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A B S T R A C T

Reducing the environmental impact caused by the production or use of carbon dioxide (CO2) and 
other greenhouse gases (GHG) has recently attracted the attention of scientific, research, and 
industrial communities. In this context, oil production and enhanced oil recovery (EOR) have also 
focused on using environmentally friendly methods. CO2 has been studied as a significant gas in 
reducing harmful environmental effects and preventing its release into the atmosphere. This gas, 
along with methane (CH4) and nitrogen (N2), is recognized as a ‘cushion gas’. Given that 
hydrogen (H2) is considered a green and environmentally friendly gas, its storage for altering 
wettability (contact angle (CA) and interfacial tension (IFT)) has recently become an intriguing 
topic. This study examines how H2 can be utilized as a novel cushion gas in EOR systems. In this 
research, the role of H2 and its storage in altering wettability in the presence of other cushion 
gases has been investigated. The performance of H2 in changing the CA and IFT with other gases 
has also been compared using machine learning (ML) models. During this process, ML and 
experimental data were used to predict and report the values of IFT and CA. The data used un
derwent statistical and quantitative preprocessing, processing, evaluation, and validation, with 
outliers and skewed data removed. Subsequently, ML models such as Random Forest (RF), 
Random Tree, and LSBoost were implemented on training and testing data. During this process of 
modeling and predicting IFT and CA, the hyperparameters were optimized using Bayesian al
gorithms and random search (RS) methods. Finally, the results and performance of the modeling 
were evaluated, with the LSBoost modeling method using Bayesian optimization reporting R2 

values of 0.998614 for IFT and 0.986999 for CA.

1. Introduction

Carbon dioxide (CO2) is recognized as a significant greenhouse gas (GHG) and is responsible for over 50 % of the overall envi
ronmental damage [1–3]. In recent decades, efforts to improve quality of life have led to a substantial reduction in the exploitation of 
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natural resources, largely due to the recognition of fossil fuel consumption—as a primary contributor to GHG emissions—as a major 
environmental threat. Consequently, there has been an increased focus on lowering GHG levels and exploring alternative sources that 
produce fewer or no harmful emissions [4–10]. Additionally, energy systems with minimal reliance on hydrocarbons have become a 
focal point. This shift underscores the growing need for renewable energy sources, which is closely linked to advancements in 
large-scale storage technologies. Large-scale energy storage, particularly for hydrogen (H2), is essential as it enables the reliable 
integration of renewable energy into the global energy system. H2, when converted into sustainable molecules, can be stored 
extensively. These sustainable molecules can be injected and stored in underground formations, such as hydrocarbon reservoirs 
[11–14]. Therefore, developing large-scale energy storage technologies is crucial for the transition to renewable energy systems [3].

Energy must be transformed into forms that facilitate large-scale storage. H2 is one of the most prominent energy carriers, noted for 
its high energy density and the absence of carbon emissions when used as a fuel. Recently, there has been a significant global push to 
mitigate CO2 and GHG emissions through the adoption of H2 [15–17]. In this context, H2 is increasingly being considered as a 
replacement for fossil fuels. While renewable energy sources like wind and solar power offer carbon-free alternatives, their effec
tiveness is constrained by seasonal variability and they are not always reliable for consistent energy supply. H2 presents a promising 
option for the evolution of global energy systems. It can be utilized across various sectors, including power generation, food pro
duction, agriculture, metal industries, petrochemicals, electronics, and transportation, due to its environmentally friendly properties 
[18–20].

In the H2 economy value chain, underground hydrogen storage (UHS) is essential [21–24]. Due to H2’s low volumetric energy 
density, it must be stored underground at high pressures to ensure sufficient availability for extraction and supply as needed [25,26]. 
Several studies have highlighted various challenges associated with storing H2 in geological formations, such as salt caverns, aquifers, 
and depleted oil and gas reservoirs [27–30]. Storage challenges include H2 leakage, chemical interactions, and biofilm formation. 
Basalt formations, deep aquifers, and depleted hydrocarbon reservoirs are ideal for storage due to their high capacity and cap rock 
properties. Depleted natural gas reservoirs are also favorable for H2 and CO2 storage. H2 and natural gas storage differ in properties and 
processes. A lack of specific characterization data for accurate reservoir simulation is a challenge for UHS [31–34].

Experience with H2 storage in porous reservoirs is limited, with ongoing projects exploring this area. Storage sites are chosen based 
on total capacity, including both working gas (recoverable H2) and cushion gas (to maintain pressure). Non-H2 gases like CH4, CO2, and 
N2 are preferred for cushion gas due to lower cost and favorable properties. CO2 is often chosen for its GHG emission reduction benefits. 
The ratio of cushion gas to H2 varies based on reservoir conditions.

Effective UHS requires a thorough understanding of capillary pressure, which is crucial for preventing H2 from migrating towards 
the cap rock (structural trapping). Capillary pressure determines the capillary pressure coefficient and the efficiency of a cap rock, 
indicating the point at which H2 gas, being non-wetting, enters the largest pores of the cap rock at the storage site. If the storage site has 
been previously saturated with a wetting phase, such as water or brine, this could lead to the displacement of H2. The Laplace-Young 
equation (Equation (1)) is used to estimate the capillary pressure (or entry capillary pressure, Pce) for a cap rock characterized by 
cylindrical-shaped pores with a maximum radius, r [35]. 

Pce =PH2 − PH2O/brine =
2γH2O/brine Cos θ

r
1 

in this equation, θ represents the contact angle (CA) of the H2/brine/rock system, and γ denotes the surface tension (ST) or IFT between 
the H2 and H2O/brine phases. It is important to note that effective H2 storage is achieved when the capillary entry pressure (P_ce) 
exceeds the buoyancy pressure exerted by the fluids in the cap rock and reservoir [36].

Capillary forces, driven by interfacial tension (IFT) and wettability, play a crucial role in fluid displacement within porous media. 
Wettability, which reflects the affinity of the solid surface for a fluid, impacts how effectively fluids can move through porous rock 
formations. In capillary-dominated systems, such as in fluid displacement in porous rocks, lower IFT facilitates the displacement of 
wetting fluids in imbibition processes, while resisting forces act in drainage when the non-wetting phase displaces the wetting phase. 
Nanofluids can further influence capillary forces by modifying IFT and wettability. For example, nanofluid-assisted displacement 
reduces IFT, creating structural disjoining pressure, which helps spread the fluid uniformly at the pore scale. This leads to more 
efficient fluid movement during imbibition, as lower IFT increases favorable capillary forces, improving wetting-phase invasion. 
Similarly, during drainage, nanofluids reduce the resistance from capillary forces, enhancing recovery efficiency [37]. In systems using 
interfacially active nanoparticles and low-salinity brines, nanoparticles reduce IFT and shift wettability toward more water-wet 
conditions. This enhances imbibition, as the favorable capillary forces drive wetting fluids into the pores. In drainage processes, 
the combination of nanoparticles and low-salinity brines weakens capillary resistance, facilitating more efficient fluid displacement 
and improving recovery outcomes. Understanding and controlling these forces is essential for optimizing fluid displacement in porous 
media [38].

Extensive research has been conducted on H2 storage in porous media, including both direct quantitative studies of wettability and 
indirect qualitative assessments using core flooding and NMR to measure dynamic and static CAs. Studies have examined the inter
facial properties between gas/liquid (H2/brine) and rock/liquid (rock/H2 and rock/brine). IFT and CA are critical factors in under
ground H2 storage, as changes in these properties can influence the adsorption, distribution, and retention of H2 within reservoirs. A 
thorough understanding of these properties is crucial for enhancing H2 storage efficiency. Accurate measurement of these properties 
under varying conditions is essential, and numerical methods are often employed alongside experimental approaches. However, these 
measurements can be labor-intensive and expensive, especially at high temperatures and pressures.

Recent research by Hosseini and Leonenko [39] has introduced three empirical models for estimating the IFT between pure H2 and 
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brine under various subsurface storage conditions. These models account for factors such as temperature, pressure, and salt salinity, 
providing accurate predictions of IFT within specified temperature and pressure ranges. Additionally, machine learning (ML) tech
niques have emerged as valuable tools for optimizing H2 storage. Thanh and colleagues explored H2 compressibility using four ML 
algorithms—Random Forest, Light Gradient Boosting, Extreme Gradient Boosting, and AdaBoost_Decision Tree. Among these, 
XGBoost demonstrated the highest performance, achieving an R2 value of 0.941. Another study developed four artificial intelligence 
models to forecast the IFT between H2 and salt based on pressure, temperature, and molality. The Random Forest (RF) model showed 
notable superiority, with high accuracy and R2, RMSE, and AARD values of 0.96, 1.50, and 1.84 percent, respectively.

Ng et al. [40] used ML methods to predict IFT in the H2-brine system, testing four techniques: GBR, GP, MLP with LMA, and MLP 
with Adam. The MLP-LMA model was the most effective, with an R2 value of 0.9997. Behnamnia et al. [41] developed AI models to 
predict IFT between water and various gases (H2, H2 + edge gas, CH4, CO2, N2) and reported satisfactory performance.

In N. Suetrong et al. [42] study, the researchers aim to develop a machine learning model predicting dynamic contact angles during 
immiscible fluid displacement in subsurface environments. Using a dataset of experimental measurements, the study focuses on 
capturing temporal variations of contact angles critical for understanding fluid behavior in porous media. Results validate the 
effectiveness of their approach in accurately predicting dynamic contact angles, enhancing predictive capabilities for subsurface flow 
applications. This research contributes to advancing knowledge of fluid-solid interactions under dynamic conditions, promising 
improved strategies for hydrocarbon recovery and environmental remediation.

Thanh et al. [43]. review the application of data-driven machine learning models to predict hydrogen solubility in varying salinity 
aqueous systems, focusing on implications for underground hydrogen storage. They utilize Gaussian Process Regression (GPR), Least 
Squares Support Vector Machine (LSSVM), and Extra Tree (ET) methods, achieving high accuracy with R2 values close to 1 and low 
RMSE and MAE. This research enhances understanding of optimal hydrogen storage in saline aquifers, offering insights into effective 
strategies for future applications.

Masoudi et al. (2024) [44] investigate the potential of lined rock caverns as an innovative approach for hydrogen storage. Utilizing 
a blend of numerical simulations and practical field tests, the researchers assess the caverns’ structural durability, storage capacity, and 
operational safety. Their findings reveal that lined rock caverns are capable of storing substantial quantities of hydrogen while 
ensuring structural stability across a range of pressure conditions. The study underscores the benefits of this storage method, including 
superior safety and efficiency compared to traditional solutions. The results indicate that lined rock caverns represent a viable and 
advanced option for large-scale hydrogen storage, effectively addressing critical safety and capacity concerns.

Hassanpouryouzband et al. (2024) [45] examine the future prospects of hydrogen energy, contrasting the “foraging” approach with 
the “farming” strategy. Their study integrates a detailed review of current hydrogen production technologies with scenario modeling to 
forecast future developments and their implications. The findings indicate that while the foraging approach, which relies on existing 
and often less sustainable methods, offers short-term solutions, the farming strategy—focused on advancing technology and sus
tainable practices—presents a more viable and long-term solution. The research highlights the advantages of adopting hydrogen 
farming to improve efficiency, lower costs, and facilitate a broader energy transition. This analysis emphasizes the importance of 
transitioning towards farming methods to ensure a sustainable and economically viable future for hydrogen energy.

In addition to the insights provided by previous studies, we have incorporated a comprehensive table into the manuscript to further 
elucidate the application of machine learning techniques in similar research areas. Table 1 presents a detailed literature review, 
summarizing key works that utilize machine learning to explore topics related to flow in porous media and hydrogen storage. By 
including this table, we aim to enhance the depth of our literature review and provide a clearer context for our study, illustrating how 
machine learning methods have been applied across various relevant domains.

This paper explores the role of ML in analyzing large and complex laboratory data sets. Unlike traditional methods, which can be 
time-consuming and expensive, ML offers significant advantages in data optimization and analysis. It improves the ability to predict 
future outcomes, uncover patterns, and reveal hidden relationships, leading to enhanced experimental processes, reduced material 
usage, and increased efficiency. In this study, ML algorithms were used to predict, assess performance, and optimize data related to CAs 
and IFT of H2 in the presence of brine and protective gases. This data was derived from previous research on UHS.

The utilization of cushion gas in hydrogen storage systems marks a significant advancement in optimizing storage efficiency and 
ensuring operational stability. In this article, the application of cushion gas has been explored with a focus on its role in maintaining 
reservoir pressure, thereby mitigating pressure fluctuations and enhancing the overall stability of hydrogen storage systems. Empirical 
data and field observations incorporated in this study underscore the efficacy of cushion gas in preventing hydrogen leakage and 
preserving reservoir integrity, contributing to a more reliable and secure storage solution. This approach not only stabilizes pressure 
levels but also fortifies the operational stability of hydrogen storage systems, addressing key safety and performance concerns. 
Moreover, this article leverages advanced experimental and real-world data to elucidate the substantial economic advantages and 
improved reservoir management practices associated with cushion gas. The integration of cushion gas, as analyzed in the study, reveals 
significant reductions in operational costs and enhances the economic viability of hydrogen storage systems. By employing sophis
ticated models, including those enhanced with machine learning techniques, the study provides nuanced insights into the dynamic 
interactions between hydrogen, cushion gas, and reservoir rock. These findings lead to more accurate performance predictions and 
optimized design strategies, advancing the long-term sustainability and economic feasibility of large-scale hydrogen storage 
initiatives.

2. Data collection and specific descriptions

In the current study, data on pressure, temperature, salinity, and various compositions of protective gases (CO2, N2, CH4) were used 
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Table 1 
Literature review (hydrogen storage using machine learning).

author Year of 
publication

Methodology Machine learning models The best final result Results of the article

C.S.W. Ng et 
al [46]

2022 Modeling interfacial stress in 
saline water-hydrogen 
systems using advanced 
machine learning techniques.

Gradient Boosting 
Regressor (GBR), Genetic 
Programming (GP), MLP- 
LMA, MLP-Adam

MLP-LMA with R2 = 0.9997 The study investigates 
modeling interfacial stress 
between hydrogen and saline 
water using advanced 
machine learning techniques, 
showing MLP-LMA performs 
the best.

H.V. Thanh 
et al. [47]

2023 Predicting corrosion of rock/ 
mineral-water-saline water- 
hydrogen systems using 
multiple machine learning 
approaches.

Random Forest (RF), Light 
Gradient Boosting (LGRB), 
Extreme Gradient 
Boosting (XGBoost), 
Adaboost_DT

XGBoost with R2 = 0.941 The research evaluates the 
impact of nanocomposites on 
rock corrosion and predicts 
outcomes using machine 
learning algorithms, where 
XGBoost achieves the highest 
accuracy.

Ahmad and 
Sigel [48]

2021 Use of laboratory data and 
simulations to predict 
hydrogen storage performance 
in MOFs.

Random Forest, Support 
Vector Machine (SVM), 
Neural Networks

Neural Networks with R2 =

0.92
The paper demonstrates that 
machine learning models, 
especially neural networks, 
can provide more accurate 
predictions of hydrogen 
storage performance in MOFs, 
aiding in the optimization of 
MOF designs.

Mao et al. 
[49]

2024 Reservoir simulation using 
machine learning techniques 
and simulated data.

Random Forest, Gradient 
Boosting, Support Vector 
Machine (SVM)

Best result: Random Forest 
with R2 = 0.95

Machine learning models 
accurately predicted 
hydrogen recovery yield and 
gas purity; methods had 
higher accuracy and lower 
computational cost compared 
to traditional simulations.

S. Mao, B. 
Chen, M. 
Morales, 
M. Malki 
et al. [50]

2024 Development of ROM model 
based on reservoir simulation 
data.

Deep Learning Specific details on best 
numerical regression result 
not provided.

The paper analyzes the effect 
of gas shielding on hydrogen 
storage in porous rocks using 
reservoir simulation and deep 
learning, highlighting the 
importance of these effects in 
optimizing hydrogen storage.

Mahdi 
Kanaani 
et al. [51]

2023 Use of machine learning 
methods and optimization for 
hydrogen and carbon dioxide 
storage.

Multi-layer Perceptron 
(MLP)

MLP with R2 = 0.9988 The selected model 
successfully predicted the 
accuracy of all three objective 
functions (NPV, hydrogen 
recovery factor, and CCS).

Helland et al. 
[52]

2023 Use of combined reservoir 
simulations to determine 
optimal production times 
(until well flow reaches 1 % 
mole fraction CO2) in ideal 
CO2-filled reservoirs during 
methane (CH4) injection and 
production cycles. Generated 
data used for developing 
Artificial Neural Networks 
(ANNs) to describe 
relationships between input 
parameters and optimal 
production times.

Artificial Neural Networks 
(ANNs)

RMSE <0.02, R2 > 0.99 Reservoir height and 
permeability have the greatest 
impact on the time to achieve 
1 % mole fraction CO2. ANNs 
identified as useful tools for 
establishing relationships 
between critical parameters in 
UNGS operations aiming for 
increased CH4 production 
time and higher gas delivery 
with minimal CO2 
production.

Bakhshian 
et al. [53]

2022 Use of combined reservoir 
simulations to assess the 
impact of residual methane on 
CO2 storage efficiency in a 
representative reservoir model 
of “HC sand” in the High 
Island 24L field. Utilization of 
Artificial Neural Networks 
(ANNs) models for rapid CO2 
storage modeling and Monte 
Carlo simulations for 
quantifying uncertainties of 

Artificial Neural Networks 
(ANNs)

Developed ANN model for 
predicting CO2 storage 
efficiency and assessing 
uncertainty using Monte 
Carlo simulations.

Residual hydrocarbon gas 
negatively affects remaining 
trapping and CO2 dissolution, 
increasing pressure 
management and injectivity 
by enhancing CO2 mass 
mobility. The developed data- 
driven model serves as a 
powerful tool for screening 
wet areas of gas-depleted 
reservoirs to evaluate CO2 
storage efficiency.

(continued on next page)

M. Maleki et al.                                                                                                                                                                                                        Heliyon 10 (2024) e38679 

4 



to evaluate IFT and CA in the context of H2. The methodology included dataset creation, parameter tuning for ML models, and per
formance evaluation. A total of 2,250 data points for IFT and 950 data points for CA were sourced from prior experimental research. 
The study investigated the effects of different protective gas mixtures and H2 compositions on permeability and gas-liquid IFT. Data 
were organized and analyzed using Microsoft Excel. Linear regression analysis, which yielded an R2 value of 0.8703, confirmed the 
reliability of the data extraction process. The final dataset provided insights into the effects of H2’s IFT in the presence of protective 
gases under varying conditions of pressure, temperature, and salinity, and was used for training and evaluating ML models. 

IFTMixture = f(P.T.Salinity)

σ Mixture = g(P.T.Salinity)

P and T denote pressure and temperature, respectively. The above functions illustrate the ability of the proposed ML models to 
predict IFT in H2 and protective gas mixtures across various salinity levels, temperatures, and pressures. The necessary statistical 
information is detailed in Table 1.

In this study, contact angle measurements is a method to characterize wettability, leveraging data obtained under controlled 
laboratory conditions specific to hydrogen and cushion gas systems. These measurements were integral to our analysis of capillary 
forces and fluid displacement in porous media, aligning closely with the experimental framework of our research. However, it is 
important to acknowledge the inherent limitations of static contact angle measurements, which may not fully capture the dynamic 

Table 1 (continued )

author Year of 
publication

Methodology Machine learning models The best final result Results of the article

geological and reservoir 
parameters.

HV Thanh 
et al. [54]

2022 Development of intelligent 
deliverability models for 
natural gas storage 
underground using machine 
learning techniques. Modeling 
based on data from 387 UNGS 
sites in depleted fields, 
aquifers, and salt domes.

Gaussian Process 
Regression (GPR), Least 
Squares Support Vector 
Machine (LSSVM), Extra 
Tree (ET)

For depleted fields: R2 =

0.999999998, RMSE =
4.75E-06, MAE = 0.00021. 
For salt domes: R2 = 0.987, 
RMSE = 0.0046, MAE =
0.11. For aquifers: R2 =

0.999999997, RMSE =
7.1094E-06, MAE =
0.0002102.

GPR model outperforms 
LSSVM and ET. These models 
are proposed as fast and 
accurate templates for 
predicting UNGS 
deliverability in depleted 
fields, aquifers, and salt 
domes. Results contribute to a 
deeper understanding of 
machine learning’s role in 
natural gas storage prediction.

Wang et al. 
[55]

2024 Analysis and prediction for 
carbon capture and storage 
(CCS) projects using machine 
learning models and deep 
learning. Hyperparameter 
optimization using simulated 
annealing algorithm and grid 
search strategy. Use of well log 
data to predict reservoir 
volume and CO2 saturation.

Ridge Regression (RR), 
Random Forest (RF), 
Gradient Boosting 
Regression (GBR), Support 
Vector Regression (SVR), 
Artificial Neural Network 
(ANN)

For predicting reservoir 
volume and porosity: GBR 
and RF were superior 
models. For estimating CO2 
saturation: RF performed 
the best, followed by SVR, 
ANN, GBR, and RR.

GBR and RF were top models 
for predicting reservoir 
volume and porosity. RF 
showed the best performance 
for estimating CO2 saturation. 
Key features included sigma 
and well pressure. Results of 
this study help fill the 
knowledge gap in carbon 
storage and meet the 
increasing demand for 
sustainable and cost-effective 
energy solutions.

Ali et al. [56] 2024 Use of advanced machine 
learning models to predict 
effusion characteristics of 
mineral/H2/saline water 
systems under geological 
storage conditions. Evaluation 
of effusion behavior under 
different pressure, 
temperature, and salinity 
conditions.

Fully Connected Neural 
Networks, Adaptive 
Gradient Boosting, 
Random Forests, Decision 
Trees, Extreme Gradient 
Boosting

RMSE: 0.214 (training), 
0.810 (testing)

Machine learning models 
demonstrated high capability 
in predicting effusion 
characteristics of mineral/ 
H2/saline water systems. 
Pressure had the greatest 
impact on system effusion. 
These models can effectively 
predict hydrogen storage 
capacities and ensure security 
in large-scale projects.

Xie et al. [57] 2024 Use of molecular dynamics 
simulations to create a 
comprehensive database of 
IFT (interfacial tension) for 
(H2 + CO2)-saline water and 
develop a machine learning- 
based IFT equation. Model 
validation with experimental 
data and existing IFT 
equations.

Machine Learning (ML) R2 = 0.902 compared to 601 
experimental data points

The developed machine 
learning-based IFT equation 
can be easily implemented 
and utilized in reservoir 
simulations and other UHS 
applications, providing good 
performance in predicting 
interfacial tension (H2 +
CO2)-saline water.
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nature of fluid-solid interactions during processes such as imbibition and drainage. Variations in surface roughness, medium het
erogeneity, and potential contaminants further underscore the complexity and potential variability of contact angle data. Despite these 
constraints, the static contact angle data provided a robust foundation for our study, offering valuable insights into wettability dy
namics relevant to hydrogen storage applications with cushion gas.

The collected data underwent statistical analysis following a review, with IFT and CA plotted separately against variables such as 
salinity, temperature, pressure, and the percentages of H2, CO2, N2, and CH4. The analysis included two box plots, two pair plots, and 
two heat maps.

Figs. 1 and 2 present box plots depicting the distribution, central tendency, and variability of seven variables related to IFT and CA. 
These plots display medians, interquartile ranges (IQRs), whiskers, and outliers. In the IFT plot, H2 and pressure exhibit high medians 
of 54.00 % and 1750.00 psi, respectively, with broad IQRs indicating significant variability. Conversely, salinity, N2, and CO2 show 
lower medians and more confined IQRs. N2 has first and third quartiles of 10.00 %, reflecting a very tight range, whereas CH4 has a 
median of 21.33 %, and temperature has a median of 50.00 ◦C. For IFT, a median of 59.183 with a moderate IQR and several extreme 
values is observed. The pair plots in Fig. 3 explore the relationships between pairs of variables and the distribution of individual 
variables. Each diagonal plot features histograms or kernel density plots to show variable distributions, while scatter plots examine the 

Fig. 1. Box-plot of IFT parameters: a) salinity, b) H2, c) CH4, d) Pressure, e) Temperature, f) IFT.
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relationships between variables.
Scatter plots help visually detect correlations and patterns between pairs of variables, while histograms and density plots on the 

diagonal display the distribution of individual variables. These plots also facilitate the identification of outliers that may require 
further scrutiny. Insights from these plots guide feature selection and engineering for ML models, complementing numerical corre
lation matrices by providing a visual representation of the strength and nature of relationships between variables.

Numerical correlation matrices are essential tools in ML and data analysis, illustrating linear relationships between variables. They 
play a critical role in feature selection, dimensionality reduction, and exploratory data analysis (EDA). In this study, a numerical 
correlation heatmap was employed, utilizing Pearson’s correlation coefficient.

The Pearson correlation coefficient is a statistical metric that assesses the strength and direction of a linear relationship between 
two variables, with values ranging from − 1 to 1. The possible values of this coefficient are:

• Perfect Positive Correlation: Indicates a simultaneous increase in the values of both variables.
• Perfect Negative Correlation: Indicates an inverse decrease in the values of both variables.
• No Correlation: Indicates the absence of a linear relationship between the two variables.

Fig. 2. Box-plot of CA’s parameters: a) salinity, b) H2, c) CH4, d) Pressure, e) Temperature, f) CA.
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Equation (2) for the Pearson correlation coefficient is as follows: 

r=
∑

(Xi − X)(Yi − Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Xi − X)2
√

− (Yi − Y)2
2 

in this equation, Xi and Yi represent the observed values, while X and Y are the means of variables X and Y. Therefore, if r > 0, it 
indicates a positive (direct) correlation; the closer r is to 1, the stronger the positive relationship. Conversely, if r < 0, it signifies a 
negative (inverse) correlation; the closer r is to − 1, the stronger the negative relationship. If r = 0, there is no linear relationship, and a 
non-linear relationship may exist (indicating no correlation).

In this study, the relationships among variables such as pressure, temperature, gas compositions, IFT, and CA were analyzed using 
the Pearson correlation coefficient and visualized with a heatmap. Fig. 3 illustrates the Pearson correlation coefficients between these 
variables, with a color gradient ranging from − 0.6850 (yellow) to 1.000 (dark purple) for IFT, and from − 0.9600 (yellow) to 1.000 
(dark purple) for CA. The heatmap shows that IFT has correlations of − 0.68 with CO2, -0.44 with pressure, and − 0.25 with tem
perature, while it has a positive correlation of 0.32 with salinity. For CA, the correlations are 0.65 with pressure and 0.50 with salinity, 
but − 0.42 with temperature. This heatmap is valuable for optimizing processes and making informed decisions by providing a clear 
visual representation of the relationships between critical parameters in oil engineering.

Fig. 3. Statistic plots and correlation diagram. A: CA pair plot; B: IFT pair plot; C: CA heat plot; D: IFT heat plot.
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3. Data processing

In this study, data extracted from three review articles and other relevant papers were analyzed [58]. These studies employed 
methods for measuring IFT and CA under laboratory conditions, with a particular focus on H2. The research also examined the effects 
of protective gases such as H2, N2, CH4, and CO2 on H2 storage capacity. Additionally, the evaluation and calculation of IFT and CA 
were influenced by parameters including pressure, temperature, and salinity.

The review studies provide various insights into the behavior of gas and water mixtures under different conditions of temperature, 
pressure, and salinity (Fig. 4). For instance, Mohammad et al. [58] (2023) found that in H2 storage involving CH4, the CA does not 
correlate with pressure (P), temperature (T), or salinity. However, the IFT was observed to decrease with higher temperature and 
pressure, while it increased with rising salinity. Similarly, Mohammad et al. [59] (2023) reported that the effect of N2 on H2 storage 
shows that the CA increases with pressure and decreases with temperature. In this study, IFT was found to decrease with increasing 
pressure and temperature but increase with salinity and the percentage of N2.

IFT plays a critical role in determining the storage height within a reservoir by influencing the capillary forces in the porous 
medium, which affects the vertical extent of the stored H2. Specifically, higher IFT values increase capillary forces, leading to a more 
pronounced capillary entry pressure at the interface between H2 and the brine or other fluids present in the reservoir. This capillary 
entry pressure governs the maximum storage thickness that H2 can achieve without breaching the cap rock seal. Conversely, lower IFT 
values may reduce capillary forces, potentially allowing H2 to occupy a greater vertical extent within the reservoir.

A more detailed discussion on how variations in IFT impact the storage height of H2 within different geological formations will be 
included in the manuscript. This addition will enhance the understanding of the interplay between IFT, capillary pressure, and storage 
capacity, which is crucial for optimizing UHS strategies.

3.1. Data preprocessing and sensitivity analysis

Data preprocessing is essential for preparing input data before it is used in models and algorithms. This process ensures that the data 
is accurate, correctly formatted, and suitable for further analysis. Key steps in data preprocessing include data cleaning (correcting 
errors and eliminating invalid entries), transforming data into suitable formats, normalizing to address scale differences, integrating 
data from various sources, handling missing values, and detecting noise. These steps can be carried out automatically or may require 
manual intervention and are critical for effective data analysis and ML in engineering contexts.

Data preprocessing encompasses several crucial steps to prepare data for ML models and data analysis. These steps include: data 
cleaning to eliminate incomplete or duplicate entries; converting data into standardized formats, such as transforming text into nu
merical vectors; feature selection and extraction to identify and use key attributes; dimensionality reduction to minimize complexity 
and reduce computational costs; data normalization to improve model performance; and noise removal to enhance data quality. 
Additionally, processing temporal data accurately is vital for models that depend on time-related information. These procedures ensure 
that data analysis models are accurate and effective.

Based on the points discussed, different data preprocessing techniques directly influence the improvement of modeling, prediction, 
and optimization outcomes for existing algorithms. Consequently, this study utilizes several data preprocessing methods, which will be 
described in detail below.

(i) While data preprocessing is crucial for effective data analysis across many applications, choosing inappropriate preprocessing 
methods can lead to the loss or distortion of valuable information that needs to be revealed during the analysis.

(ii) Effective data preprocessing requires a domain expert or thorough domain study for valuable insights and technique validation.
(iii) Data preprocessing is often iterative, with steps like data cleaning and feature selection repeated to achieve optimal results.

A key challenge in data preprocessing is to discern and preserve valuable information from raw data. The concept of data pre
processing can differ, with some views suggesting that it should incorporate feedback from data analysis. Research in this field focuses 
on creating tools that recommend suitable preprocessing techniques. With preliminary knowledge of the data and analysis goals, 
developing these tools becomes achievable.

(i) An expert system that analyzes data samples and user information to determine the best preprocessing strategy.

Fig. 4. Effect of gas mixture and cushion gas with water on IFT.
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(ii) A toolbox with various data preprocessing techniques and practical examples, showing how different methods affect data 
analysis outcomes.

3.2. Cross-validation

In this study, during training model cross-validation method utilized to prevent overfitting on training data.
Cross-validation is a fundamental technique in machine learning and statistical modeling, widely utilized to evaluate the predictive 

performance of models while addressing challenges like overfitting and underfitting. The core concept involves dividing the dataset 
into distinct subsets, or folds, ensuring that each fold functions alternately as both a training and test set in successive iterations. The 
most common form, k-fold cross-validation, divides the dataset into k equally sized folds, with the model being trained on k-1 folds and 
validated on the remaining fold. This process is repeated k times, allowing each fold to serve as the test set once. This method provides 
a thorough assessment of the model’s performance across different data subsets, enhancing its generalizability. Moreover, it aids in 
optimizing hyperparameters by yielding a more reliable estimation of the model’s performance. Variants like stratified cross- 
validation, which maintain the distribution of target classes within each fold, are particularly useful when working with imbal
anced datasets. By applying cross-validation, researchers gain a more accurate measure of a model’s predictive capability on unseen 
data, rendering it an essential tool in the development of robust machine learning models [60].

3.3. Machine learning model

In this study, to predict IFT and CA, Regression Tree, Random Forest, and LSBoost were selected due to their effectiveness in 
handling datasets with a large number of variables and instances. Tree-based models are known for their simplicity, interpretability, 
and ability to capture non-linear relationships between features and target variables. Additionally, Random Forest and LSBoost, as 
ensemble methods, help improve model accuracy and reduce overfitting, making them well-suited for this predictive task. Besides 
these, Genetic expression programming was utilized to propose a correlation, which leads to a better understanding of the underlying 
relationships. Each of these methods is explained in detail below.

3.3.1. Genetic expression programming
Fig. 5 illustrates Genetic Expression Programming (GEP), which combines elements of Genetic Algorithms (GA) and GP. GEP is a 

robust method for tasks such as data mining, function discovery, optimization, and prediction. It evolves solutions to develop simple 
and accurate models without requiring prior knowledge of the model’s structure or parameters. Its adaptability and effectiveness in 
tackling complex problems have led to its success across various fields. Similarly, GP, which integrates principles of genetic evaluation 
and neural networks, addresses complex issues through regression functions. GEP enhances genetic diversity and efficiently resolves 
intricate models by employing fixed chromosomes and tree-like structures.

During this study, after the collection and processing of data and the analysis of variable correlations, the data were fed into the 
Genetic Expression Programming (GEP) algorithm. To avoid the complexity of the developed relationships, only simple functions were 
employed in the model. The final form of the equation is presented in relationships 3 to 8. This equation consists of 9 constants, 
denoted as c1 to c9, which are listed in Table 2. 

N1=

(
ln(c1.T) + c2

ln 10

)

×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 − CO2

√
3 

Fig. 5. Schematic diagram of GEP algorithm.
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N2=N1 + ln
(
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.
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N3=N2 +
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3.3.2. Decision tree
A prevalent method in data mining is the use of systems designed for classification tasks. Classification algorithms are effective at 

handling large datasets, aiding in the development of hypotheses for categorizing contextual classes, and classifying both training data 
and new information. This paper focuses on the DT algorithm within the realm of ML. As illustrated in Fig. 6, DTs are versatile tools 
used in diverse areas such as ML, image processing, and pattern recognition. These trees operate sequentially, integrating a series of 
base tests where each test evaluates a numerical feature against a specified threshold. Creating conceptual rules in DTs is generally 
more straightforward than establishing numerical weights in neural network nodes. DTs are primarily employed for grouping tasks and 
are highly regarded as effective classification models in data mining. Each tree is composed of nodes and branches, with nodes rep
resenting features to be classified and branches defining possible values. Due to their analytical simplicity and accuracy across various 
data types, DTs are widely utilized in numerous fields. An example of a DT is shown in Fig. 6 [61].

3.3.3. Random forest
Ensemble learning involves creating multiple classifiers and combining their outputs. Popular techniques include Boosting and 

Bagging. In Boosting, extra weight is given to data points that were misclassified by previous classifiers. In contrast, Bagging constructs 
each tree independently using bootstrap samples and aggregates the predictions through majority voting. RF, depicted in Fig. 7, is an 
ensemble method consisting of numerous randomly created DTs. This algorithm introduces randomness by subsampling the training 
data and selecting node tests. Its robustness against overfitting and capability to manage complex features make it widely applicable in 
fields such as genetics, spectroscopy, and medical diagnostics.

3.3.4. LSBoost
Boosting is a popular technique in ensemble learning used for regression problems. It involves combining multiple weak models, 

such as DTs, to create a stronger predictive model. This method operates iteratively, with each new model focusing on the errors made 
by previous models to improve overall performance. The LSBoost regression algorithm utilizes the Least Squares Regression (LSR) 
model as its base and enhances predictions by weighting the misclassified data points. Boosting methods, including LSBoost, are highly 
effective and useful in data science and regression modeling due to their adaptability and robustness against noisy data (Fig. 8).

3.3.5. Modeling process of machine learning methods
Gene Expression Programming (GEP), DTs, RF, and LSBoost are prominent techniques in ML and data analysis, each offering 

unique capabilities and applications. GEP, grounded in GA, is used for symbolic regression and function discovery. It generates 
computer programs to tackle complex problems by integrating elements of GAs and GP. Initially, GEP represents solutions as linear 
chromosomes, which are then converted into tree-like structures.

DTs are used for both classification and regression tasks by partitioning the feature space into smaller regions using straightforward 
decision rules, making them easy to interpret and visualize. However, they can be prone to instability when dealing with noisy or 
complex datasets. In contrast, RFs are constructed by aggregating multiple DTs. By combining predictions from various trees through 
majority voting, RFs offer enhanced robustness against noisy data and are well-suited for managing high-dimensional spaces.

LSBoost is a boosting algorithm tailored for regression tasks, combining the benefits of LSR with boosting strategies. This algorithm 
iteratively adjusts the weights of data points, placing more emphasis on those that have been misclassified to enhance model per
formance. Generally, GEP is ideal for handling complex and symbolic problems, DTs are suited for more straightforward issues, RFs 
excel in scalability and robustness against noisy data, and LSBoost is effective for precise regression even in the presence of noise. The 
choice of method depends on the specific nature of the problem. Table 3 outlines the limitations of each machine learning method.

4. Discussion and results

The dataset was divided into two main sections: IFT and CA. Each section was further split into two subsets: 80 % for training and 
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Table 2 
Statistical dataset of real and experimental extracted data.

Salinity (wt.%) H2 (%) N2 (%) CH4 (%) CO2 (%) Pressure (psi) Temperature (C◦) RO B (kg/m3) RO MIX (kg/m3) Delta RO (kg/m3) CA (χ◦) IFT (mN/m)

Max 20.000 80.000 70.000 70.000 40.000 3000.000 70.000 1099.600 181.740 1087.310 50.360 85.920
Min 2.000 20.000 5.000 5.000 5.000 500.000 30.000 986.540 8.140 833.600 22.200 26.640
Range 18.000 60.000 65.000 65.000 35.000 2500.000 40.000 113.060 173.600 253.710 28.160 59.280
Median 10.000 60.000 5.000 5.000 5.000 1750.000 50.000 1052.845 49.870 994.995 35.900 60.780
Mod 2.000 80.000 5.000 5.000 5.000 500.000 30.000 1009.620 11.100 995.950 32.100 62.840
Mean 10.400 54.000 14.333 21.333 10.333 1750.000 50.000 1049.693 57.436 992.256 35.993 59.183
variance 42.659 397.510 373.055 491.774 111.605 729490.885 200.089 1131.686 1319.751 2321.004 21.314 127.498
Skewness 0.167 − 0.307 1.971 1.025 1.866 0.000 0.000 − 0.178 0.959 − 0.422 0.135 − 0.470
kurtosis − 1.376 − 1.062 2.457 − 0.451 2.053 − 1.269 − 1.300 − 1.312 0.539 − 0.174 − 0.324 − 0.365
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20 % for testing. The training subset was used for model development and optimization, allowing the model to learn and establish 
relationships between parameters for accurate predictions. After the training process, the model was evaluated using the testing subset 
to assess its performance without further parameter adjustments. The model demonstrated satisfactory performance across both the 
training and testing datasets, with this partitioning approach aiding in the validation of the model’s effectiveness.

This study emphasizes the significance of outlier removal for enhancing learning efficacy and achieving accurate model perfor
mance. The approach used to evaluate variable suitability and optimize the model incorporated standard deviation (SD). SD is a key 
measure for understanding data variability and distribution, and it assists in feature selection decisions. Additionally, it plays a crucial 
role in feature scaling, evaluating model stability, and identifying anomalous data points.

To identify and eliminate outliers, the three-sigma rule is applied, based on normal distribution principles: 68 % of data lies within 
±1 SD, 95 % within ±2 SDs, and 99.7 % within ±3 SDs. Data points beyond three SDs are outliers and are removed. The process 
involves three steps: calculating the mean and SD, establishing the cutoff range, and identifying and removing outliers.

Initially, the mean and SD of the dataset were calculated. 

Mean (μ)= 1
N
∑N

i=1

xi 9 

Standard Deviation (σ)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(xi − μ)2

√
√
√
√ 10 

In equations (9) and (10), N represents the number of data points, and xi denotes each data point. Subsequently, the cutoff range for 

Fig. 6. Schematic diagram of DT algorithm.

Fig. 7. Schematic diagram of RF algorithm.

M. Maleki et al.                                                                                                                                                                                                        Heliyon 10 (2024) e38679 

13 



outliers is identified, which is typically defined as the mean ± 3 SDs. 

Lower Bound= μ − 3σ 

Upper Bound= μ − 3σ 

Any data point that falls outside this range is classified as an outlier and can be excluded from the dataset. This method is simple, 
easy to implement, and effective, especially for datasets that follow a normal distribution.

4.1. Hyperparameter optimization

To optimize hyperparameter of machine learning moldes, Bayesian and random search were employed. As shown in Fig. 9, after 
assigning initial values for hyperparameters, these values were updated for 30 iterations and at each step MSE of each model 
calculated. After that the model among them with the lowest MSE values was chosen as optimized model. Given the selected methods, 
the necessary explanations for interpreting each of them is provided in Table 4.

4.2. Model evaluation and performance

4.2.1. Evaluation metrics
Evaluation metrics are crucial in ML as they help measure, assess, and improve model performance. Choosing the right metrics is 

essential for ensuring the quality and effectiveness of ML models, as they provide critical insights into the models’ accuracy and 
predictive ability on test data. Thus, the accurate selection of evaluation metrics is vital for the success of any ML project.

One key evaluation metric is the coefficient of R2, which measures the proportion of variation in the dependent variable that is 
explained by the model. R2 values range from 0 to 1, with higher values indicating a better fit. Additionally, the Root Mean Squared 
Error (RMSE) and Mean Absolute Error (MAE) are important metrics for assessing model performance. RMSE quantifies the average 
squared differences between actual and predicted values, while MAE measures the average absolute differences. Lower values of RMSE 
and MAE signify higher model accuracy. 

R2 =1 −

∑N

i=1

(
IFT,CAexp

i − IFT,CApred
i

)2

∑N

i=1

(
IFT,CAexp

i − IFT,CAexp)2
11 

Fig. 8. Schematic diagram of LSBoost algorithm.

Table 3 
GEP constant on correlations.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

− 164.7823 12805.1802 9.7586 7.2342 − 13.2393 − 2.2096 − 2.5387 6.6887 10.5211 11.7410

M. Maleki et al.                                                                                                                                                                                                        Heliyon 10 (2024) e38679 

14 



RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
IFT,CAexp

i − IFT,CApred
i

)2

N

√
√
√
√
√

12 

Fig. 9. Flowchart of hyperparameters tuni.

Table 4 
Limitations of each machine learning method.

Machine Learning Method Limitations

Genetic Expression 
Programming

Need for Precise Tuning: Requires careful tuning and complex parameters to achieve optimal models.
High Processing Time: Due to simultaneous evolution of multiple models, it requires more processing time compared to other 
methods.
Unstable Modeling: The final models may be unstable and sensitive to small changes in data.

Decision Tree Overfitting: May become too dependent on the training data and fail to generalize well to new data if the data is complex.
Lack of Flexibility: The tree structure may not capture complex relationships between features effectively.
Sensitivity to Small Changes: Minor changes in data can lead to significant changes in the tree structure.

Random Forest Difficult Interpretation: The final model can be complex due to the use of multiple decision trees, making it hard to interpret.
Need for Multiple Parameter Tuning: Involves tuning parameters such as the number of trees and their depth, which can be 
complex.
High Processing Time: The processing time increases with the number of trees, especially for large datasets.

Least Squares Boosting Sensitivity to Noise: The model may become sensitive to noise in the data due to overfitting.
Model Complexity: This method can create complex models that are difficult to interpret.
Need for Large Datasets: Requires large and diverse datasets to model non-linear relationships effectively.
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MAE=
1
N
∑N

i=1

⃒
⃒
⃒(IFT,CAexp

i − IFT,CApred
i

)⃒
⃒
⃒ 13 

Equations (11)–(13) involve the predicted values by the model (IFT,CApred
i ), experimental values (IFT,CAexp

i ), and mean values 
(IFT,CAexp), as well as N, which represents the number of data points. Table 5 presents the calculated values and the reported errors in 
the data. Subsequently, the predictive capability of the model is evaluated through graphical results. The graphical assessment phase 
utilizes four distinct visualization techniques to demonstrate the accuracy of the developed models: cross plots, CFD plots, KDE plots, 
and the Hat Matrix.

4.2.2. Predictive power assessment
Table 6 shows the statistical values for training, testing, and overall datasets used to assess model accuracy using RMSE and R2 

metrics. RMSE provides an unbiased evaluation of performance, while R2 indicates the model’s ability to explain data variability. The 
LSBoost-BO model outperforms others in both metrics across all datasets for IFT and CA, with high R2 and low RMSE values. It achieves 
the lowest RMSE of 0.413111◦ and the highest R2 of 0.986999 for the CA dataset, demonstrating superior accuracy in predicting target 
variables (see Table 7).

The LSBoost algorithm is an ensemble method designed for regression problems, utilizing gradient boosting techniques to itera
tively apply the base model and minimize prediction errors. By optimizing the least square’s objective function, LSBoost aims to reduce 
the discrepancy between predicted and actual values. When optimized with Bayesian and RS methods, LSBoost achieves exceptional 
results. For the IFT dataset, the LSBoost model yields an RMSE of 0.717881 mN/m and an R2 value of 0.995956, demonstrating its high 
accuracy and effectiveness.

Other models, such as RF and RT, also demonstrated good performance. The RF model, optimized using the Bayesian algorithm, 
achieved an RMSE of 0.609646◦ and an R2 of 0.971686 for the CA dataset. For the IFT dataset, the RF-BO model calculated an RMSE of 
1.147666 mN/m and an R2 of 0.989665. Additionally, the RT and RF models optimized with Bayesian and RS algorithms exhibit a high 
density of predicted data points around the line X = Y, indicating high accuracy of the results (Figs. 10 and 11).

The kernel density estimation (KDE) plots shown in Fig. 12 illustrate the distribution of residual errors for CA predictions across 
both the test and training datasets. The curves for LSBoost-BO, with peaks near zero, signify high prediction accuracy and lower 
variance in the residual errors. In contrast, the RT-BO curves, characterized by broad and shallow peaks, indicate higher variance and 
less accurate predictions. Additionally, the presence of longer tails in these curves suggests outliers or more significant prediction 
errors. It is also important to note that the residual error is calculated using the following equation (Equation (8)): 

Rei =yi − ŷi 14 

Table 5 
Provides detailed information on the hyperparameters used in developing the models (RT-RF-LSBoost) with both optimization techniques (Bayesian 
and RS).

Section explanation Reference

Bayesian algorithm This research addresses the tuning of parameters in ML algorithms and the use of Bayesian optimization as an 
effective solution. Bayesian optimization, which outperforms other global optimization algorithms, operates on 
the assumption that the unknown function is sampled from a Gaussian process and uses criteria such as Expected 
Improvement (EI) or Upper Confidence Bound (UCB). This approach facilitates the automatic optimization of 
parameters. The study’s results indicate that Bayesian optimization is not only effective in hyperparameter 
optimization but also highlights the significance of fully Bayesian treatment and the introduction of new 
algorithms to accommodate costs and concurrent experiments.

[62–64]

Random Search RS Optimization is a versatile technique in ML used to optimally explore the hyperparameter space. Unlike 
systematic methods such as grid search that evaluate predefined combinations, RS selects hyperparameters 
randomly from specified ranges. This method can identify high-performance combinations that may be 
overlooked by other methods. RS is useful for extensive search spaces and limited computational resources and is 
accessible for trainees and professionals due to its simplicity and ease of implementation. This technique is also 
robust against noisy and discontinuous objective functions, allowing computational resources to be focused on 
valuable areas. The study shows that IFT and CA data have been meticulously examined using these methods, and 
the results are detailed comprehensively.

[23,65]

Hyperparameter Values and 
Evaluation

In this study, the selected hyperparameters for the models in RS and Bayesian optimization play a crucial role in 
optimizing the models for evaluating IFT and CA data. Detailed information about the hyperparameters and their 
evaluation in constructing the models (RT-RF-LSBoost) using these two optimization methods is provided. For the 
regression tree model, both optimization techniques have set the minimum leaf size to 1 to allow the tree to grow 
to its maximum depth. The RF model in RS is configured with 341 learners and a minimum leaf size of 1, while 
Bayesian optimization specifies 499 learners with the same minimum leaf size. In the IFT method, these numbers 
are 120 and 498, respectively. For the LSBoost model, RS in the CA method reports 29 learners, a minimum leaf 
size of 99, and a learning rate of 0.7290, whereas in the IFT method, it reports 158 learners, a minimum leaf size of 
7, and a learning rate of 0.1323. In contrast, Bayesian optimization LSBoost in the CA method is configured with 
98 learners, a minimum leaf size of 1, and a learning rate of 0.08, and in the IFT method, it is configured with 498 
learners, a minimum leaf size of 1, and a learning rate of 0.4223. These differences in hyperparameters reflect 
different strategies for model optimization; RS allows models to grow to greater depths, while Bayesian 
optimization offers a more conservative and precise approach. These differences highlight the importance of 
hyperparameter tuning in ML to improve model accuracy, generalizability, and efficiency.

​
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in this context, yi represents the actual data points, and ŷi represents the predicted values for these data points. The curves similarly 
illustrate the distribution of residual errors as seen in the test set. Peaks near zero indicate good predictive performance on the training 
data. Comparing the curves of the training set with those of the test set, significantly taller and narrower curves in the training set may 
suggest overfitting, where the model performs well on the training data but less effectively on unseen test data. Conversely, if the 
curves are similar between the training and test sets, this indicates consistent model performance. The height, width, and tails of these 
curves offer insights into the model’s accuracy and robustness, highlighting its ability to generalize from training data to test data.

Fig. 13 illustrates that the LSBoost-BO model successfully predicts over 97 % of CA values with an absolute relative error below 3 %. 
In comparison, the RF-RS and RF-BO models achieve this level of accuracy for approximately 90 % of CA values, while the RT-BO and 
RT-RS models achieve it for about 83 %. Fig. 14 demonstrates that the LSBoost-BO model also excels in predicting IFT values, with 

Table 6 
Hyperparameter information’s chart.

Method Model Optimization method

Random search Bayesian

Contact angle Regression tree Minimum leaf size = 1 Minimum leaf size = 1
Random forest Number of learners = 341 Number of learners = 499

Minimum leaf size = 1 Minimum leaf size = 1
LSBoost Number of learners = 29 Number of learners = 98

Minimum leaf size = 99 Minimum leaf size = 1
Learn rate = 0.7290 Learn rate = 0.08

IFT Regression tree Minimum leaf size = 1 Minimum leaf size = 1
Random forest Number of learners = 120 Number of learners = 498

Minimum leaf size = 2 Minimum leaf size = 1
LSBoost Number of learners = 158 Number of learners = 498

Minimum leaf size = 7 Minimum leaf size = 1
Learn rate = 0.1323 Learn rate = 0.4223

Table 7 
Evaluation criteria of CA and IFT.

Method Model Statistical parameters Train Test Total

CA RT-BO R2 0.956563 0.890737 0.943269
RMSE 0.754041 1.203805 0.862955
MAE 0.58899 0.979949 0.667182

RT-RS R2 0.956563 0.890737 0.943269
RMSE 0.754041 1.203805 0.862955
MAE 0.58899 0.979949 0.667182

RF-BO R2 0.977133 0.95016 0.971686
RMSE 0.547109 0.813037 0.609646
MAE 0.410947 0.606992 0.450156

RF-RS R2 0.976854 0.949266 0.971283
RMSE 0.550435 0.820291 0.61397
MAE 0.415237 0.613565 0.454903

LSBoost-BO R2 0.988776 0.979971 0.986999
RMSE 0.383295 0.515403 0.413111
MAE 0.285649 0.386935 0.305906

LSBoost-RS R2 0.965814 0.95061 0.962747
RMSE 0.668947 0.809357 0.699288
MAE 0.515703 0.626032 0.537769

IFT RT-BO R2 0.981121 0.947058 0.975045
RMSE 1.571916 2.45308 1.783327
MAE 1.223674 1.927124 1.364364

RT-RS R2 0.981121 0.947058 0.975045
RMSE 1.571916 2.45308 1.783327
MAE 1.223674 1.927124 1.364364

RF-BO R2 0.992218 0.977904 0.989665
RMSE 1.009224 1.584787 1.147666
MAE 0.754388 1.160691 0.835649

RF-RS R2 0.991917 0.977032 0.989262
RMSE 1.028565 1.615753 1.169824
MAE 0.769595 1.182686 0.852213

LSBoost-BO R2 0.999074 0.996491 0.998614
RMSE 0.348042 0.631536 0.420326
MAE 0.266308 0.449785 0.303003

LSBoost-RS R2 0.996478 0.993553 0.995956
RMSE 0.678958 0.856057 0.717881
MAE 0.523591 0.624443 0.543762
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nearly 99 % of predictions having an absolute relative error of less than 2 %. The LSBoost-RS model predicts around 90 % of IFT values 
with an error under 2 % and CA values with an error under 3 %. The RF-RS and RF-BO models predict about 75 % of IFT values within a 
2 % error margin and 90 % within a 3 % margin. In contrast, the RT-BO and RT-RS models show the least performance, with roughly 
50 % of IFT predictions falling within a 2 % error margin and 70 % within a 3 % margin. Overall, all models demonstrate satisfactory 
performance with relatively low absolute relative error percentages.

Overall, the effectiveness of a ML algorithm is influenced by its underlying theoretical principles, the chosen architectural setup (e. 
g., tree-based structures), and the characteristics of the problem being addressed. Combining optimization techniques with ML ap
proaches can enhance hyperparameter tuning and improve the model’s overall performance. Additionally, using statistical metrics and 
graphical representations is an effective way to showcase the relative performance of different models.

Based on the above discussions, the proposed models can be ranked in the following order of accuracy:

Number Methods

1 LSBoost - BO
2 LSBoost - RS
3 RF - BO
4 RF - RS
5 RT - BO/RT - RS

Fig. 10. Cross plots of predicted versus CA experimental data for different constructed models.
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4.3. Removal of outlier data

Removing outliers or noisy data during preprocessing can significantly enhance the quality and performance of ML models in 
petroleum engineering. By filtering out these data points, the noise level is reduced, making the model less sensitive to anomalies and 
improving its accuracy and ability to generalize. This process also speeds up model training and conserves computational resources, as 
handling outliers often demands additional time and resources. Therefore, eliminating outliers not only improves model performance 
and reduces training time but also enhances computational efficiency and system optimization.

To identify outliers in a dataset, the Williams plot is used, which helps assess the reliability of the model (Fig. 15). This plot works 
by utilizing the Hat matrix and standardized residuals (SR). The Hat matrix assists in identifying leverage points, which are determined 
by the diagonal elements of the Hat matrix (H). If the leverage value of a point exceeds the leverage warning value (Hat*), calculated 
by the formula Hat* =

3(p+1)
n , that point is considered a high leverage point. Standardized residuals represent the difference between 

the actual and predicted values of the model, expressed in a standardized form.
Points that fall outside the statistical safe ranges for the model (0 ≤ H ≤ H* and − 3 ≤ SR ≤ 3) are categorized into three groups: 

vertical outliers, good leverage points, and bad leverage points. Vertical outliers have standardized residuals outside the statistical 
range, good leverage points help improve the model’s accuracy, while bad leverage points harm the model and cause deviation in the 
results.

There are various methods for dealing with outliers, including removing outliers, adjusting outlier values to more reasonable ones, 
or using robust models that are less affected by outliers. In cases where there are missing data, imputation techniques can be applied, 
which might involve replacing missing values with the mean, median, or predicted values by the model. In some cases, additional data 

Fig. 11. Cross plots of predicted versus IFT experimental data for different constructed models.
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Fig. 12. KDE plot of residual error of test and train datasets.

Fig. 13. C plot -CA.
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may be required to fill in the missing values to ensure the model functions correctly.

5. Conclusions

In this study, advanced intelligent techniques, particularly LSBoost-BO, LSBoost-RS, RF-BO, RF-RS, RT-RS, and RT-BO, have been 
employed to model IFT in brine- H2 systems with an inert gas. The various models utilized demonstrate distinct performances due to 
their diverse theories, architectures, and methodologies. Overall, evaluating and comparing these models can aid in selecting the most 
suitable modeling approach for the given problem. This study encompasses a well-organized and validated experimental dataset 
comprising 2,250 gas-water IFT data points and 950 CA data points from review studies, with IFT and CA as output parameters and 
inputs including temperature, pressure, density, weight percentage, and brine salinity. Statistical and graphical error analyses indicate 
satisfactory performance of the employed modeling techniques. (For CA, R2 and RMSE values range from 0.943269 to 0.986999 and 
0.413111◦–0.862955◦, respectively, and for IFT, R2 and RMSE values range from 0.975045 to 0.998614 and 0.420326 mN/m to 
1.783327 mN/m, respectively). However, the LSBoost-BO modeling approach demonstrated superior performance compared to other 
methods, with R2 and RMSE values of 0.986999 and 0.413111◦ for CA, and 0.998614 and 0.420326 mN/m for IFT.

High R2 values and low RMSE indicate accurate predictions that aid in precise design and optimization during CA and IFT storage 
phases. Accurate models are essential for risk analysis and project success. Furthermore, trend analysis has confirmed the predictive 
potential of the LSBoost-BO model, especially in relation to the significant input parameters mentioned, which play a critical role in the 
aforementioned processes. Based on performance analysis, the models are ranked accordingly in Table 8.

In this study, the Leverage approach was used to identify outliers, revealing that only a small fraction of the total CA and IFT 
datasets, approximately 1.2632 % and 1.1111 %, respectively, were classified as outliers. These findings validate the statistical reli
ability of the datasets and, consequently, support the credibility of the LSBoost-BO model.

Additionally, the results indicate that parameters such as temperature, pressure, weight percentage, and, notably, the density 
difference between the brine and gas mixture have a significant impact on CA and IFT values. In this context, the reported results and 
predicted values based on the laboratory data available in the references cited in this study are as follows:

• With increasing temperature, the values of CA, IFT, and density difference decrease.
• With increasing pressure, CA values increase while IFT and density difference values decrease.
• With increasing salinity, the values of CA, IFT, and density difference all increase.

Changes in interfacial tension (IFT) with different conditions can significantly impact various practical aspects of hydrogen storage. 
Here’s a summary of potential effects:

- Storage Efficiency and Capacity
- Leakage and Integrity
- Operational Stability
- Economic Considerations

Fig. 14. C plot -IFT.
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Fig. 15. Outlier detection using William’s plot for LSBoost-BO model.

Table 8 
Ranking and performance of ML methods for predicting CA and IFT in this study.

R2 RMSE

CA LSBoost-BO 0.986999 0.413111
RF-BO 0.971686 0.609646
RF-RS 0.971283 0.61397
LSBoost-RS 0.962747 0.699288
RT-RS/RT-BO 0.943269 0.862955

IFT LSBoost-BO 0.998614 0.420326
RF-BO 0.995956 0.717881
RF-RS 0.989665 1.147666
LSBoost-RS 0.989262 1.169824
RT-RS/RT-BO 0.975045 1.783327
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Variations in interfacial tension (IFT) can significantly impact the stability and distribution of hydrogen within storage systems. 
Higher IFT may impede the effective dispersion of hydrogen, leading to reduced storage efficiency and capacity. Conversely, lower IFT 
can enhance the uniformity of hydrogen distribution, potentially improving storage density. Additionally, changes in IFT can affect the 
sealing and integrity of storage containers or geological formations. High IFT may lead to the formation of gas pockets that are prone to 
leakage, compromising the system’s safety and reliability. Optimized IFT, however, can help maintain the integrity of the storage 
medium and reduce leakage risks.

Fluctuations in IFT also influence the stability of hydrogen storage operations, particularly with temperature and pressure changes. 
Suboptimal IFT conditions can result in operational challenges and safety concerns, while effective management of IFT can stabilize 
the storage environment and ensure consistent performance. The economic implications of IFT are significant, as inefficiencies or 
leakage due to improper IFT conditions can increase operational costs and reduce the economic viability of storage systems. Therefore, 
understanding and controlling IFT is crucial for optimizing hydrogen storage systems, enhancing their safety, reliability, and economic 
feasibility.

The sensitivity analysis reveals that temperature, specific gravity, and pressure are inversely related to IFT, meaning higher values 
of these parameters decrease IFT. Conversely, increased water salinity and density difference between brine and gas raise IFT. CA 
shows an inverse relationship with temperature and a direct relationship with pressure and water salinity. Higher temperature de
creases both CA and IFT, while higher pressure increases CA and decreases IFT by changing the density difference. Higher water 
salinity increases CA, IFT, and density difference. The analysis aids in decision-making and optimization, with AI models like LSBoost- 
BO providing accurate IFT predictions and enhancing prediction accuracy in gas-water simulations.
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Abbreviations

AARD Absolute Average Relative Deviation
CA Contact Angle
CFD Cumulative Frequency Distribution
CH4 Methane
CO2 Carbon Dioxide
DT Decision Tree
EDA Exploratory Data Analysis
EI Expected Improvement
EOR Enhanced Oil Recovery
GA Genetic Algorithms
GBR Gradient Boosting Regressor
GEP Gene Expression Programming
GHG Greenhouse Gas
GP Genetic Programming
H2 Hydrogen
IFT Interfacial Tension
IQR Interquartile Range
KDE Kernel Density Estimate
LGB Light Gradient Boosting
LMA Levenberg-Marquardt Algorithm
LSBoost Least Squares Boosting
LSR Least Squares Regression
MAPE Mean Absolute Percentage Error
ML Machine Learning
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(continued )

MLP Multi-Layer Perceptron
P Pressure
Pce Capillary Entry Pressure
R2 Determination
RF Random Forest
RMSE Root Mean Square Error
RS Random Search
RT Regression Tree
SD Standard Deviation
ST Surface Tension
SVM Support Vector Machines
T Temperature
UCB Upper Confidence Bound
UGS Underground Gas Storage
UHS Underground Hydrogen Storage
XGBoost Extreme Gradient Boosting
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