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m6A‑related lncRNAs predict 
prognosis and indicate immune 
microenvironment in acute myeloid 
leukemia
Fangmin Zhong1,2, Fangyi Yao1, Ying Cheng1, Jing Liu1, Nan Zhang1, Shuqi Li1, Meiyong Li1, 
Bo Huang1,2* & Xiaozhong Wang1,2*

Acute myeloid leukemia (AML) is a complex hematologic malignancy. Survival rate of AML patients 
is low. N6‑methyladenosine  (m6A) and long non‑coding RNAs (lncRNAs) play important roles in 
AML tumorigenesis and progression. However, the relationship between lncRNAs and biological 
characteristics of AML, as well as how lncRNAs influence the prognosis of AML patients, remain 
unclear. In this study. In this study, Pearson correlation analysis was used to identify lncRNAs related 
to  m6A regulatory genes, namely  m6A‑related lncRNAs. And we analyzed their roles and prognostic 
values in AML.  m6A‑related lncRNAs associated with patient prognosis were screened using univariate 
Cox regression analysis, followed by systematic analysis of the relationship between these genes and 
AML clinicopathologic and biologic characteristics. Furthermore, we examined the characteristics 
of tumor immune microenvironment (TIME) using different IncRNA clustering models. Using LASSO 
regression, we identified the risk signals related to prognosis of AML patients. We then constructed 
and verified a risk model based on  m6A‑related lncRNAs for independent prediction of overall survival 
in AML patients. Our results indicate that risk scores, calculated based on risk‑related signaling, were 
related to the clinicopathologic characteristics of AML and level of immune infiltration. Finally, we 
examined the expression level of TRAF3IP2‑AS1 in patient samples through real‑time polymerase 
chain reaction analysis and in GEO datasets, and we identified a interaction relationship between 
SRSF10 and TRAF3IP2‑AS1 through in vitro assays. Our study shows that  m6A‑related lncRNAs, 
evaluated using the risk prediction model, can potentially be used to predict prognosis and design 
immunotherapy in AML patients.

Acute myeloid leukemia (AML) is a type of hematologic malignancy characterized by malignant proliferation of 
immature bone marrow stem cells in the bone marrow and peripheral blood. AML is highly heterogenous and 
extremely invasive. The French–American–British (FAB) classification divides AML into eight types: M0–M71. 
The pathogenesis of AML is still unclear. Numerous studies have examined factors affecting the tumorigenesis 
and progression of AML from the perspectives of molecular genetics, immunophenotyping, and profiling of 
gene-expression2, and  genomic3,4 and epigenetic  mutations5,6. These mutations prevent the differentiation of bone 
marrow hematopoietic stem cells (HSCs)/progenitor cells and produce self-renewing leukemia cells, leading to 
generation of malignant clones of myeloid cells. Delineating the pathogenesis of AML has led to new therapies, 
such as FLT3 mutation  inhibitors7 and epigenetic therapy of TP53  mutations8, that have improved the quality of 
life for AML  patients9. AML can occur at any age. The incidence of AML increases with age, and it is most com-
monly observed in the  elderly10. Treating AML is challenging because it is a highly heterogenous malignancy. 
Standard treatments, such as chemotherapy or HSC transplantation (HSCT), are usually used after induction 
therapy according to the individual characteristics of the  patient11. However, the survival rate of AML patients 
treated using standard regimens remains low. Recurrence and related complications are the most common 
causes of death in AML  patients12. AML recurrence is often characterized by new mutations that are resistant 
to  chemotherapy13. The molecular complexity of AML warrants further studies aimed at investigating whether 
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drugs acting on specific genes can improve survival in this patient population. Changes in the immune micro-
environment of AML tumors can exacerbate the disease. Immunotherapy has been shown to activate the activity 
of antileukemic cells that show potential in the treatment of  AML14. Therefore, it is important to systematically 
analyze the characteristics of AML tumor immune microenvironment and uncover targets for AML immuno-
therapy in clinical  applications15. To diagnose and treat AML patients, it is necessary to understand the survival 
status of the patients. Prediction and evaluation of clinical prognosis can be facilitated by the discovery of new 
molecular biomarkers. Hence, the identification of AML prognostic markers having identifiable characteristics, 
and establishment of AML risk prediction models, will play important roles in the treatment and prognosis of 
AML patients.

Epigenetic regulations, such as RNA methylation, affect the tumorigenesis and progression of  AML16. Among 
these epigenetic regulations, N6-methyladenosine  (m6A), the most common RNA modification in eukaryotic 
cells, is controlled by a reversible reaction catalyzed by methyltransferases (writers), demethylases (erasers), and 
methylation-recognition proteins (readers), which regulate  m6A modifications in  RNA17.  m6A methylation also 
affects RNA epigenetic functions such as mRNA stability, nuclear speed, translation, and  degradation18,19. Many 
studies have shown that  m6A RNA methylation plays an important role in maintaining the balance of self-renewal 
and differentiation of hematopoietic stem cells (HSCs). For example, the  m6A reader YTHDF2 suppresses pro-
inflammatory pathways and sustains the function of  HSC20.  m6A RNA methylation balances the cellular fate of 
HSCs by affecting symmetric  differentiation21.  m6A methyltransferase METL3 can cause the accumulation of 
HSCs in the bone marrow and hinder the differentiation of  HSCs22. Compared with normal HSCs,  m6A methyla-
tion promotes the formation of more phase-separated nuclear bodies in AML cells to maintain the undifferenti-
ated state of  leukemia23. At present, Studies on  m6A in AML have been mainly focused on mRNA modifications. 
For example, METTL 3 and METTL 14 are up-regulated in all subtypes of AML, and overexpression of these two 
genes promotes the proliferation of AML  cells24,25. The RNA demethylase, fat mass and obesity-associated protein 
(FTO), reduces aerobic glycolysis in leukemia  cells26. Inhibition of  m6A reader protein YTHDF2 expression 
promotes apoptosis of leukemic stem  cells27. The RNA-binding protein YBX1 maintains the survival of myeloid 
leukemia cells in an  m6A-dependent  manner28. These findings indicate that  m6A modification is closely related 
to the tumorigenesis and progression of AML. Normal hematopoiesis depends on HSCs,  m6A RNA methylation 
also affects the function of HSCs. METTL3 inhibits myeloid differentiation by further activating the translation 
of related proteins by  m6A modification on mRNA of genes such as  MYC24. METTL 14 enhances the mRNA 
stability and translation of the oncogene transcription factors MYB and  MYC25. Many studies have shown that 
YTHDF 2 also plays an important role in maintaining the resting state of  HSCs29,30. These findings indicate the 
importance of some  m6A regulatory factors in normal hematopoietic function.

m6A modification also occurs in microRNAs, long non-coding RNAs (lncRNAs), and circular  RNAs31–33. 
LncRNAs, which are RNA molecules having a transcript length of more than 200 nucleotides, account for a 
quarter of the total number of genes in the human  genome34. lncRNAs may not encode proteins, but do partici-
pate in the regulation of coding genes at various levels, thereby playing important roles in various physiological 
functions of the human  body35. LncRNAs are also involved in the many biological processes of AML such as in 
p53- and BCL-2-dependent regulation of AML  tumorigenesis36,37. Aberrations in lncRNAs abnormally promote 
self-renewal in  HSCs38, participate in the epigenetic regulation of chromosomal  translation39, and regulate glu-
cose metabolism to further regulate the progression of  AML40. These findings indicate that abnormal expression 
or regulation of lncRNAs plays an important role in AML tumorigenesis and progression. Many studies have 
confirmed the existence of a relationship between lncRNAs and  m6A  modification41. This relationship has also 
been shown to affect  carcinogenesis42. LncRNAs modify the expression of cyclin genes via  m6A modification 
and cell-cycle  arrest43. LncRNAs also promote the phosphorylation and degradation of oncogenes to inhibit the 
progress of colorectal cancer and are negatively regulated by  m6A-reading  proteins44.  m6A-reading proteins medi-
ate the degradation of lncRNAs and promote the proliferation of endometrial  cancer45. However,  m6A-modified 
lncRNAs, which exert regulatory effects in many diseases, have rarely been examined in AML.

Studying the functions of  m6A-related lncRNAs in AML may have practical significance for the clinical 
diagnosis and treatment of patients with AML. In our present study, we used Pearson correlation analysis to 
identify lncRNAs related to  m6A regulatory genes, namely  m6A-related lncRNAs, examined the biological rela-
tionship between  m6A-related lncRNAs and AML, and evaluated the role of lncRNAs in prognostic prediction. 
We also extracted the expression profiles of lncRNAs and  m6A regulatory genes from the Cancer Genome Atlas 
(TCGA) database, analyzed the characteristics of  m6A-related lncRNAs, and examined their roles in the AML 
tumor immune microenvironment. Additionally, we established and verified a new prognostic model based on 
 m6A-related lncRNAs for the prediction of overall survival (OS) in patients with AML.

Materials and methods
Data collection and processing. RNA-sequencing (RNA-seq) data for the blood samples, and corre-
sponding clinical information on 151 AML patients and 755 healthy participants, were downloaded from The 
Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer. gov/) and Genotype-Tissue Expression (GTEx, https:// 
www. gtexp ortal. org/) databases, two gene expression profile data sets (gse65263 and  gse11486846) were obtained 
from gene expression compilation (GEO, https:// www. ncbi. nlm. nih. gov/ geo/) database, respectively, normal-
ized gene expression was measured as fragments per kilobase of transcript per million mapped reads (FPKM) 
and log2-based transformation, and the two RNA-seq datasets were then combined. The R x64 4.0.3 software 
package was used for data analysis. Using human genome annotation data, we identified the lncRNAs in the 
dataset, and extracted data on the expression of 23  m6A regulatory genes (i.e., METTL3, METTL14, METTL16, 
WTAP, VIRMA, ZC3H13, RBM15, RBM15B, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPC, 
FMR1, LRPPRC, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, RBMX, FTO, and ALKBH5) that had been described 
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extensively in previous studies. The ggpubr package was used to construct a box plot showing differential gene 
expression. Next, we used the limma package to screen out  m6A-related lncRNAs based on analysis using Pear-
son’s correlation coefficient (absolution correlation coefficient > 0.6, P < 0.001). Then, we used igraph to map the 
co-expression networks of  m6A regulatory genes and related lncRNAs.

Identification and expression analysis of  m6A‑related lncRNAs associated with AML prog‑
nosis. The RNA-seq data obtained for AML patient samples were merged with the corresponding patient 
clinical information, followed by removal of samples for which information pertaining to survival time or sta-
tus was unavailable. The “survival” package was used to perform univariate Cox regression analysis to identify 
the  m6A-related lncRNAs associated with AML prognosis at the significance cutoff of P < 0.001. Expression of 
 m6A-related lncRNAs associated with AML prognosis was evaluated in samples obtained from AML patients 
and healthy participants. ggpubr and pheatmap packages were used to construct the box plots and heatmap.

Relationship between  m6A‑related lncRNAs clustering subgroups and AML clinicopathologi‑
cal characteristics evaluated using consensus cluster analysis. Next, we investigated the relation-
ship between  m6A-related lncRNAs and clinicopathological characteristics of AML. The ConsensusClusterPlus 
package (50 iterations, sampling rate of 80%) was used to perform a consensus cluster analysis on AML samples 
based on the expression of  m6A-related lncRNAs associated with AML prognosis. Then, different AML sam-
ples were divided into different subgroups, and the biological characteristics of the subgroups were analyzed 
to evaluate the relationship between  m6A-related lncRNAs and AML. Subsequently, the “survival” package was 
used to analyze the survival of different subgroups. The pheatmap package was used to visualize the expression 
of  m6A-related lncRNAs associated with AML prognosis, and to describe the characteristics of clinicopathologi-
cal factors among the different subgroups. The ggplot2 and ggpubr packages were used to compare the immune 
checkpoint, expression of programmed death-ligand 1 (PD-L1), between the subgroups, and between tumor-
bearing and healthy controls. Lastly, the corrplot package was used to analyze correlations between PD-L1 
expression and 15  m6A-related lncRNAs associated with AML prognosis.

Gene set enrichment analysis (GSEA) and evaluation of AML tumor immune microenviron‑
ment, and Analysis of the relationship between the clustering subtypes of  m6A‑related lncR‑
NAs and the biological characteristics of AML. GSEA was used to analyze the relationship between 
the  m6A-related lncRNAs clustering subtypes and biological characteristics of AML. GSEA was also used to 
compare the abnormally activated Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways 
between the differently clustered  subgroups47. The CIBERSORT algorithm was used to calculate the infiltration-
ratio scores for 22 types of immune cells in the clustering subgroups based on the expression of characterizing 
genes. The sum of the infiltration ratio scores for each immune cell was 1. The ESTIMATE algorithm was used 
to calculate the ratio of cell components, including immune and stromal cells, in the clustering subgroups, indi-
rectly reflecting the purity of tumors between the different subgroups.

Screening of risk‑related signals, and risk‑model construction and verification. Cox regression 
analysis with least absolute shrinkage and selection operator (LASSO) penalty was used to identify the combi-
nation of  m6A-related lncRNAs having the highest prognostic value. Optimal model parameters were used for 
model construction. The TCGA AML queen was randomly divided into a training set and a test set. The risk 
score of AML patients in the training set was calculated using the following equation:

Risk score = AFF2-IT1 ×  (−  0.3 189 739 885 31144) + LINC02593 × (− 0.0297508127431019) + AC000
120.2 × (− 0.0972888222752296) + AC048382.1 × (− 1.04822722017167) + AL391834.1 × (− 0.0598646-
684481577) + TRAF3IP2-AS1 × (− 0.266546979989193), where gene ID refers to the expression level of each 
gene, and each value after the gene ID refers to the coefficient of that gene. AML patients were divided into a 
low-risk group and a high-risk group using median risk score. The “survival” package was used to analyze the 
survival of patients within the two groups, and the pheatmap package was used to construct heatmaps of model 
factors, patient survival time, and survival curves of the two groups. Receiver operating characteristics (ROC) 
curve analysis was used to evaluate the accuracy of the risk prediction model.

Independent prognostic analyses of the risk model. Next, we used univariate and multivariate inde-
pendent prognostic analyses of risk scores and clinicopathological factors (i.e., gender, age, and FAB classifica-
tion) to evaluate the independent prognostic value of the risk prediction model. Factors with a P < 0.05 were 
considered prognostic-related factors. In addition, all AML patients were stratified according to their age and 
gender into an elderly group (≥ 60 years old) and a young group (< 60 years old), and into a male group and 
female group, to calculate the risk score for all the patients in different groups. Patients were then divided into 
high- and low-risk groups based on median risk score, and were evaluated using survival analysis to determine 
the survival status of patients in different groups. The independent prognostic values of the risk prediction 
model were then further evaluated based on the prognostic analyses described above.

Correlation analysis of risk‑related signaling, clinical characteristics of AML, and immune‑cell 
infiltration. The ggpubr package was used to analyze the distribution of risk scores with respect to different 
clinical characteristics (i.e., clinical pathologic factors, subgroup clustering of  m6A-related prognostic lncRNAs, 
and immune-cell ratio scores). The ggplot2, ggpubr, and ggExtra packages were used to analyze correlations 
between the level of immune-cell infiltration and risk scores. P < 0.05 was considered statistically significant.
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In vitro assays. This work was approved by the Ethics Committee of the Second Affiliated Hospital of 
Nanchang University. Informed consent was obtained from all participants. All methods were performed in 
accordance with the relevant guidelines and regulations. We collected peripheral blood samples of newly diag-
nosed AML patients and extracted mononuclear cells. The monocyte THP1 cell line was cultured in RPMI1640 
medium containing 10% fetal bovine serum and 1% penicillin–streptomycin and incubated in a humidified 
atmosphere incubator at 37 °C and 5%  CO2. A lentivirus containing the SRSF10 siRNA was purchased from 
Hanbio (Shanghai, China). THP1 cells were infected with the lentivirus and selected for puromycin resistance. 
After RNA extraction and reverse transcription, a TAKARA kit (Japan) was used to perform real-time polymer-
ase chain reaction (RT-PCR) on the ABI7500 instrument to determine the level of gene expression in THP1 cells 
and peripheral blood mononuclear cells from the patients. Western blot analysis was used to assess the knock-
down efficiency of SRSF10 in THP1 cells. Antibodies used were rabbit anti-β-tubulin (1:10,000, #2146) and 
anti-SRSF10 (1:1000, 42267S) from Cell Signaling Technology (Danvers, MA, USA). The sequences of primes 
and siRNA are shown in Supplementary Table 1.

Results
Expression of  m6A‑regulatory genes in AML, and identification of related lncRNAs. The  m6A 
regulatory genes are important regulators in tumorigenesis and progression of AML. In our present study, we 
performed a differential expression analysis using AML and normal samples. Compared with that of normal 
samples, AML samples showed significantly higher expression of METTL3, METL14, METTL16, ZC3H13, 
RBM15, RBM15B, YTHDC1, YTHDC2 YTHDF1, YTHDF2, YTHDF3, HNRNPC, LRPPRC, HNRNPA2B1, 
RBMX, and FTO. the expression of WTAP, VIRMA, FMR1, IGFBP1, IGFBP2, and IGFBP3 in normal samples 
was significantly higher than that in AML samples (P < 0.05) (Fig. 1A). We then extracted the expression profiles 
of 14,086 lncRNAs and 23  m6A regulatory genes from AML samples obtained from the TCGA database. Using 
correlation coefficient to evaluate the relationship between  m6A regulatory genes and lncRNAs, we show that 
there were 525  m6A-regulated lncRNAs and 680 interactions (Fig. 1B, Supplementary Table 2) (absolute correla-
tion coefficient > 0.5, P < 0.001).

Prognostic analyses of  m6A‑related lncRNAs. Using univariate Cox proportional hazard regression 
analysis, 15 lncRNAs, shown significant in AML prognosis, were screened out from the abovementioned 525 
 m6A-regulated lncRNAs (P < 0.001, Fig. 2A). Among these 15 lncRNAs, AP003498.2 was a survival risk factor in 
AML patients, while the remaining lncRNAs were protection factors. We then analyzed the expression levels of 
these  m6A-related prognostic lncRNAs. Our results show that the expression levels of AC025430.1, AFF2-IT1, 
LINC02593, AC000120.2, AL158163.1, AC048382.1, AL391834, AC008770.3, and AL133492.1 in AML samples 
were significantly higher than those in normal samples. The expression levels of AC020916.2 and AJ239328.1 in 
AML samples were significantly lower than those in normal samples (Fig. 2B). Heatmap shows single-sample 
expression of  m6A-related prognostic lncRNAs in AML and normal-tissue samples (Fig. 2C).

Figure 1.  Identifying  m6A regulatory genes and related lncRNAs. (A) The levels of expression of  m6A 
regulatory genes in tumor and normal samples. The Wilcoxon test was used to determine the statistical 
significance of the difference, *P < 0.05, **P < 0.01, ***P < 0.001. (B) Correlation network of  m6A regulatory genes 
and related lncRNAs in AML, blue nodes are  m6A-regulated lncRNAs whose expression correlate with the  m6A 
regulators, and that lines indicate correlations.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1759  | https://doi.org/10.1038/s41598-022-05797-5

www.nature.com/scientificreports/

m6A‑related lncRNAs clustering subgroups are associated with clinicopathologic character‑
istics of AML. To explore the relationship between  m6A-related lncRNAs and clinicopathological charac-
teristics of AML, we used unsupervised cluster analysis to analyze 151 AML samples based on TCGA RNA-seq 
data of 15  m6A-related prognostic lncRNAs. The 151 AML samples were divided into two clusters having the 
highest stabilities (Fig. 3A). First, we evaluated the two clusters using survival analysis. Our results indicate that 
patients in cluster1 showed significantly worse OS that that of patients in cluster2 (P < 0.001, Fig. 3B). Then, we 
investigated whether there were differences in clinicopathologic factors (i.e., gender, age, and FAB classifica-
tion), as well as in the expression of the immune checkpoint molecule PD-L1, between the two clusters, and 
analyzed correlations between the expression levels of PD-L1 and  m6A-related lncRNAs. Cluster2 had more 
elderly patients, and the expression levels of  m6A-related prognostic lncRNAs were generally higher in Cluster2 
than in Cluster1 (Fig. 3C). PD-L1 showed differential expression in the two clusters, as well as in AML and nor-
mal samples (Fig. 3D,E). Gene correlation analysis shows that PD-L1 expression was negatively correlated with 
LINC02593 and AC020916.2 co-expression, and positively correlated with AP003498.2 co-expression (Fig. 3F). 
AP003498.2 was shown a high-risk lncRNA in AML prognosis. High expression of AP003498.2 was associated 
with increased risk of death in patients with AML. High expression of PD-L1 may promote the immune escape 
of AML cells. These results indicate that there are differences in clinicopathological characteristics between the 
clustering subgroups of  m6A-related lncRNAs, which were related to the age and survival of AML patients. 
PD-L1 also has differences in expression between the two subgroups.

m6A‑related lncRNAs clustering subgroups are associated with biological characteristics of 
AML. Next, we analyzed differences in the biological responses of the subgroups generated using consensus 

Figure 2.  Prognostic analyses of  m6A-related lncRNAs and expression of related factors. (A) Forest plot, 
showing 15  m6A-related lncRNAs associated with the overall survival rate of AML patients, constructed based 
on univariate Cox regression analysis. (B,C) Box plot and heatmap showing the overall and single-sample 
expression of  m6A-related prognostic lncRNAs, respectively, in tumor and normal samples. *P < 0.05, **P < 0.01, 
***P < 0.001.
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clustering in order to further explore the relationship between  m6A-related lncRNAs clustering subgroups and 
AML biological characteristics. GSEA was used to explore the main KEGG signaling pathways in the two sub-
groups. Our results show that cluster1 was mainly involved in Toll-like receptor signaling, NOD-like receptor 
signaling, and B-cell receptor signaling pathways (Fig. 4A–C), which are related to immunomodulation. Clus-
ter2 was mainly involved in the metabolism of various substances, such as histidine metabolism, and heparan 
sulfate and glycosylphosphatidylinositol (GPI) anchored protein biosynthesis (Fig. 4D–F), which are important 
for adhesion, proliferation, invasion, and metastasis of cancer cells. These results indicate that there are differ-
ences in biological characteristics between clusters, which affected tumorigenesis and progression of AML, and 
survival of AML patients.

Immune microenvironment is different between the clustering subgroups. To evaluate the 
characteristics of tumor immune microenvironment in the two clusters, we analyzed the levels of immune cell 
infiltration and tumor purity in the clusters. The CIBERSORT algorithm was used to calculate infiltration ratio 
scores for 22 different immune cells in 151 AML samples. The median scores for different types of immune 
cells in the two clusters were analyzed and compared (Fig. 5A). The ESTIMATE algorithm was used to score 
the ratio of immune and stromal cells in the tumor microenvironment of patients in cluster1 and cluster2. Our 
results indicate that infiltration levels of monocytes and M2 macrophages in cluster1 were significantly higher 
than those in cluster2 (Fig. 5B,C). The infiltration levels of naïve B cells, plasma cells, resting natural killer (NK) 
cells, and activated mast cells were significantly higher in cluster2 than in cluster1 (Fig. 5D–G). In addition, the 
immune score, stromal score, and ESTIMATE score of cluster1 were higher than those of cluster2 (Fig. 5H–J). 
These results indicate that the levels of immune cell infiltration differed considerably between the two groups.

Risk signaling of  m6A‑related lncRNAs and risk prediction model show prognostic value 
in AML. Using LASSO regression analysis, we screened out the six most representative combinations of 
 m6A-related lncRNAs from the 15  m6A-related prognostic lncRNAs, and established a risk prediction model to 
evaluate the prognostic value of  m6A-related lncRNAs in AML (Fig. 6A,B). To ensure the accuracy of the model, 
140 AML patients were randomly assigned to a training set (n = 72) and a test set (n = 68) for the construction 
and verification of the model. After calculating the risk scores of individual patients in the training set, patient 
samples were divided into a high-risk group and a low-risk group based on median risk score (Fig. 6C). Survival 
curves show that the number of patient deaths increased as the risk score increased, indicating that the risk score 
was related to the survival status of AML patients (Fig. 6D). Heatmap shows changes in the risk score and expres-

Figure 3.  Analysis of clinicopathologic characteristics of AML in cluster subgroups. (A) Cluster discrimination 
was highest for consensus clustering matrix of k = 2. (B) Kaplan–Meier survival analysis of the subgroups of 
AML patients in cluster1 and cluster2. (C) clinicopathologic characteristics and  m6A-related lncRNA expression 
associated with AML prognosis between the two clusters. (D) PD-L1 expression level in cluster1 and cluster2. 
(E) PD-L1 expression level in AML samples and normal samples. (F) Correlation analysis of  m6A-related 
lncRNAs associated with AML prognosis and PD-L1. The size of the dot represents the correlation coefficient, 
and the larger the dot, the higher the correlation. *P < 0.05, **P < 0.01, ***P < 0.001.
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sion levels of lncRNAs. The expression levels of lncRNAs used in the construction of the risk prediction model in 
the high-risk group were generally lower than those in the low-risk group (Fig. 6E). Analysis of patient survival 
indicates that the OS of the low-risk group was higher than that of the high-risk group (P < 0.001, Fig. 6F). Area 
under the curve (AUC) of the ROC curve was 0.852, indicating that the model showed high accuracy in pre-
dicting the prognosis of AML patients (Fig. 6G). Next, we used the model to calculate risk scores for individual 
patients in the test set in order to verify the risk prediction model established using the training set. Our results 
show that the characteristics of the test set were consistent with those of the training set (Fig. 7A–E), indicating 
that  m6A-related lncRNAs had prognostic value, and that the risk prediction model showed satisfactory perfor-
mance in predicting the prognosis of patients with AML.

Independent predictive effect of AML prognosis in the risk prediction model. To further verify 
whether the risk prediction model was applicable in patients with varying clinicopathological factors, we used 
the univariate and multivariate independent prognosis analyses in the training and test sets. Both analyses show 
that risk score was a prognostic factor independent of clinicopathologic factors (P < 0.001, Fig. 8A,B). Subse-
quently, patients were stratified according to their clinical pathologic factors including gender, age, and FAB clas-
sification, and their risk scores were calculated. Median score was used to distinguish the high-risk and low-risk 
groups. Survival analysis shows that in each stratified subgroup, patients in the low-risk group showed higher 
OS than that of patients in the high-risk group (Fig. 9A–F). These results indicate that the  m6A-related lncRNA 
risk prediction model could predict the prognosis of AML patients without being confounded by gender, age, 
and FAB classification.

Risk score is correlated with clinicopathological factors and immune infiltration levels. To 
evaluate the characteristics of risk signaling in  m6A-related lncRNA, we analyzed the relationship between risk 
scores, clinicopathological factors, and immune infiltration levels. Patients were grouped according to their age, 
gender, clustering subgroups of  m6A-related prognostic lncRNAs, and scores obtained for the immune cell ratio, 
in order to study risk correlation with respect to the grouping of each clinical factor. Our results show that risk 
scores in the elderly group (≥ 60 years old) were significantly increased compared with those of the young group 

Figure 4.  Abnormally activated signaling pathways in the two subgroups after gene-set—enrichment analysis. 
(A–C) Performed in cluster1. Including Toll-like receptor signaling pathway (ES = 0.59, P = 0.002, FDR = 0.042), 
NOD-like receptor signaling pathway (ES = 0.58, P = 0.006, FDR = 0.046), B-cell receptor signaling pathway 
(ES = 0.56, P = 0.006, FDR = 0.044). (D–F) performed in cluster2. Including glycosaminoglycan biosynthesis 
heparan sulfate (ES = 0.54, P = 0.007, FDR = 0.039), glycosylphosphatidylinositol GPI anchor biosynthesis 
(ES = 0.54, P = 0.003, FDR = 0.042), histidine metabolism (ES = 0.49, P = 0.005, FDR = 0.041).
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(< 60 years old, P < 0.05, Fig. 10A). No significant difference in risk scores was found between the genders and 
between the FAB classifications (Fig. 10B,C). In the clustering subgroups of  m6A-related prognostic lncRNAs, 
the risk score of cluster1 was significantly higher than that of cluster2 (P < 0.001, Fig.  10D). Comparison of 
groups with high and low immune scores, categorized based on median immune score, showed that the risk 
score of the group with high immune scores was significantly higher than that of the group with low immune 
scores (P < 0.001, Fig. 10E). Heatmap confirmed the above results, and shows that the expression levels of the 
six lncRNAs used in model construction were low in the high-risk group (Fig. 10F). Further analysis of the 
relationship between various types of immune cells and risk scores shows that risk scores were significantly 
related to naïve B cells (R = − 0.3, P = 0.00065), activated dendritic cells (R = − 0.23, P = 0.01), M2 macrophages 
(R = 0.19, P = 0.036), resting mast cells (R = − 0.24, P = 0.0063), monocytes (R = 0.47, P = 4.8e−08), resting NK cells 
(R = − 0.18, P = 0.042), plasma cells (R = − 0.27, P = 0.0026), resting memory CD4 T cells (R = − 0.37, P = 2.6e−05), 
and regulatory T cells (Tregs) (R = 0.21, P = 0.018), and were positively correlated with M2 macrophages, mono-
cytes, and Tregs (Fig. 11A–I).

Interaction between SRSF10 and TRAF3IP2. TRAF3IP2-AS1 was selected as a candidate lncRNA 
to explore its Combined RBPs. We first made predictions on the website ENCORI (http:// starb ase. sysu. edu. 
cn/)48. These showed that the SRSF10 protein has binding regions for nine transcripts of TRAF3IP2-AS1 in 
chr6: 111821214–111821244[+] (GSE71096). Compared with normal samples from GTEx databases, the levels 
of expression of SRSF10 and TRAF3IP2-AS1 were significantly upregulated in AML samples from TCGA data-
bases (Fig. 12A). The expression level of SRSF10 also positively correlated with TRAF3IP2-AS1 expression in 
TCGA AML samples (Fig. 12B). Next, we verified that the levels of expression of SRSF10 and TRAF3IP2-AS1 
were also upregulated in AML samples by RT-PCR (Fig. 12C), and the GEO chip data (GSE65263, GSE114868) 
showed a similar trend (Fig. 12D,E). Next, we tested the interaction between SRSF10 and TRAF3IP2-AS1 by 
siRNA targeting SRSF10 in THP-1 cells (Fig. 12F, the original blots are shown in Supplementary Fig. 1). RT-
PCR showed that the expression of TRAF3IP2-AS1 was significantly downregulated after SRSF10 knockdown 
(Fig. 12G). These results indicated that SRSF10 and TRAF3IP2 have Interaction relationship in AML.

Discussion
AML has a complicated pathogenesis, and our understanding of its etiology and the conditions involved remains 
limited. Diagnosis of AML is usually based on the evaluation of morphological features of the tissue, immunophe-
notyping  analysis12, and grouping using  cytogenetics49. Few studies have investigated the use of biomarkers for 

Figure 5.  Characteristics of AML tumor immune microenvironment in different cluster subgroups. (A) A 
violin plot showing the ratios of 22 immune cells among clustered subgroups. (B–G) immune cells with different 
levels of expression in clustered subgroups. (H–J) Differences in immune, stromal, and ESTIMATE scores in 
different clustered subgroups.

http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/
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AML prognosis, highlighting the need to explore these molecules and study their impact on the tumorigenesis 
and progression of AML. lncRNAs have been shown to affect cell proliferation, apoptosis, and the cell cycle in 
 AML50–52. LncRNAs also affect the differentiation of bone marrow hematopoietic cells, and are regarded targets 
in differentiation-induction  therapy53. In addition, the regulatory mechanisms involved in lncRNA-mediated 
regulation of AML indicate that lncRNAs can be used as potential molecular markers to predict disease course 
and survival status in patients with  AML54.  m6A methylation plays key roles in the tumorigenesis and progres-
sion of  AML55. However, few studies have examined the roles of  m6A methylation and lncRNA co-regulation 
in AML. Based on previous findings on  m6A methylation and functions of lncRNAs, we investigated the rela-
tionship between  m6A-related lncRNAs and clinical characteristics of AML, evaluated the characteristics of the 
AML tumor immune microenvironment, and constructed a risk prediction model to predict the prognosis of 
patients with AML.

Using a TCGA-AML data set, we identified 525 lncRNAs related to 23  m6A regulatory genes. Cox regression 
analysis identified 15  m6A-related lncRNAs that were significantly related to the prognosis of AML patients. 
Most lncRNAs showed high expression level associated with favorable prognosis. We observed more expression 
of most of these 15  m6A-related lncRNAs in samples from AML patients than in those from normal controls, 
which indicate that these molecules are protective factors, and their expression may be activated in AML and 
further inhibit tumor development. There are similar characteristics in many  studies56,57. To further explore the 
relationship between  m6A-related lncRNAs, and the clinicopathologic and biological characteristics of AML, we 
performed a cluster analysis based on the expression profiles of  m6A-related prognostic lncRNAs. This analysis 
yielded two subgroups, which we designated as cluster1 and cluster2. There were significant differences in age 
and FAB classification between the two clusters. The expression of the  m6A-related prognostic lncRNAs was 
upregulated in cluster2 compared with that in cluster1. The OS of patients in cluster2 was also significantly 
increased compared with that of patients in cluster1. The upregulated expression of these lncRNAs indicate 
a favorable prognosis in patients with AML. Analysis of the enrichment of KEGG signaling pathways in the 
two clusters showed significant differences. The pathways enriched in cluster1 were mainly related to immune 
regulation. Including Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and B-cell 
receptor signaling pathway. Increasing evidence suggests that  m6A methylation and lncRNAs are involved in 

Figure 6.  Risk prediction model for AML patients constructed based on risk-associated signaling of 
 m6A-related lncRNAs, and analysis of prognostic values in training set. (A) Shows the Log Lambda value 
corresponding to the minimum cross-validation error point. (B) The coefficient of  m6A-related lncRNAs varies 
with the Log Lambda value, and the  m6A-related lncRNAs with non-zero coefficient corresponding to the same 
Log Lambda value in figure A were selected for subsequent model construction. (C) Risk score distribution 
of the training set based on  m6A-related lncRNA risk prediction model. (D) Survival time and status in the 
high-risk and low-risk groups in the training set. (E) Heatmap showing the expression levels of six  m6A-related 
lncRNAs in the model of each patient from the high-risk and low-risk groups in the training set. (F) Kaplan–
Meier curve analysis of OS in the high-risk group and low-risk group in the training set. (G) The ROC curve for 
predicting the prognoses of patients in the training set.
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immune regulation and inflammatory  responses58. To explore the characteristics of the immune microenviron-
ment between two clusters, we performed an algorithm evaluation analysis. Our results indicate that the degree 
of immune-cell infiltration and tumor purity in the two subgroups were significantly different. In cluster2, we 
observed an increased number of cells of the monocyte macrophage lineage, Especially M2 macrophages, which 
promote tumor  progression59,60. Studies have shown that the expression of Toll like receptors on the surface of 
tumour cells in the tumour microenvironment, to varying degrees, contributes to creating an environment that 
favours the tumour but not the immune effector  cells61. M2 macrophages promote liver cancer cell metastasis 
via the toll like receptor 4 (TLR4) signaling  pathway62. Gut microbiota-stimulated cathepsin K secretion medi-
ates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal  cancer63. These 
results suggest that the activation of M2 macrophages and related inflammatory immune pathways may worsen 
AML patient condition and then affect patient prognosis. We also examined the expression levels of the immune 
checkpoint protein PD-L1 in the two subgroups, and found that the expression level of PD-L1 was increased 
in cluster1 patients, who showed a decreased OS. This may be because high expression of PD-L1 in AML with 
increased degree of malignancy promotes the immune escape of leukemia cells and further affects the quality of 
life in these patients. The abnormal expression of  m6A-related lncRNAs and the change of immune microenvi-
ronment may indicate the condition of AML patients.

The above results indicate that  m6A-related lncRNAs clustering subgroups were related to the clinicopatho-
logic and biological characteristics of AML. To evaluate the value of these molecules in predicting the prognosis 
of AML patients, we identified risk signals using LASSO regression analysis, and constructed a risk prediction 
model based on six lncRNAs to predict OS in AML patients, Lasso regression analysis removes redundant genes, 
increasing the stability of the model to prevent overfitting. Among the lncRNAs involved in model construction, 
TRAF3IP2-AS1 is a key regulator of interleukin-17 signaling in autoimmune  diseases64. Low levels of expression 
of TRAF3IP2-AS1 promotes the development of non-O-TFE3 translocation renal cell  carcinoma65. TRAF3IP2-
AS1 is a potential biomarker for early diagnosis and prognosis prediction in  glioblastoma66. In the randomized 
test set employed in our present study, the OS of patients in the high-risk group was significantly decreased 

Figure 7.  Prognostic performance of risk prediction model in the test set. (A) Distribution of risk scores 
obtained using  m6A-related lncRNA model in the test set. (B) Comparison of survival time and status in the 
high-risk and low-risk group in the test set. (C) Heatmap showing the expression levels of six  m6A-related 
lncRNAs in the model of each patient from the high-risk and low-risk groups in the test set. (D) Kaplan–Meier 
curve analysis of OS in the high-risk group and low-risk group in the test set. (E) The ROC curve for predicting 
the prognoses of patients in the test set.
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Figure 8.  Identification of independent prognostic factors in AML cohort. Univariate and multivariate 
independent prognostic analyses of clinicopathologic factors and risk scores were conducted using the training 
set (A) and the test set (B).

Figure 9.  Survival analysis of cohorts stratified by clinicopathological factors. Kaplan–Meier survival curves 
showing differences in OS between the high-risk and low-risk groups in the entire TCGA AML cohort stratified 
by age (A,B), gender (C,D) and FAB classification (E,F).



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1759  | https://doi.org/10.1038/s41598-022-05797-5

www.nature.com/scientificreports/

compared with that of patients in the low-risk group. ROC curves, survival curves, and heatmap show that 
the model possessed good predictive ability. The prediction accuracy of the model was verified using a test set, 
while consistency of performance was verified in a training set. Univariate and multivariate independent prog-
nostic analyses, and survival analyses, of stratified clinicopathologic factors also show that our model possessed 
independent predictive ability (independent of age and gender). These results indicate that the risk prediction 
model showed high reliability, and that the risk score can be used to predict prognosis in AML patients. AML is 
a hematological tumor, and, thus, lacks a solid tumor-related classification and staging, which are usually used 
to categorize disease severity and prognosis in patients. Our findings suggest that the risk-scoring model is clini-
cally significant and can be used for prognostic assessment in patients with AML.

Then, we analyzed the characteristics of risk-signaling to show that risk scores were correlated with clinico-
pathological factors and immune infiltration levels in AML patients, such factors included increased patient age, 
high immune scores, and high risk scores. The OS of AML patients in cluster1 was relatively short. According to 
our risk prediction model, the corresponding risk score of cluster1 should have been relatively high. Our results 
agree with the prediction of the model, thereby indirectly verifying the accuracy of our model in predicting the 
OS of AML patients. Immune filtration analysis showed that infiltration levels of M2 macrophages, monocytes, 
and Tregs were positively correlated with the risk score, suggesting that increased numbers of these cells were 
related to poor prognosis in AML patients. Studies have also shown that interactions between Tregs and M2 
macrophages are positively associated with tumor  progression67,68. As AML progresses, the significant increase 
in the number of Tregs results in the destruction of immune homeostasis, leading to immune suppression. This 
is main reason for the immune escape of cancer cells and characteristics of AML  progression69. Tregs show 
increased expression of CD14 and CD163, and product C–C motif chemokine ligand 2, thereby promoting 

Figure 10.  Correlation between risk scores, clinicopathologic factors, and immune infiltration in AML patients. 
(A–E) Distribution of risk scores with respect to age, FAB classification, gender, consensus clustering subgroups 
of  m6A-related lncRNAs associated with AML prognosis, and immune score grouping. (F) Heatmap showing 
the distribution of patients grouped by age, gender, consensus clustering of  m6A-related lncRNAs associated 
with AML prognosis, and immune scores between the high-risk and low-risk AML group. *P < 0.05, **P < 0.01, 
***P < 0.001.
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the selective transformation of monocytes into M2  macrophages70,71. Our correlation analysis of these immune 
infiltrates yielded results that were consistent with those obtained in previous studies, indicating commonalities 
in immune-cell infiltration of different tumors. Whether clustering by  m6A-related lncRNAs or grouping by risk 
score, we have observed differences in the immune microenvironment of groups with poor prognosis. Based on 
Toll-like receptors, several TLRs, including TLR 3, have become targets for cancer  immunotherapy72. The conver-
sion of pro-tumorigenic M2 macrophages to protective M1-phenotype may also be a potential immunotherapy 

Figure 11.  Correlation between risk scores and levels of immune cell infiltration in AML. Notes: immune cells 
included naïve B cells (A), activated dendritic cells (B), M2 macrophages (C), resting mast cells (D), monocytes 
(E), resting NK cells (F), plasma cells (G), resting memory T cells CD4 (H), and regulatory T cells (Tregs) (I).

Figure 12.  Interaction between SRSF10 and TRAF3IP2. (A) The levels of expression of SRSF10 and 
TRAF3IP2-AS1 in AML samples from the TCGA databases and normal samples from the GTEx databases. 
(B) Correlation analysis between SRSF10 and TRAF3IP2-AS1 in AML samples from the TCGA database. (C) 
The expression levels of SRSF10 and TRAF3IP2-AS1 in AML peripheral blood samples (n = 15) and normal 
human peripheral blood samples (n = 15). (D,E) SRSF10 and TRAF3IP2-AS1 expression levels in AML patient 
samples and normal samples in GEO chip data (ASHG19A3A031949: TRAF3IP2-AS1 transcript variants 1 and 
3, ASHG19A3A031949: TRAF3IP2-AS1 transcript variants 1 and 2). (F) SRSF10 protein expression level in 
control shRNA and SRSF10-sh THP1 cells. (G) SRSF10 and TRAF3IP2-AS1 RNA expression levels in control 
shRNA and SRSF10-sh THP1 cells.
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 intervention73. Reducing the expression of Tregs to relieve its suppression of normal immune cells has also 
achieved good  results74. Future studies should utilize the characteristics of relevant infiltrating immune cells to 
evaluate the prognosis of AML patients, and evaluate these immune cells for targeted therapy in patients with 
AML.

LncRNAs are involved in regulating the life activities of cells, but most of them need to interact with RNA 
binding protein (RBP) to play a  role75. We have observed that TRAF3IP2-AS1 is a regulator of various diseases, 
and its expression is up-regulated in AML. To study its biological function in AML, we initially explored the 
RBPs that can be combined with it. Through prediction using an online tool, clinical specimen verification, GEO 
chip data analysis, and cell experimental research, we found that the RNA-binding protein SRSF10 affects the 
expression of TRAF3IP2-AS1. AS a member of the SR family of alternative splicing factors, SRSF10 is involved in 
the post-transcriptional regulation of many genes and the biological processes of various diseases. For example, 
SRSF10 mediates IL1RAP alternative splicing to regulate the development of cervical  cancer76, affects BCLAF1 
pre-mRNA splicing and regulates the tumorigenic potential of colon cancer  cells77, and limits the production 
of HBV  RNA78. These studies indicate the biological role of SRSF10. Our research found the interaction pair of 
SRSF10 and TRAF3IP2-AS1. Further regulatory mechanisms and their influence on the development of AML 
require further experimental research.

In summary, our results indicate that  m6A-related lncRNAs clustering subgroups are associated with the 
biological processes of AML and  m6A-related lncRNAs can be used to predict prognosis in AML patients. 
Our present research into  m6A-related lncRNAs represents a novel approach for prediction of AML prognosis. 
Studying the biological mechanisms of related molecules can also be potentially useful in clinical diagnosis and 
treatment of AML patients. Our present study shows that  m6A-related lncRNAs were also associated with the 
AML tumor immune microenvironment. Immunotherapy has been shown effective in the treatment of refractory 
AML patients, rendering it a prospective approach in AML therapy. Our study may inspire further development 
of AML immunotherapy. We also found a correlation pair of SRSF10 and TRAF3IP2-AS1, and further stud-
ies may analyze the potential of these two genes in clinical diagnosis and prognostic evaluation. However, the 
present study also has several limitations. These include its limited sample size and use of samples from only 
two databases. Future studies should use samples from multiple databases, as well as an increased number of 
clinical samples, to verify the predictive model established in our present study. Further studies are also needed 
to fully elucidate the regulatory mechanisms of  m6A-related lncRNAs in the tumorigenesis and progression of 
AML at the molecular level.

Conclusion
In our present study, we show that  m6A-related lncRNAs were closely related to AML clinical characteristics 
and tumor immune microenvironment, thereby affecting the tumorigenesis and progression of AML. We also 
screened for risk-related signaling of  m6A-related lncRNAs in AML, and constructed and verified a risk predic-
tion model. The results obtained in our present study will aid in the prediction of prognosis and development 
of immunotherapies in patients with AML.

Data availability
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