in developmen-
tally regulated programmed cell death of peptidergic neurons during early meta-
morphosis. J Comp Neurol. 2011;519(1):34–48.

	 7.	 Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are fre-
quently located at fragile sites and genomic regions involved in cancers. Proc Natl 
Acad Sci USA. 2004;101(9):2999–3004.

	 8.	 Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are 
conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

	 9.	 Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. 
MicroRNA targeting specificity in mammals: determinants beyond seed pairing. 
Mol Cell. 2007;27(1):91–105.

	 10.	 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by ade-
nosines, indicates that thousands of human genes are microRNA targets. Cell. 
2005;120(1):15–20.

	 11.	 Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. 
Nat Genet. 2005;37(5):495–500.

	 12.	 Maragkakis M, Alexiou P, Papadopoulos GL, et al. Accurate microRNA tar-
get prediction correlates with protein repression levels. BMC Bioinformatics. 
2009;10:295.

	 13.	 Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: 
targets and expression. Nucleic Acids Res. 2008;36(Database issue):D149–53.

	 14.	 Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in different 
gene regions. BMC Bioinformatics. 2014;15(S4):11.

	 15.	 Xu W, Wang Z, Liu Y. The characterization of microRNA-mediated gene regu-
lation as impacted by both target site location and seed match type. PLoS One. 
2014;9(9):e108260.

	 16.	 Huang JC, Babak T, Corson TW, et al. Using expression profiling data to iden-
tify human microRNA targets. Nat Methods. 2007;4(12):1045–9.

	 17.	 Huang JC, Morris QD, Frey BJ. Bayesian inference of MicroRNA targets from 
sequence and expression data. J Comput Biol. 2007;14(5):550–63.

	 18.	 Muniategui A, Nogales-Cadenas R, Vázquez M, et  al. Quantification of 
miRNA-mRNA interactions. PLoS One. 2012;7(2):e30766.

	 19.	 Gennarino VA, Sardiello M, Avellino R, et al. MicroRNA target prediction by 
expression analysis of host genes. Genome Res. 2009;19(3):481–90.

	 20.	 Zhong M, Liu R, Liu B. Bayesian analysis for miRNA and mRNA interactions 
using expression data. arXiv preprint arXiv. 2012;1210.3456:24.

	 21.	 Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C. MAGIA, 
a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res. 
2010;38(Web Server issue):W352–59.

	 22.	 Su N, Qian M, Deng M. Integrative approaches for microRNA target prediction: 
combining sequence information and the paired mRNA and miRNA expression 
profiles. Curr Bioinform. 2013;8(1):9.

	 23.	 Lee KE, Sha N, Dougherty ER, Vannucci M, Mallick BK. Gene selection: a 
Bayesian variable selection approach. Bioinformatics. 2003;19(1):90–7.

	 24.	 Wang Z, San Lucas FA, Qiu P, Liu Y. Improving the sensitivity of sample clus-
tering by leveraging gene co-expression networks in variable selection. BMC 
Bioinformatics. 2014;15:153.

	 25.	 Stingo FC, Chen YA, Vannucci M, Barrier M, Mirkes PE. A Bayesian graphical 
modeling approach to microRNA regulatory network inference. Ann Appl Stat. 
2010;4(4):2024–48.

	 26.	 Vergoulis T, Vlachos IS, Alexiou P, et al. TarBase 6.0: capturing the exponen-
tial growth of miRNA targets with experimental support. Nucleic Acids Res. 
2012;40(Database issue):D222–29.

	 27.	 Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A. GeneCodis3: a 
non-redundant and modular enrichment analysis tool for functional genomics. 
Nucleic Acids Res. 2012;40(Web Server issue):W478–83.

	 28.	 Noh JH, Chang YG, Kim MG, et al. MiR-145 functions as a tumor suppres-
sor by directly targeting histone deacetylase 2  in liver cancer. Cancer Lett. 
2013;335(2):455–62.

	 29.	 Yuan SF, Li KZ, Wang L, et  al. Expression of MUC1 and its significance 
in hepatocellular and cholangiocarcinoma tissue. World J Gastroenterol. 
2005;11(30):4661–6.

	 30.	 Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-
ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-
scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.

	 31.	 Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of pos-
sible miRNA binding sites by “walking” the genes of three genomes. J Biomed 
Inform. 2011;44(5):839–47.

	 32.	 Wang Z, Xu W, Anthony San Lucas F, Liu Y. Incorporating prior knowledge 
into gene network study. Bioinformatics. 2013;29(20):2633–40.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

