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Probing the mesoscopic size limit of quantum
anomalous Hall insulators
Peng Deng1✉, Christopher Eckberg 2,3,4✉, Peng Zhang1, Gang Qiu 1, Eve Emmanouilidou5, Gen Yin1,

Su Kong Chong1, Lixuan Tai1, Ni Ni 5 & Kang L. Wang 1,5✉

The inelastic scattering length (Ls) is a length scale of fundamental importance in condensed

matters due to the relationship between inelastic scattering and quantum dephasing. In

quantum anomalous Hall (QAH) materials, the mesoscopic length scale Ls plays an instru-

mental role in determining transport properties. Here we examine Ls in three regimes of the

QAH system with distinct transport behaviors: the QAH, quantum critical, and insulating

regimes. Although the resistance changes by five orders of magnitude when tuning between

these distinct electronic phases, scaling analyses indicate a universal Ls among all regimes.

Finally, mesoscopic scaled devices with sizes on the order of Ls were fabricated, enabling the

direct detection of the value of Ls in QAH samples. Our results unveil the fundamental length

scale that governs the transport behavior of QAH materials.
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The inelastic scattering length, Ls, is the characteristic dis-
tance that an electron travels between dephasing inelastic
scattering events. It is a length scale below which quantum

phase coherence is maintained at non-zero temperatures, playing
a pivotal role in certain transport phenomena in condensed
matters1–8. Above this length scale, the electrons diffuse classi-
cally, without any quantum interference effects. In this sense,
while a sample can possess physical dimensions of arbitrary size,
Ls sets a fundamental bound for the mesoscopic coherent trans-
port, beyond which transport quantities, e.g. the conductance,
scale with the size of the sample2,3. Usually, Ls is temperature-
dependent and has the form of Ls Tð Þ ¼ aT�p=2, where p is the
temperature exponent3,9,10. The value of p depends on material
details, such as the scattering mechanism and dimensionality of
the system4.

As a key determiner of quantum transport phenomena, Ls is
known to play a critical role in the quantum critical regime of
quantum Hall (QH) and quantum anomalous Hall (QAH)
materials. In these prototypical quantum systems, metal-
insulator transitions occur when the system is tuned between
adjacent Hall plateaus by the magnetic field. During the transit,
the physical properties of the system have been demonstrated to
depend uniquely upon the ratio between Ls and the diverging
critical fluctuation correlation length ξ, as described by finite-
size scaling phenomenology11,12. While Ls, and particularly its
power-law dependencies, have been well characterized in the
critical regime for the QH systems13,14, a comprehensive study
of Ls in the quantum critical regime of QAH materials is still
lacking. Moreover, the systematic effort undertaken to probe Ls
deep within the metallic15 and insulating phases of QAH
samples has been very limited to date. Given the potentially
powerful technological implications of the dissipationless
transport observed in the former, and the anomalously low
temperatures required for this behavior to manifest, the sys-
tematic characterization of Ls in the quantized regime in par-
ticular could expand the fundamental understanding of the
QAH phase in such a way as to potentially guide future material
improvements.

Results
QAH, quantum critical, and insulating regimes of the QAH
insulator. The QAH effect was theoretically predicted and
experimentally realized in Cr- and V- doped topological
insulators16–20, and recently has also been observed in
MnBi2Te421 and moiré heterostructures22,23. By manipulating the
material’s magnetization, QAH systems can be tuned into dif-
ferent phases, namely the QAH, quantum critical, and insulating
regimes. Figure 1a, b present the field dependences of Hall con-
ductance (σyx) and longitudinal resistance (ρxx), respectively, of a
6-quintuple-layer thick Cr-doped (BiSb)2Te3 sample, in which
three distinct regimes can be seen. In the QAH regime where the
system is fully magnetized, |σyx | exhibits a quantized value of e2/
h. In this phase, the system is highly conductive; displaying a ρxx
of only a few Ohms. That ρxx is almost vanishing indicates
electrons travel with negligible dissipation in the sample. At the
opposite extreme near the coercive field (Hc) where equally
populated up and down magnetic domains coexist, the system
becomes highly resistive as ρxx reaches a large value (>450 kΩ).
Meanwhile, σyx develops two plateaus with zero conductance, a
hallmark of the insulating state24. The QAH and the insulating
regime are bridged by the quantum critical regime, wherein σyx
transitions between adjacent plateaus, as will be discussed later.
During the phase transition, the conductivities follow a semicircle

relation25–28: σ2xx þ ðσxy � e2
2hÞ

2 ¼ ðe22hÞ
2
, as shown in Fig. 1c. At the

quantum critical point, σxx ~ σyx ~ 0.5 e2/h.

The three regimes show distinct transport behavior in the
temperature dependence of ρxx, as shown in Fig. 1d. In the figure,
each curve was plotted under a constant B*, where B* = B −µ0Hc

and B is the external magnetic field. Here, using B* instead of B
ensures each temperature-dependent curve was taken under a
fixed magnetization rather than a fixed magnetic field. As the
sample’s internal magnetization is the tuning parameter that
drives the QAH phase transition24, such a transformation assists
in tracking the QAH transition over wide temperature ranges
wherein the magnetic properties are also evolving. In the T→ 0
limit, ρxx approaches zero and displays a “metallic” behavior in
the QAH regime (large B*), while in the insulating regime (B* =
0), ρxx diverges and displays an “insulating” behavior. At an
intermediate field (B�

c = 0.045 T) corresponding to the quantum
critical regime, ρxx is almost temperature-independent with a
critical resistance of ~ h/e2, a value commonly seen in the 2D
metal-insulator transition29,30.

The temperature exponent in different regimes. The inelastic
scattering length and the temperature exponent p in the QAH,
quantum critical, and insulating regimes, respectively, can be
obtained by examining the current heating effect3. At low tem-
peratures, the coupling between the electrons and phonons is very
weak. In this regime, the electrons can gain additional kinetic
energy when subjected to a large electric field, driving them out of
thermal equilibrium with the lattice. This kinetic energy gain can be
modeled as an increase in the effective temperature of the electronic
system through the relationship kBTe � eELs, where eELs is the
average kinetic energy accumulated by electrons between relaxation
events and kBTe is the effective thermal energy it corresponds to.
Since Ls depends on temperature, Ls � T�p=2

e , the effective tem-
perature would have a power-law relationship with the applied field
(or the voltage) as Te � E2=ð2þpÞð� V2=ð2þpÞÞ. The value of p can
thus be obtained by carefully monitoring the electric field
dependence of Te. In the quantum critical, QAH, and insulating
regimes, this is accomplished by measuring the maximum slope of
the Hall conductance ð∂σxy=∂BÞmax

, the residual resistance of ρxx,
and the longitudinal resistance peak (ρxxpeak), respectively, as
discussed below.

In the quantum critical regime, the QAH system experiences a
metal-insulator transition as σxy transitions between adjacent
plateaus26,28,31,32. According to the finite-size scaling
ansatz11,12,33,34, the maximum slope of σxy, ð∂σxy=∂BÞmax

during
the transition, exhibits a power-law scaling relationship with the
temperature as ð∂σxy=∂BÞmax

� T�κ, where κ is the temperature
scaling critical exponent. When held at a fixed temperature,
ð∂σxy=∂BÞmax

also displays a scaling relationship with the current

as ð∂σxy=∂BÞmax
� I�b, where b is the current scaling critical

exponent9,11,12. These exponents κ and b are themselves
convolutions of correlation length exponent ν and temperature
exponent p, satisfying the relationships35,36: κ= p/2ν and b= p/
(p+2)ν, thus the value of p can be obtained via experimentally
measured values of κ and b.

Figure 2a presents the field dependence of σxy for varying
temperatures, showing that the transitions between σxy plateaus
broaden as the temperature increases. Plotted in a log-log plot
(Fig. 2b), ð∂σxy=∂BÞmax

displays a linear relationship with T,
indicating the predicted scaling relationship ð∂σxy=∂BÞmax

� T�κ.
From the linear fit of the slope, we extracted the exponent
κ= 0.63 ± 0.01. Meanwhile, Fig. 2c presents the field dependence
of σxy for different currents. Fitting these data we find
ð∂σxy=∂BÞmax

� I�b, wherein b= 0.31 ± 0.01 (Fig. 2d). Note that
ð∂σxy=∂BÞmax

saturates at small currents. In this saturated regime,
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the effective temperature due to the current heating is lower than
the bath temperature. Combining the temperature and current
scaling results, we find p= 2.06 ± 0.14.

In the QAH regime where the system is fully magnetized, the
longitudinal resistance is exceptionally small and the Hall
resistance is quantized. Therefore, a current sourced along the
longitudinal direction will produce an electric field predominantly
along the transverse direction E � Ey � Vyx=W ¼ Ih=e2W, where
Ey and Vyx are the Hall electric field and Hall voltage, respectively, I
is the applied current, and W is the width of the Hall-bar device.

Figure 3a presents the current dependence of ρxx under different
temperatures (the same plot for ρyx is shown in Supplementary
Fig. 2). For all temperatures, ρxx maintains a constant value for
relatively small currents. Once the current exceeds a temperature-
dependent critical value, however, ρxx begins to increase, indicating
that the electrons are heated above the bath temperature by the
large electric field. We also measure the temperature dependence of
ρxx, as shown in Supplementary Fig. 3, where a small current of
10 nA is applied in order to minimize the current heating effect. By
mapping the I (or Vyx)-dependent ρxx curve to the T-dependent ρxx
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� T�κ � I�b, we have p= 2.06.
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curve, the effective temperature plot as a function of Vyx can be
obtained as shown in Fig. 3b. The linear relationship in the log-log
plot at high currents indicates the power-law relationship between
Te and Vyx: Te � Vyx

2=ð2þpÞ. From the linear fit of the slope, the
value of the temperature exponent p is determined to be p =
2.08 ± 0.03.

The temperature exponent in the QAH regime can also be
obtained from the breakdown current (Ic). For each temperature,
we define the current at which ρxx exceeds m×ρxx(I0) as the
breakdown current Ic(T), where I0= 10 nA and m is varied to
demonstrate that the physics presented is independent of the
precise definition of the breakdown condition. That ρxx starts to
deviate from ρxx(I0) at Ic indicates the effective temperature is
comparable to the bath temperature under this current. Figure 3c
presents the temperature dependence of Ic for m= 1.1, 1.4, and 2.
As can be seen, Ic displays a linear relationship with T in the log-
log plot. Since Ic � Vyx � T ðpþ2Þ=2, we have p= 2.14 ± 0.02 for all
m. Notably, the p value obtained from breakdown currents is
close to that obtained from high current results discussed above.
Previous studies attribute the mechanism of the current break-
down in QAH samples to the field-assisted variable range
hopping or bootstrap electron heating15,37. Here the results show
that the breakdown of QAH under large current shares the same
origin as the breakdown against thermal excitation. Therefore, we
anticipate that achieving QAH with a higher quantization
temperature would also improve the maximum current they
can sustain, which is of great practical use in the application of
dissipationless transport.

Finally, in the insulating regime where the QAH sample is at its
coercive field, the topological edge transport is suppressed.
However, percolative longitudinal transport still occurs24, dis-
playing an insulating temperature dependence. By tracking the
temperature and current dependencies of this maximal resistance,
the critical exponent p can be extracted in this insulating phase.

At the coercive field, since ρxx is large and ρyx becomes zero, the
electric field lies predominantly along the longitudinal direction,
i.e., E � Ex � Vxx ¼ Iρxx

max, where Vxx is the voltage drop along
the longitudinal direction. The temperature dependence of ρxxmax

is obtained by extracting the maximum value in the field-
dependent ρxx isotherms measured with small excitation currents
(Supplementary Fig. 4a). As can be seen in Fig. 3d, ρxxmax displays
a monotonic decrease with increasing temperature. Likewise,
from the field dependence of ρxx measured under different
currents (Supplementary Fig. 4b), the current dependence of
ρxxmax can be obtained, as shown in Fig. 3e. By comparing the
data points in the ρxxmax vs. I curve and the ρxxmax vs. T curve,
each voltage drop at ρxxmax, Vxx

max, can be one-to-one mapped to
an effective temperature Te, as shown in Fig. 3f. Under high
voltages, Te displays a linear relationship with Vxx

max in the log-
log plot, the slope of which gives a temperature exponent value of
p= 2.17 ± 0.02 in this insulating regime.

Despite the dramatic change in conduction behaviors across
the different field-driven phases of the QAH material, the value of
p shows strikingly little variation; with observed values of 2.06,
2.14, and 2.17 in the critical, QAH, and insulating regimes
respectively. As the value of p describes the reduction of the
inelastic scattering length with temperature, and generally reflects
the dominant excitations from which electrons scatter, this
observation indicates the electrons interact with their environ-
ment identically in all transport regimes. Such a result indicates a
universal transport behavior in the QAH system, and supports
theoretical suggestions that a single Hamiltonian can describe the
QAH system throughout the plateau-plateau transition38. We
would like to note, however, that different values for p are
commonly reported in different QH systems, where variations are
commonly attributed to differences in the quenched disorders
hosted by the materials13,39,40. As such, we do not expect this
value of p to necessarily be universal across different QAH
samples. On the other hand, a universal value of p is revealed
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within individual QAH samples, due to the fact that the quenched
disorder remains fixed when samples are tuned across different
conduction regimes. We further note that the value of p observed
here is close to the value of p= 2 that is commonly reported for
QHE materials dominated by electron–electron scattering,
suggesting a similar mechanism may dominate these QAH
samples14,35,41–46.

Estimation of the inelastic scattering length in different
regimes. In an effort to further characterize inelastic scattering in
the QAH system, we now analyze the absolute value of Ls in the
critical, QAH, and insulating regimes. As p is determined for
these regimes, obtaining Ls at any given temperature, e.g.,
200 mK, would disclose Ls at all temperatures via the relationship
Ls Tð Þ ¼ aT�p=2. The effective temperature resulting from the
current heating effect can be expressed as3 πkBTe ¼ 4eELs.
Therefore, the inelastic scattering length can be estimated if the
electric field at this temperature is known for three regimes, as
illustrated below.

1. In the quantum critical regime, both ρxx and ρyx are exhibit
values close to the resistance quantum ~ h/e2, therefore the
electric field has components along both longitudinal and
transverse directions with Ey ¼ Iρyx=W and Ex ¼ Iρxx=W,
wherein the width of the Hall-bar W = 0.5 mm. As shown
in Fig. 2d, the increasing trend of ð∂σxy=∂BÞmax

with
decreasing current saturates at 100 nA, indicating the
effective temperature is comparable to the bath temperature
200 mK at this current, giving Ls ~ 1.85 μm in this regime.

2. In the QAH regime, E � Ey ¼ Iρyx=W. As discussed above,
the effective temperature is comparable to the bath
temperature when I = Ic. It can be seen in Fig. 3c, at
200 mK, Ic= 220 nA (for m= 1.1), therefore, Ls is esti-
mated to be ~1.19 μm in the QAH regime.

3. In the insulating regime at the coercive field, ρxx is large and
ρyx is around zero. Therefore, E � Ex ¼ Vxx

max=L and L is
the effective length of the Hall-bar devices. As evidenced in
Fig. 3f, the effective temperature is about 200 mK when
Vxx

max= 192.5 nA·h/e2. Thus, the estimated Ls is ~ 1.36 μm
in the insulating regime.

The above results show that the value of Ls in these three
distinct regimes not only share a universal temperature exponent
p but also have the same order of magnitude at 200 mK, despite
the 5 orders of magnitude change in resistance and the transition
from “metallic” to “insulating” temperature dependences between
the different transport regimes. The implication of the compar-
able values of Ls and p obtained in different regimes is twofold.
There are two kinds of disorder in QAH materials, one is the
quenched disorder (crystalline defects, Cr doping disorder, Bi-Sb
alloying disorder, etc.) and the other is the disorder from the
magnetic domain structure. When the system is in the QAH
regime, the magnetism is in a single domain, whereas the system
features an even population of randomly distributed up and down
magnetic domains in the insulating regime47. Thus, while the
quenched disorder is fixed, disorder from magnetic domains
changes from maximally ordered to maximally disordered when
the system is tuned from the QAH to the insulating regime. Since
Ls is unchanged during the phase transition, the results above
clearly indicate that the dominant inelastic scattering occurs from
quenched disorder, with no apparent contribution from the
disordered magnetic domain structure in the insulating phase.
Meanwhile, the observation of the constant critical exponent p
indicates the nature of the interaction between electrons and these
disorders is unchanged through the quantum phase transition.

Direct detection of Ls in the mesoscopic scaled QAH device.
While the above approximations of Ls are relatively crude in
nature, they notably suggest that standard lithographic processes
may be used to fabricate devices with feature sizes comparable to
the characteristic length scale of the material. For samples with a
large enough size, during the phase transition, the observable
quantities of the system are solely determined by the ratio of Ls
and the correlation length of order parameter fluctuations ξ11,12.
However, in small devices measured at sufficiently low tem-
peratures, the material’s natural inelastic scattering length may
become comparable to the physical size of the sample L, artifi-
cially bounding the effective value of Ls experienced by electrons
in the device. As a consequence of this bounding, a temperature
Ts will exist such that the ratio Ls/ξ, and consequentially the
critical transport of the sample, will remain constant for all
temperatures below Ts. Here Ts represents the point for which
Ls = L, enabling an exact, experimental determination of Ls at this
temperature (Fig. 4a).

To experimentally observe such an effect, we fabricated Hall
bars with a size of 5 μm × 15 μm using e-beam lithography.
Figure 4b presents the field dependence of σxy for the 5-μm-
sample at different temperatures, and Fig. 4c shows the
temperature dependence of ð∂σxy=∂BÞmax

at the quantum critical
regime. Instead of the diverging increase with decreasing
temperature as shown for the large sample in Fig. 2b,
ð∂σxy=∂BÞmax

saturates abruptly at around 190 mK. This indicates
Ls reaches the physical size of the sample at this temperature.
That Ls equals 5 μm at 190 mK is in good agreement with the
estimation obtained from the current heating results. Note that in
order to avoid the saturation caused by the current heating, a
current as small as 0.5 nA was used for the measurement. To
further rule out such a heating effect, we use different currents to
measure at 100 mK. As can be seen in Supplementary Fig. 6, the
value of ð∂σxy=∂BÞmax

remains constant when the current does
not exceed 0.5 nA, proving the current heating effect negligible in
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the experiment. As a confirmation that this effect is reflective of
the intrinsic finite-size effect, the measurement has been repeated
in another 5-μm-device shown in Supplementary Fig. 7. The
finite-size effect is of practical importance for the application of
QAH-based electronic devices. While it is broadly desirable to
fabricate more compact devices, for a coherent quantum system
like QAH, the finite size limits its coherence at low temperature,
significantly impacting the performance of the device. As such,
special care must be taken in choosing the proper size of the
devices.

Discussion
To summarize, we obtained Ls in different conduction regimes of
the QAH by analyzing the current heating results. A temperature
exponent p ~ 2.1 and a value on the order of 1 μm for Ls at
200 mK were found in all regimes, revealing a universal inelastic
scattering length in QAH. Furthermore, in mesoscopic devices,
we observed the finite-size effect as Ls reaches the physical size of
the device at low temperatures, enabling the direct detection of Ls
in QAH. Our work unveils the fundamental length scale in QAH
samples, which sheds light on the understanding of mesoscopic
transport in QAH materials and facilitates the implementation of
dissipationless electronics in QAH-based devices.

Methods
Sample growth. The molecular beam epitaxy grown samples were prepared in a
Perkin-Elmer chamber with a base vacuum of 5 ´ 10�10 Torr. High-purity
Cr(99.995%), Bi(99.999%), Sb(99.999%), and Te(99.9999%) were deposited on the
epi-ready semi-insulating GaAs(111)B substrates. The growth process was mon-
itored using in-situ Reflection high-energy electron diffraction.

Device fabrication. Grown films were patterned into Hall bars for transport
measurements. The 0.5-mm-devices were fabricated using hard masks and
reactive-ion etching. The 5-μm mesoscopic devices were patterned by the e-beam
lithography.

Transport measurements. Transport measurements were carried out on a Phy-
sical Property Measurement System (Quantum Design) with a dilution refrigerator
insert (50 mK, 9 T).

Data availability
All data for the figures and other Supplementary information that support this work are
available upon reasonable request to the corresponding author.
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