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Numerous studies have focused on the understanding of rapid automatized

naming (RAN), which can be applied to predict reading abilities and

developmental dyslexia in children. Eye tracking technique, characterizing the

essential ocular activities, might have the feasibility to reveal the visual and

cognitive features of RAN. However, traditional measures of eye movements

ignore many dynamical details about the visual and cognitive processing

of RAN, and are usually associated with the duration of time spent on

some particular areas of interest, fixation counts, revisited fixation counts,

saccadic velocities, or saccadic amplitudes. To cope with this drawback, we

suggested an entropy-based method to measure eye movements for the

first time, which first mapped eye movements during RAN in a time-series

and then analyzed the time-series by a proper definition of entropy from

the perspective of information theory. Our findings showed that the entropy

was more sensitive to reflect small perturbation (e.g., rapid movements

between focuses in the presence of skipping or omitting some stimulus

during RAN) of eye movements, and thus gained better performance than

traditional measures. We also verified that the entropy of eye movements

significantly deceased with the age and the task complexity of RAN, and

significantly correlated with traditional eye-movement measures [e.g., total

time of naming (TTN)] and the RAN-related skills [e.g., selective attention

(SA), cognitive speed, and visual-motor integration]. Our findings may bring

some new insights into the understanding of both RAN and eye tracking

technique itself.
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Introduction

Developmental dyslexia, involving genetic and
environmental factors, is a hereditary and life-long
neurodevelopmental disorder characterized by several deficits in
reading and writing despite adequate intelligence (Association,
2013). Its etiology remains debated even after more than a
century of research, but more and more evidences (Goswami,
2015; Ullman et al., 2020; Araújo et al., 2021) suggest that
developmental dyslexia might be interpreted by: (i) Poor
phonological awareness; or/and (ii) visual-attentional deficits
and abnormal eye movement patterns. Both possibilities may
explain that the individuals with developmental dyslexia usually
have well-documented difficulties in visual naming, in addition
to their difficulties in reading.

Rapid automatized naming (RAN) tasks (Wolf et al., 2000;
Georgiou et al., 2008; Norton and Wolf, 2012; Snowling and
Melby-Lervag, 2016; Araújo and Faísca, 2019; McWeeny et al.,
2022) have been proposed for measuring individuals’ ability to
retrieve and name a series of letters, numbers, objects, or colors
sequentially as quickly as possible. RAN looks simple but is
actually associated with a broad range of cognitive processes,
including attention, executive functions (e.g., working memory,
inhibitory control), and linguistic processes (e.g., phonological
retrieval, visual-verbal connections) (Wolf et al., 2000; Georgiou
et al., 2008; Norton and Wolf, 2012; Snowling and Melby-
Lervag, 2016; Araújo and Faísca, 2019; McWeeny et al.,
2022). Its clinical utility has been reported in the evaluation
of several cognitive and neurobiological disorders, including
developmental dyslexia (Goswami, 2015), specific language
impairment (Snowling and Melby-Lervag, 2016), attention
deficit/hyperactivity disorder (ADHD) (Tannock et al., 2000),
and autism spectrum disorder (ASD) (Hogan-Brown et al.,
2014; Zhao J. et al., 2019). Remarkably, more and more
findings (Wolf et al., 2000; Georgiou et al., 2008; Norton
and Wolf, 2012; Snowling and Melby-Lervag, 2016; Araújo
and Faísca, 2019; McWeeny et al., 2022) have shown that
the RAN deficits might become even more prominent in
interpreting and characterizing the features of developmental
dyslexia than other deficits in cognitive skills, such as
phonological awareness, short-term memory, letter knowledge,
and vocabulary. Furthermore, previous meta-analyses have
documented the significant correlation between RAN and
reading abilities across various reading constructs and languages
(Swanson et al., 2003; Araújo et al., 2015; Hjetland et al.,
2017). Hence, it is hypothesized that the visual and cognitive
patterns or features during RAN might be promising predictors
of reading abilities and developmental dyslexia in children
(Swanson et al., 2003; Araújo et al., 2015; Hjetland et al., 2017).

Theoretically, to better understand the visual and cognitive
patterns or features during RAN, one should monitor the
focus points in sequence and record the essential ocular
activities during RAN, such as duration of time spent on some

particular areas of interest, rapid movements between focuses,
scanning path, temporal-spatial series of focuses, and so on.
However, traditional behavioral observation method cannot
be competent for recording such the detailed temporal-spatial
dynamical information during RAN (Wolf et al., 2000; Georgiou
et al., 2008; Norton and Wolf, 2012; Snowling and Melby-
Lervag, 2016; Araújo and Faísca, 2019; McWeeny et al., 2022).
Fortunately, eye-tracking method (Armstrong and Olatunji,
2012; Chawarska et al., 2013; Lai et al., 2013), among others,
has been intensively used in psychology for decades to reveal
the fundamental cognitive processes and mechanisms involved
in reading and visual perception, and thus has the feasibility
to characterize the essential features of RAN. However, to date,
there are only a few studies (Jones et al., 2008; Hogan-Brown
et al., 2014; Araújo et al., 2021) that focus on analyzing eye
movements during RAN.

The scales of eye-tracking measurements can be roughly
divided into three categories: temporal, spatial and count
(Weeks and Atlas, 2015). The temporal scales measure eye
movements in a time dimension, e.g., duration of time spent
on some particular areas of interest; the spatial scales measure
eye movements in a space dimension, e.g., fixation position,
fixation sequence, saccade length and scanpath patterns; and the
count scales measure eye movements on a count or frequency
basis, e.g., fixation counts and revisited fixation counts (Weeks
and Atlas, 2015). However, thus far, traditional eye-movement
measures (Wiig et al., 2000; Tran et al., 2014; Weeks and Atlas,
2015) have not considered fully the temporal-spatial patterns
of eye movements from the perspective of non-linear dynamics
or information theory. It is hypothesized that eye movements
can be evaluated using more powerful strategies (e.g., non-linear
time-series analysis).

On the other hand, the entropy, as a non-linear time-
series analysis method, has been successfully applied to
reflect the complexity and irregularity of a system from the
perspective of information theory. In particular, the entropy of
brain imaging time-series data has been well documented its
technical advantages in the evaluation of several neurobiological
disorders, including developmental dyslexia (Katan et al.,
2017), depression (Zhao L. et al., 2019), epilepsy (Acharya
et al., 2015), ADHD (Joy et al., 2021), and ASD (Milne
et al., 2019). Therefore, as a main motivation, we aimed to
test whether the entropy could be applied to measure eye
movements during RAN.

Taken together, we suggested an entropy-based method to
measure eye movements for the first time, which first mapped
eye movements during RAN in a time-series and then analyzed
the time-series by a proper definition of entropy from the
perspective of information theory. By recruiting 408 children
(206 males, aged 7–11 years), we aimed to: (i) Test whether the
entropy of eye movements can gain better performance than
traditional measures [e.g., total time of naming (TTN)] of eye
movements; (ii) test whether the entropy of eye movements has
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a developmental trend in children across the age stages; (iii)
test whether the entropy of eye movements may change with
the task complexity of RAN; and (iv) investigate the association
between the entropy of eye movements and the RAN-related
skills evaluated by the number cancelation test (Xie et al.,
2022), and between that and traditional measures (e.g., TTN)
of eye movements.

Materials and methods

All study procedures and research methods were carried out
in accordance with the Declaration of Helsinki by the World
Medical Association concerning human experimentation, and
were approved by the Research Ethics Committee at Southeast
University. Informed consent was obtained from all parents of
participating children and oral consent was obtained from all
participating children. Each child received an age-appropriate
toy after completing the study.

Study design and participants

The current study was conducted in Sanmenxia, Henan
Province, China, between September 2021 to March 2022, and
recruited 1,387 children (aged 7–11 years) from one primary
school. Each child recruited was assigned a coding number
according to the sequence number being selected randomly.
Only children, whose coding number were with units digit 3, 6,
or 9, were chosen to attend our experiments. Exclusion criteria
were as follows: (a) Abnormal hearing functioning (i.e., hearing
threshold levels bigger than 25 dB HL) and vision functioning
(i.e., naked or corrected monocular visual acuities below than
1.0); (b) significant sensory or motor impairment; (c) a history
of previous neurological or psychiatric disorders; (d) IQ score
lower than 85 or bigger than 115; (e) children who had repeated
a grade; and (f) incomplete measure data.

By steps above, a total of 408 children (206 males) attended
the current experiments (see Table 1 for detailed information).
Based on Weeks’s work (Weeks and Atlas, 2015), the sample size
to be collected in the case of 95% confidence level and +5%

TABLE 1 Demographic characteristics of participants.

Age groups Males (N, %) Total (N) Age (years)

7-years children 33 (50.00) 66 7.55± 0.24

8-years children 45 (47.87) 94 8.46± 0.28

9-years children 45 (54.88) 82 9.43± 0.28

10-years children 31 (45.59) 68 10.41± 0.30

11-years children 52 (53.06) 98 11.50± 0.28

Total 496 (50.49) 408 N/A

accuracy was estimated to be n = 384, so this survey met the
sampling requirement.

Experimental tasks

Rapid automatized naming tasks
In the original RAN paradigm, a 5 × 10 matrix of

stimuli (e.g., letters, numbers, colors, or objects) was visually
presented, in which the matrix used five repetitions of each
of the ten different stimuli with the order pseudo-randomized.
Participants were required to name the stimuli sequentially as
quickly and accurately as possible. To extend the application
of RAN to developmental dyslexia in Chinese, we suggested
a Chinese RAN (C-RAN) version, which substituted highly
frequently used Chinese characters for English letters. As shown
in Figure 1, the C-RAN paradigm in this study included
three experimental conditions, depending on the format of
stimuli to be named, i.e., Condition C1 (i.e., naming a series
of numbers sequentially), Condition C2 (i.e., naming a series of
numbers and Chinese characters sequentially), and Condition
C3 (i.e., naming a series of numbers, Chinese characters, and
colors sequentially).

Stimuli (shown in Figure 1) in each experimental condition
were presented on a 21.5-in. TFT LCD monitor (1,920 × 1,080
resolution) with the participant seated approximately 60–
90 cm away. A Tobii 4C (90 Hz; Tobii Technology AB,
Danderyd, Sweden) eye tracker, calibrated using a standard
9-point grid, was used to measure eye movements. For each
experimental condition, participants were required to name
the stimuli (numbers, Chinese characters, or colors) as quickly
and accurately as possible in a left-to-right and down fashion.
To confirm that participants can understand the experimental
rules and name the stimuli (numbers, Chinese characters, or
colors) correctly, they were asked to do a preparatory task
(i.e., a simplified C-RAN task with a 2 × 5 matrix of stimuli
visually presented) before a formal experiment. Participants
were excluded if their accuracy in the preparatory task was
below than 0.8. It should be remarked that no participants were
excluded in the current study due to their accuracy below than
0.8 in the preparatory task.

Number cancelation test
As a second experimental task, a number cancelation test

(NCT) (Xie et al., 2022) was conducted to measure a participant’s
RAN-related abilities. The examiner sat in front of a participant
and presented the participant with a standard B5-size paper
showing a series of numbers arranged in organized arrays with
26 rows and 40 columns. The participant, who hold a Digital
Pen (with an embedded smart mini-camera), was required to
find the number “3” (the targeted number) and then draw
a circle on it, but ignore all other numbers (distractors), as
quickly as possible within 2 min. The technical advantage
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FIGURE 1

The C-RAN paradigm presented a 5 × 10 matrix of stimuli (e.g., numbers, Chinese characters, or colors) in different conditions: (A) condition C1
(i.e., naming a series of numbers sequentially); (B) condition C2 (i.e., naming a series of numbers and Chinese characters sequentially); and (C).
(A) Condition C1 (i.e., naming a series of numbers sequentially); (B) condition C2 (i.e., naming a series of numbers and Chinese characters
sequentially); and (C) condition C3 (i.e., naming a series of numbers, Chinese characters, and colors sequentially). RAN, rapid automatized
naming; C-RAN, Chinese RAN.

of the Digital Pen was the usage of a smart mini-camera,
designed to measure the temporal-spatial features from the
perspective of handwriting kinematics, such as pre-movement
time (initiating), movement time (moving pen to a stimulus),
drawing time (completing a cancelation), circumference of a
drawn curve, real-time spatial positions (trajectory) of drawing,
and the time sequence of drawings (Xie et al., 2022). It should
be remarked (Xie et al., 2022) that the temporal-spatial features
may gain better performance than traditional measures of NCT
(e.g., the number of omissions, the number of correct responses,
the total number of cancelations, and completion time).

Measures

Measures of number cancelation test
The Digital Pen (with an embedded smart mini-camera)

can be used to measure a number of temporal-spatial
features during NCT (Xie et al., 2022). In this study, we
selected only three parameters (Xie et al., 2022) to evaluate
individuals’ performance during the NCT. Those parameters
were defined as follows.

(1) Speed of cognitive processing (SpC) was defined as:

SpC = M
N∑

i = 1

Ri (1)

where M was the amount of numbers in one row (here M = 40);
N was the total number of rows to be circled; Ri 1 represented
the case if any number in the i-th row has been circled; and
Ri 0 represented the case if no number in the i-th row
had been circled.

(2) Selective Attention (SA) was defined as:

SA =
1
T

m−ω

m+ o
× SpC (2)

where o was the amount of omitted targets; ω was the number of
distractors being circled; and m was the total amount of targets

that should be circled; T was the task time (here T = 120); SpC
was defined by Eq. (1).

(3) Averaged time of circlings (ATC) was defined as:

ATC =
1
n
×

n∑
i = 1

ti (3)

where n was the amount of numbers being circled; and ti was the
time to circle the i-th number.

Typical measures of eye movements
As verified in previous studies (Wiig et al., 2000), the mean

percentage of naming accuracy remained stable and did not
differ significantly for healthy children across the age stages.
Hence, to evaluate individuals’ RAN abilities, the majority of
studies and all published tests (Wolf et al., 2000; Georgiou et al.,
2008; Norton and Wolf, 2012; Snowling and Melby-Lervag,
2016; Araújo and Faísca, 2019; McWeeny et al., 2022) considered
only the TTN, which was widely used to measure the reading
fluency and speed. Consequently, the current study considered
the TTN, only, to evaluate eye movements during RAN.

Eye-movement entropy
Let (xt, yt) be the spatial coordinate of eye movements at the

time t. Hence, vt , the velocity of eye movement at the time t, can
be evaluated with the three-point central difference and thus be
calculated by:

vt =

√
(xt+2−xt+1)

2
+(yt+2−yt+1)

2
−

√
(xt−xt−1)

2
+(yt−yt−1)

2

2(1/fs)
,

(4)
where fs is the sampling frequency.

For an experimental condition Ci, the eye-movement
entropy (EME) can be defined by:

EME (Ci) = −
∑
j

pj(vt)ln(pj(vt)), (5)
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where vt is defined in Equation (4); and pj(vt) is a probability
distribution for vt 0 corresponding to the case when a
participant is naming a stimulus.

We generally required a data preprocessing before a
formal calculation of EME. First, we roughly eliminated the
contaminated data (e.g., extreme blink and saccade) according
to the Teager Kaiser energy operator (Tran et al., 2014)
and 3σ criterion. Then, we used a standard Hampel filter
(Allen et al., 2010) (with window size of 6) to smooth the
eye-tracking data. Finally, to convert the fixation into gaze,
we adopted the Adaptive Piecewise Constant Approximation
(APCA) algorithm (Chakrabarti et al., 2001) to slide and
segment the eye-tracking data.

Entropy increase
The entropy increase Dij, which is caused by the change of

experimental conditions from Cj to Ci, can be defined by:

Dij = EME (Ci)− EME
(
Cj
)
. (6)

Influence of small perturbation of eye
movements on eye-movement entropy
measures

To reveal the performance difference between EME and
traditional measures (e.g., TTN) of eye movements, we
randomly added “small perturbation” (e.g., rapid movements
between focuses in the presence of skipping or omitting some
stimulus during RAN) with different amplitude to the velocity
of the original eye movement, under the condition that TTN
remained unchanged. Then, we aimed to test whether EME
may reflect the amplitude change of “small perturbation”
of eye movements.

Statistical analysis

As the first target, we aimed to investigate how the age and
gender influence EME during C-RAN tasks. For this purpose,
we conducted a series of two-way ANOVA for EME in different
experimental conditions, according to the flowchart shown in
Figure 2. As shown below, we verified that our data (i.e.,
EME measures) failed to pass both normality test and variance
homogeneity test, so we carried out a series of non-parametric
two-way ANOVA procedures (i.e., Scheirer-Ray-Hare tests).
In addition, we applied the Kruskal Wallis method and
Dunn’s post-hoc test for multiple comparisons with Benjamini-
Hochberg procedure to control the false discovery rate.

As noted, C-RAN task in this study actually included three
experimental conditions. As the second target, we expected
to understand how the experimental conditions and gender
influence the EME increase. For this purpose, we conducted a
series of two-way ANOVA, according to the flowchart shown
in Figure 2. Again, we found that our data failed to pass both
normality test and variance homogeneity test, so we carried out

a series of non-parametric tests and used multiple comparisons
with controlled false discovery rate.

As the third target, we used the Pearson’s approach to
investigate the association between EME and measures of the
NCT (Xie et al., 2022), and that between EME and traditional
measure (e.g., TTN) of eye movements in three conditions.

Finally, we expected to test whether EME may be
more sensitive to small perturbation of eye movements than
traditional eye-movement measures (e.g., TTN).

All statistical analysis above was conducted with R language
(version 4.0.2).

Results

General information of participants

The current study investigated a total of 408 children,
including 206 males and 202 females. The ratio of males to
females was 1.01:1 and the participants were distributed in 5 age
groups, see Table 1 for detailed information. We verified that
there was no significant gender difference (χ2 = 1.81, p = 0.77).

Main effects of age and gender on
eye-movement entropy

As a main motivation, we aimed to investigate how the
age and gender influence EME. According to the statistical
flowchart shown in Figure 2, we verified that our data (i.e.,
EME measures) failed to pass both normality test and variance
homogeneity test (p’s ≥ 0.05). Hence, we conducted a series
of non-parametric two-way ANOVA procedures (i.e., Scheirer-
Ray-Hare tests) to reveal the age and gender main effects
as well as for their interaction. Our findings showed that
in all experimental conditions, the main effect of age was
significant, but the main effect of gender was not significant, and
there was no any interaction effects (Gender: p’s > 0.05; Age:
p’s < 1× 10−4; Gender∗Age: p’s > 0.05).

According to the statistical flowchart shown in Figure 2, we
further utilized the Kruskal Wallis method and Dunn’s post hoc
for multiple comparisons with Benjamini-Hochberg procedure
to control the false discovery rate. Figure 3 summarized our
results and verified that:

(1) For EME in Condition C1 (see Figure 3A): (i) EME
significantly deceased with the age in a monotonic progression
(p’s < 0.05, adjusted); (ii) EME did not differ significantly
between 9- and 10-years children (p> 0.05), implying that there
was a developmental plateau for 9–10-years children.

(2) For EME in Condition C2 (see Figure 3B): (i) EME
significantly deceased with the age in a monotonic progression
(p’s < 0.05, adjusted); (ii) EME did not differ significantly
between 8- and 9-years children and between 10- and 11-years
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FIGURE 2

The flowchart of statistical analysis.

children (p’s > 0.05), implying that there was a developmental
plateau for both 8–9- and 10–11-years children.

(3) For EME in Condition C3 (see Figure 3C): (i) EME
significantly deceased with the age in a monotonic progression
(p’s < 0.05, adjusted); (ii) EME did not differ significantly
between 9- and 10-years children (p> 0.05), implying that there
was a developmental plateau for 9–10-years children.

Entropy changed with task complexity

C-RAN task in this study included three experimental
conditions, i.e., Conditions C1, C2 and C3. It is clear from
Figure 1 that the task complexity will be increased if the
experimental condition is changed from C1 to C2, from C1
to C3, or from C2 to C3. We aimed to investigate how
the experimental conditions and age influenced the entropy
increases Dij defined in Eq. (6).

According to the statistical flowchart shown in Figure 2,
we again verified that our data (the values Dij) failed to pass
both normality test and variance homogeneity test (p’s ≥ 0.05).
Hence, we conducted a series of non-parametric two-way
ANOVA procedures to reveal the condition and gender main
effects as well as for their interaction. Our findings showed
that: (i) The main effect of condition was significant in all age
stages, but the main effect of gender was not significant in all
age stages (Gender: p’s > 0.05; Condition: p’s < 1 × 10−4); and

(ii) there was a significant interaction effect between gender and
condition in 7-years children (p < 0.05), but there were not in
other ages (p’s > 0.05).

According to the statistical flowchart shown in Figure 2, we
utilized non-parametric multiple comparisons with controlled
false discovery rate. Figure 4 summarized our results and
verified that:

(1) For 7-years children (see Figure 4A): The entropy
increaseD21 in males was significantly lower than that in females
(p < 0.05, adjusted), but the entropy increases D32 and D31 did
not differ significantly between males and females (p’s > 0.05,
adjusted);

(2) For 7-years males (see Figure 4A): There was a
significant difference between D21 and D31 (p < 1 × 10−4,
adjusted), and between D32 and D31 (p < 1× 10−4, adjusted);

(3) For 7-years females (see Figure 4A): There was a
significant difference between D21 and D31 (p < 1 × 10−4,
adjusted), and between D32 and D31 (p < 0.01, adjusted);

(4) For children aged 8–11 years (see Figure 4B):
There were significant differences among D21, D32 and D31

(p’s < 1× 10−4, adjusted).

Correlation analysis

To illustrate the effectiveness of EME, it is crucial to analyze
the correlation between EME and other abilities related with
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FIGURE 3

Eye-movement entropy changed with the age in different conditions: (A) condition C1 (i.e., naming a series of numbers sequentially); (B)
condition C2 (i.e., naming a series of numbers and Chinese characters sequentially); and (C) condition C3 (i.e., naming a series of numbers,
Chinese characters, and colors sequentially). ns: p > 0.05; *p < 0.05; **p < 0.01; ***p < 1 × 10-3; ****p < 1 × 10−4.

FIGURE 4

Entropy increases caused by the change of experimental conditions in: (A) children aged 7 years; and (B) children aged 8–11 years, where
entropy increases D21, D32, and D31, defined in Equation (6), were corresponding to the EME change from Condition C1 to C2, from Condition
C2 to C3, and from Condition C1 to C3, respectively. EME: eye-movement entropy; *: p < 0.05; **: p < 0.01; ****: p < 1 × 10−4.

RAN. Table 2 summarized our results and showed that: (i) There
was a significant negative association between SA and EME in
three experimental conditions with r between –0.43 and –0.36
(p’s< 1× 10−4); (ii) There was a significant negative association
between SpC and EME in three experimental conditions with
r between –0.38 and –0.30 (p’s < 1 × 10−4); and (iii) There

TABLE 2 Correlations between measures of the NCT and EME in
three conditions.

Condition C1 Condition C2 Condition C3

SA –0.43**** –0.36**** –0.36****

SpC –0.38**** –0.30**** –0.30****

ATC 0.36**** 0.28**** 0.28****

****p < 10−4 .
EME, eye movement entropy; NCT, number cancelation test.

was a significant positive association between ATC and EME
in three experimental conditions with r between 0.28 and 0.36
(p’s < 1× 10−4).

Furthermore, by Pearson’s correlation method, we analyzed
the association between both EME and TTN in different
experimental conditions during C-RAN. Table 3 summarized
our results and showed that there was a significant positive
association between EME and TTN in all experimental
conditions with r between 0.95 and 0.97 (p’s < 1× 10−4).

Advantages of eye-movement entropy

TTN measures the total time to complete the whole RAN
task, and is proven to be strongly related with the reading
fluency and speed. However, TTN ignores many dynamical
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TABLE 3 Correlations between EME and TTN in three experimental
conditions.

Correlation coefficient

Condition C1 (i.e., naming a series of numbers
sequentially)

0.97****

Condition C2 (i.e., naming a series of numbers
and Chinese characters sequentially)

0.97****

Condition C3 (i.e., naming a series of
numbers, Chinese characters, and colors
sequentially)

0.95****

****p < 10−4 .
EME, eye-movement entropy; TTN, total time of naming.

details during RAN, and cannot monitor the focus points
in sequence and record the essential visual activities during
RAN, such as pauses over informative regions of interest, rapid
movements between focuses, scanning path, the presence of
skipping or omitting, and temporal-spatial series of focuses.
Hence, even when two children have the same TTN, they
both might have different reading-related abilities. In the
meanwhile, EME has been well-documented to reflect the
complexity and irregularity of a system and illustrated its
technical advantages in the evaluation of several neurobiological
disorders. Therefore, it is not surprising that EME can obtain
better performance than TTN in evaluating individual’s RAN
abilities. Figure 5 illustrated a case that participants had the
same TTN (e.g., TTN = 18 s) but had different reading-
related abilities, such as EME, selective attention (measured
by SA), cognitive speed (measured by SpC), and visual-motor
integration skill (measured by ATC). This indicates that EME
might be more sensitive to evaluate reading-related abilities than
TTN (ignoring many dynamical details).

Furthermore, we randomly added “small perturbation” (e.g.,
rapid movements between focuses in the presence of skipping or
omitting some stimulus during RAN) with different amplitude

to the velocity of the original eye movement, under the
condition that TTN remained unchanged. Figure 6 summarized
our results in 11-years children and showed that the entropy
increases Dij basically increased with the amplitude of small
perturbation, but TTN remained unchanged. This implies that
the entropy may reflect small perturbation of eye movements
and thus have higher sensitivity, but traditional eye-movement
measure (e.g., TTN) may not.

Discussion

Eye tracking methodology (Jones et al., 2008; Armstrong
and Olatunji, 2012; Association, 2013; Chawarska et al., 2013;
Lai et al., 2013; Hogan-Brown et al., 2014) has the feasibility to
characterize the essential features of RAN. However, traditional
measures of eye movements ignore many details about the visual
and cognitive processing of RAN, and are usually associated
with the duration of time spent on some particular areas
of interest, first fixation, fixation counts, revisited fixation
counts, saccadic velocities, or saccadic amplitudes. To cope
with the drawback of traditional measures, we suggested an
entropy-based method to measure eye movements for the first
time, which first mapped eye movements during RAN into a
time-series (containing detailed dynamical information of eye
movements), and then analyzed the time-series by a proper
definition of entropy. Findings showed that the entropy of eye
movements was more sensitive to reflect small perturbation
(e.g., rapid movements between focuses in the presence of
skipping or omitting some stimulus) of eye movements during
RAN, and thus gained better performance than traditional
measures (e.g., TTN). This may be interpreted by the fact that
the entropy, reflecting the complexity and irregularity of a
system, has well-documented its clinical utility in the evaluation
of several neurobiological disorders. We also confirmed that the

FIGURE 5

Participants had the same TTN (e.g., TTN = 18 s) during RAN but had different EME, SA, SpC, and ATC: (A) EME vs. SA; (B) EME vs. SpC; and
(C) EME vs. ATC. EME, eye-movement entropy; SA, selective attention; SpC, speed of cognitive processing; ATC, averaged time of circlings. TTN,
total time of naming; RAN, rapid automatized naming.

Frontiers in Human Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2022.945406
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-945406 August 11, 2022 Time: 6:15 # 9

Wang et al. 10.3389/fnhum.2022.945406

FIGURE 6

Entropy increases D21, D32, and D31 changed with the amplitude
of small perturbation, ranging from level 0 to 5, where TTN
remained unchanged. TTN, total time of naming.

entropy of eye movements significantly deceased with the age
and the task complexity of RAN.

To illustrate the effectiveness of EME measure, we required
to test whether there were strong correlations between EME and
traditional measures of eye movements, as well as that between
EME and other RAN-related skills. Findings showed that: (i)
There was a significant positive association between EME and
TTN in all experimental conditions (p’s < 1 × 10−4); (ii) There
were significant negative associations between SA and EME, and
between SpC and EME in three conditions (p’s < 1 × 10−4);
and (iii) There was a significant positive association between
ATC and EME in three conditions (p’s < 1 × 10−4). This
implies that children with lower EME might have lower TTN
and ATC, and higher SA and SpC. On the other hand,
individuals with lower TTN may have higher RAN abilities;
while, individuals with lower ATC and higher SA and SpC
may have better performance during NCT. Hence, children
with lower EME may have higher RAN abilities and better
performance during NCT; while, children with higher EME
may have lower RAN abilities and worse performance during
NCT. This finding supports that the EME increase or reduction
might be considered as a feature to identify the difference of
RAN between typically developmental children and children
with developmental dyslexia or learning disabilities.

The NCT was suggested to measure some RAN-related
abilities, which involved cognitive skills in selective and
sustained attention, motor inhibition, visuospatial search,
planning, organizing, psychomotor speed, intact visual-
perception abilities, fine motor coordination, and sensory
motor integration (Xie et al., 2022). It seems in theory that both
RAN and NCT may share several visual and cognitive neural
circuits because they both need a similar “visual scanning”

processing. In addition, NCT and RAN are associated with
“writing” and “reading,” respectively. Hence, it is hypothesized
that RAN, in combination with NCT, may bring some new
insights into the understanding of developmental dyslexia and
learning disabilities (Benjamin et al., 2019).

RAN has been well studied in the evaluation of
several cognitive and neurobiological disorders, including
developmental dyslexia (Goswami, 2015), language disorders
(Snowling and Melby-Lervag, 2016), ADHD (Tannock et al.,
2000), and ASD (Hogan-Brown et al., 2014; Zhao J. et al.,
2019). In particular, previous meta-analyses have verified
the significant correlation between RAN and reading across
various reading constructs and languages (Swanson et al., 2003;
Araújo et al., 2015; Hjetland et al., 2017), and thus, RAN might
predict future reading across different ages, ability levels, and
languages. More importantly, RAN deficits might become even
more prominent in interpreting and characterizing the features
of developmental dyslexia than other deficits in cognitive
skills, such as phonological awareness, short-term memory,
letter knowledge, and vocabulary (Wolf et al., 2000; Georgiou
et al., 2008; Norton and Wolf, 2012; Snowling and Melby-
Lervag, 2016; Araújo and Faísca, 2019; McWeeny et al., 2022).
Therefore, it is significant to reveal the essential mechanisms
underlying RAN. As noted, our research was carried out along
this technical direction, and confirmed that the entropy of
eye movements may provide more perspectives and deeper
understanding of RAN.

Due to potential applications (Swanson et al., 2003; Araújo
et al., 2015; Hjetland et al., 2017) of RAN to interpret cognitive
and neurobiological disorders, it is crucial to gain the normative
data of RAN across a wide range of ages. However, this question
has not been well investigated (Wiig et al., 2000; Hjetland
et al., 2017). Indeed, thus far, there is an American normative
data (Wiig et al., 2000), only. Even though the current study
did not focus on a Chinese normative data of RAN, it still
provided sufficient referenced information about the Chinese
normative data in children aged 7–11 years, as well as how
the age and gender influenced the Chinese normative data. In
particular, our findings showed in children aged 7–11 years
that: (i) EME during RAN deceased significantly with the
age in a monotonic progression, implying a trend of entropy
reduction with the increase of age; and (ii) EME during RAN
did not differ significantly between males and females for all age
stages. This is the first time to report such a result associated
with the Chinese normative data of RAN. Remarkably, we
showed that there were developmental plateaus in abilities in
Condition C1 (i.e., naming a series of numbers sequentially)
and Condition C3 (i.e., naming a series of numbers, Chinese
characters, and colors sequentially) for 9–10-years children,
and in abilities in Condition C2 (i.e., naming a series of
numbers and Chinese characters sequentially) for 8–9- and
10–11-years children. In addition, our finding is consistent
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with previous studies (Wolf et al., 2000; Georgiou et al., 2008;
Norton and Wolf, 2012; Snowling and Melby-Lervag, 2016;
Araújo and Faísca, 2019; McWeeny et al., 2022) that main
effect of gender is not significant in RAN tasks. It is clear
that: (i) The entropy increase D21, corresponding to the EME
change from Condition C1 (i.e., naming a series of numbers
sequentially) to Condition C2 (i.e., naming a series of numbers
and Chinese characters sequentially), represents the influence
of Chinese characters on the C-RAN; (ii) The entropy increase
D32, corresponding to the EME change from Condition C2 (i.e.,
naming a series of numbers and Chinese characters sequentially)
to Condition C3 (i.e., naming a series of numbers, Chinese
characters, and colors sequentially), represents the influence
of colors on the C-RAN; and (iii) The entropy increase D31,
corresponding to the EME change from Condition C1 (i.e.,
naming a series of numbers sequentially) to Condition C3 (i.e.,
naming a series of numbers, Chinese characters, and colors
sequentially), represents the influence of Chinese characters
and colors on the C-RAN. Findings (see Figure 4) showed
that D31 was lower than D21 and D32; and D21 was lower
than D32. This implies that EME might increase with the
task complexity of RAN. This inference is consistent with the
previous researches (Åvall et al., 2019; Georgiou and Parrila,
2020) that alphanumeric RAN (e.g., naming numbers or letters)
may have higher cognitive complexity and activate a wider
range of brain regions than non-alphanumeric RAN (e.g.,
naming colors or objects). It should be remarked (Åvall et al.,
2019; Georgiou and Parrila, 2020) that alphanumeric RAN
tasks are more strongly related to future reading than non-
alphanumeric tasks.

It is natural to adopt a Chinese version of RAN in
the understanding of developmental dyslexia in Chinese. The
difference between both the original RAN and Chinese version
is due to the features of Chinese characters: (i) Chinese
characters not only have shape and sound attributes like English
letters, but also represent meaning; (ii) Chinese characters
have no clear form-to-sound conversion rules, so readers need
to remember the pronunciation of Chinese characters; and
(iii) The visual complexity of Chinese characters are much
higher than that of English letters. Consequently, compared
with the original RAN, the Chinese version may have higher
cognitive complexity, and thus activate a wider range of brain
regions (Liao et al., 2015; Peng et al., 2017). To extend the
application of RAN to developmental dyslexia in Chinese, we
suggested a Chinese version of RAN (i.e., the C-RAN) by
substituting Chinese characters (highly frequently used) for
English letters. We expect that the C-RAN should be more
suitable in the evaluation of developmental dyslexia in Chinese
than the original RAN.

The entropy can be used to reflect the complexity and
irregularity of a system from the perspective of information
theory. Its advantages have been well documented in the
analysis of brain imaging time-series for the evaluation of

neurobiological disorders, including developmental dyslexia
(Katan et al., 2017), depression (Zhao L. et al., 2019), epilepsy
(Acharya et al., 2015), ADHD (Joy et al., 2021), and ASD (Milne
et al., 2019). In particular, it has been verified (Acharya et al.,
2015; Katan et al., 2017; Milne et al., 2019; Zhao L. et al., 2019;
Joy et al., 2021) that the higher the entropy, the higher the
complexity and irregularity of the brain will be. This inference
has been widely applied to better understand the entropy
abnormality in different context. Remarkably, we showed for
the first time that the entropy may be extended to measure
eye movements during RAN, and gain better performance than
traditional measures.

The entropy reduction is a well-known and well-acceptable
principle in physics, and thus can be easily used for data
interpretation. For instance, we can infer from the entropy
reduction principle that: (i) The RAN abilities may increase with
the age, then the entropy of eye movements during RAN may
decrease with the age; (ii) Individuals with higher RAN-related
abilities may generally have lower entropy of eye movements
during RAN; and (iii) RAN tasks with higher complexity may
generally activate bigger entropy of eye movements. As noted
above, those inferences have been verified in the current study.
We expect that the entropy reduction principle can be applied
to reveal the abnormities of RAN deficits and developmental
dyslexia. Because eye tracking technique is fundamental for
psychological research, the entropy-based measure method
suggested in this study may have the potential to be used in a
very broad prospect of applications.

Conclusion

This article suggested an entropy-based method to measure
eye movements for the first time, which first mapped eye
movements during RAN in a time-series and then analyzed
the time-series by a proper definition of entropy from the
perspective of information theory. Findings showed that EME
gained better performance (e.g., more sensitive to reflect “small
perturbation” of eye movements during RAN) than traditional
measures, and decreased with the age and the task complexity of
RAN. In addition, this study also verified that EME significantly
correlated with traditional eye-movement measure (e.g., TTN)
and the RAN-related skills (e.g., SA, cognitive speed, and
visual-motor integration). Our findings may bring some new
insights into the understanding of both RAN and eye tracking
technique itself.
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