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Abstract: Much is known regarding the structure and logic of genetic regulatory networks. Less understood is the contextual 
organization of promoter signals used during transcription initiation, the most pivotal stage during gene expression. Here we show that 
promoter networks organize spontaneously at a dimension between the 1-dimension of the DNA and 3-dimension of the cell. Network 
methods were used to visualize the global structure of E. coli sigma (σ) recognition footprints using published promoter sequences 
(RegulonDB). Footprints were rendered as networks with weighted edges representing bp-sharing between promoters (nodes). Serial 
thresholding revealed phase transitions at positions predicted by percolation theory, and nuclei denoting short steps through promoter 
space with geometrically constrained linkages. The network nuclei are fractals, a power-law organization not yet described for promot-
ers. Genome-wide promoter abundance also scaled as a power-law. We propose a general model for the development of a fractal nucleus 
in a transcriptional grammar.
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Introduction
In prokaryotes, one of several sigma (σ) factors binds 
to a promoter upstream of a gene and helps posi-
tion RNA polymerase during transcription initiation. 
Though consensus and canonical promoter motifs 
are frequently referenced in textbooks and the litera-
ture, genome-scale surveys have forced a reconsid-
eration of the specific role played by these idealized 
sequences.1–3 Actual promoters can vary in sequence 
considerably while still binding the same σ, though 
efficiencies vary several-fold.4 Collectively these pro-
moter sequences form a footprint in promoter space, 
defining a regulon of genes responsive to a particular 
environmental cue or cellular need. Each σ represents 
a hub, or highly connected node, in the overall gene 
regulatory network. Our concern in this study is with 
the structure of promoter variation, specifically the 
topology of a hub footprint.

Our use of networks to visualize promoter diversity 
departs from their traditional use in gene regulation 
research. Putting aside protein interaction networks 
(PINs), transcriptional interdependencies are visual-
ized using two main approaches: (1) Most common 
is the gene regulatory network (GRNs), often gen-
erated using gene expression data, which conveys 
information on the realized interdependencies among 
genes.5–8 Nodes represent genes, and certain of the 
protein products act as regulators of one or more of 
the genes in the network. Regulatory relationships are 
denoted by directed edges between nodes, and global 
studies of the transcriptome are now commonplace. 
(2) Studies that explicitly consider promoter diversity 
focus more on the nature and pattern of variation in 
the cis-element signals used to initiate transcription— 
but here global or large-scale network approaches 
are not typical. For example, one promoter diversity 
study2 examined the details of σ70 promoter variation 
in E. coli, but did not render relationships as a net-
work. Another study9 developed a regulatory network 
for acid resistance genes in E. coli, but theirs was a 
conceptual model. Another3 produced a hierarchical 
clustering model representing sequence similarities 
among 441 E. coli promoters, yet hierarchical trees 
carry the unnecessary constraint that cycles must be 
avoided in the rendering of network relationships.

Here we explore the structure of promoter net-
works from E. coli using affiliation-based subgraph 

extractions, or serial thresholding. Promoter 
predictions were obtained from RegulonDB and 
include three regulons mediating a type of stress 
response10 (σ24, σ28, and σ54) along with the larger 
housekeeping σ70. Networks were generated with 
edge weights representing the number of bases 
shared between pairs of promoter sequences (nodes). 
Rather than exploring the network in its totality as a 
weighted graph, we broke the network into a series 
of subgraphs based on edge weights and examined 
subgraph features separately. In particular, attributes 
of the LCC (largest connected component) of each 
network were tracked across a range of critical edge 
values.

We consider the following specific questions: 
(1) What is the apparent role, if any, of the consensus 
promoter motif? What is the frequency of predicted 
promoters in the genome? (2) What is the topological 
structure of variation across promoter sequences in a 
regulon of genes, and does this structure vary across 
regulons? How does the organization of predicted 
promoter networks compare to that of networks built 
from random sequence promoters? (3) Do the results 
suggest a mechanism for promoter evolution?

Experimental Procedures
Promoter sequences
Promoter sequences were obtained from Regu-
lonDB. The RegulonDB database11 (http://regu-
londb.ccg.unam.mx/) is the primary reference 
database for the transcriptional regulatory net-
work of Escherichia coli K-12 (substr. MG1655, 
GenBank ref. seq. NC_000913.2, GI: 49175990). 
Predictions are anchored by experimental evidence 
on the location of transcription start sites deter-
mined by RegulonDB using a modified 5’RACE 
procedure.

Predicted promoter data files (accessed 5.26.09) 
contained the base sequence of both boxes (−35 
and −10 boxes) and the size in bp of the interven-
ing spacer region, along with promoter positions in 
the genome. We studied three regulons in detail: σ24 
(799  genes), σ28 (122  genes), σ54 (151  genes). The 
large housekeeping regulon σ70 (4010  genes) was 
added later in the study. Base sequence information 
included: σ24 and σ54, 11 bp (6 bp of −35 box, 5 bp 
of −10 box); σ28, 15 bp (7  and 8 bp, respectively); 
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and σ70, 17 bp (9 and 8 bp, respectively). Alignments 
used were as provided by RegulonDB.

Power-law scaling of promoter 
abundances
We used Perl script to survey the E. coli K-12 genome 
and assess the abundance of the predicted promoter 
motifs along with their inferred consensus sequence 
for each regulon. These distributions were evalu-
ated for their fit relative to a Pareto distribution12 
using Matlab. For this purpose we evaluated Fc for 
each graph, the complementary cumulative distribu-
tion function (ccdf), which is a monotonically non-
increasing function describing the probability that a 
random variable takes a value greater than x:
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where cdf is the standard cumulative distribution 
function, and xm is the minimum value taken by x. In 
the evaluation of promoter frequencies in the genome, 
we used both a measure of goodness of fit (R2) and 
an estimate of the scaling coefficient (γ). After taking 
logs of both sides, α was obtained as the slope:

log(y) ∼ −α(log x − log xm)

and the scaling exponent as γ = α + 1 such that

P(x) = x−γ

Predicted promoter networks
Sequence and spacer information were used to cal-
culate Aij, the number of bp shared between pro-
moter sequences i and j. A gap penalty (-1 per bp) 
was applied for mismatches in spacer sizes in the 
RegulonDB alignments. These weighted edge values 
populated the adjacency matrix, A, which was used to 
construct a network, or graph G. Networks were visu-
alized using Pajek13 and the Kamada-Kawai14 projec-
tion. Networks were analyzed using script written in 
Python that utilized NumPy, SciPy, and NetworkX,15 
an open source Python package for the analysis of 
complex networks (http://networkx.lanl.gov/).

Random promoter networks
Random promoter networks were generated for 
Monte Carlo tests by forming a set of n promoters, 
each through B random draws from a uniform base 
distribution (A, C, G, T). We considered the three 
RegulonDB systems, σ24, σ28, and σ54, with promoter 
numbers n and footprint sizes B as noted above. The 
size of the spacer separating the −10 and −35 boxes 
was randomly drawn from the distribution of sizes 
in the relevant data set. Random promoter networks 
were then produced in the same fashion as with the 
predicted promoter networks.

Network extractions using thresholding
Subgraphs were extracted using serial thresholding, 
or affiliation-based extraction,16 performed as fol-
lows. For m-slices, we sequentially removed all edges 
from graph G below a sliding critical integer thresh-
old m (1 , m , B), where B was the maximum num-
ber of bp in the promoter sequence. For x-sections, 
we used discrete intervals based on the same sliding 
scale of integer threshold values, removing edges 
above and below that value of x. At each step, we then 
extracted the largest (maximal) connected component 
(LCC), the largest set of nodes that remain intercon-
nected after selective edge removal from G. For each 
LCC, the number of nodes (graph size) and number 
of edges were evaluated. LCC that retained at least 
half of the nodes in graph G were giant components, 
by definition.

Monte Carlo tests
We used Monte Carlo randomizations to compare 
the node and edge counts of the LCCs obtained 
from the predicted promoter networks with their 
random counterparts through a series of x-sections. 
Bonferroni corrections to α were used for the multi-
ple tests within a regulon (tests were performed only 
on LCCs of size n  5). Each replicate involved the 
production of a random promoter network from 
which a series of x-sections were extracted, and the 
node and edge counts appraised and stored. The 
replicate stored counts were used to form 95% con-
fidence intervals wherein the observed data value 
was treated as if drawn from a distribution with at 
least r = 1,000 replicates (σ24 and σ54, r = 1,320; σ28, 
r = 1,800).
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Estimating the fractal dimension
Song et  al17 showed how to measure the fractal 
dimension in a network by implementing the standard 
box covering method as a network coloring problem. 
In brief, for a given box length (lB) or shortest path 
length between nodes, each node is colored in a fash-
ion such that neighbors of like color are no further 
away than that current box length. Then the network 
is renormalized by collapsing adjacent nodes into a 
single node if they share the same color. Consider-
ing a range of box lengths, where each determines the 
renormalized node count, or graph size n, a plot of lB 
versus n on a log-log scale will be linear for networks 
with a fractal topology. Python script was written 
(using NetworkX) to implement this renormalization 
method. The fractal dimension dB is obtained from 
linear regression of the log-log transformation of the 
general scaling relation:

N l
N

lB B dB
( ) ∼ B

−

Results and Discussion
Power-law scaling of promoter 
abundance
Consensus sequence promoter motifs were not pres-
ent in the predicted promoter sets from RegulonDB, 
and were rare or absent in the E. coli K-12 genome, as 
noted elsewhere.2 Of the regulons we examined, only 
the inferred consensus for σ28 occurred in the genome 
(three copies).

A subsequent survey of the full predicted pro-
moter sets against the E. coli K-12 genome revealed 
that promoter abundances approximated a power-law. 
Log-log plots of the complementary cumulative dis-
tribution functions (ccdf) for promoter motif counts 
are shown (Fig. 1). We included the large σ70 regu-
lon and, generally, sets with more promoters gave a 
better fit to a power function. Power-law scaling has 
been described before for gene frequencies within 
and across genomes and often attributed to gene and 
genome duplication events.18

These findings support the growing view that 
consensus and canonical promoter motifs gener-
ally play an indirect role in genome evolution. That 
they rarely participate directly in transcription has 

been attributed to the fact that they bind σ too firmly, 
preventing promoter clearance and elongation, and 
that there is functionality in a weak promoter that can 
be modulated with compensatory regulators.1,2,4,19–21 
And in many cases promoters appear to be chimeric 
combinations of canonical and non-canonical binding 
sites.1,22 supporting the view that ‘perfect promoters 
are not biologically relevant’.1 We accept this sen-
timent insofar as it conveys the fact that consensus 
promoters actually perform little of the transcrip-
tional work in the cell. We nuance this perspective 
by suggesting that the ideal consensus promoter rep-
resents the optimal DNA-protein binding chemistry 
and therefore serves as an organizing principle for the 
evolution of the transcriptional grammar and of the 
resultant topologies seen in the promoter networks 
described in this study.

Phase transitions in promoter networks
Serial extractions revealed phase transitions in the 
promoter networks (Fig. 2) at positions predicted by 
percolation theory (Fig. 3). The unreduced promoter 
networks were highly dense (.0.999), occluded by 
numerous weak edges representing the sharing of 
few bases. Thresholding provided targeted windows 
of lowered edge density through which we examined 
attributes of the LCCs.

A phase transition is an abrupt change in the state 
of a system associated with incremental change in a 
system parameter, such as the shift with temperature 
between liquid and gas phases described by van der 
Waals.23 In networks, as edges are added (removed) 
randomly to a graph, there is a sudden increase 
(decrease) in global connectivity with emergence 
(fracture) of a giant component, a connected compo-
nent containing at least half of the nodes.24 In a ran-
dom graph of n nodes, this occurs predictably around 
the percolation threshold pc = 1/n.

In Figure 3, we indicate the positions of the phase 
transitions expected from percolation theory in our plots 
of node and edge numbers. In each case, an expected 
phase transition is marked as a vertical dashed line 
positioned at the edge density pc = 1/n. The resulting 
alignment of these positions with the observed phase 
transitions in node counts is taken as evidence of con-
currence with theory. With σ54 as an example, n = 151 
promoters yields a percolation threshold pc of ∼0.0066. 
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Of the 11,325 possible edges, this translates into ∼75 
edges. Though our discrete categories are coarse, this 
is roughly where we observed the formation of the 
largest connected component in our x-sectional profile: 
between 3–4 bp shared, the number of edges changed 
from 4 to 340, and largest connected component size 
jumped from 5 to 128 nodes.

Topology of promoter networks
Whereas the LCCs from lower thresholds were fairly 
homogeneous and dense, containing numerous edges 
representing low-value bp-sharing, the LCCs emerg-
ing from the upper phase transition displayed consid-
erable structural complexity. These network nuclei 
represent a significantly constrained limiting simi-
larity among promoters as they contain information 
on high levels of bp-sharing among many of the pro-
moters in the regulon. Monte Carlo tests showed that 
LCCs built from RegulonDB promoter sets contained 
significantly higher-valued edge weights than those 
of random promoter networks (Fig. 3).

The network nuclei have a fractal topology, as 
implied by their self-similar appearance (Fig.  4). 
LCCs captured from the upper phase transition were 
evaluated using the method of Song et al17 who showed 
how to measure the fractal dimension of a network by 
implementing the standard box covering method as a 
network coloring problem. In the regulons we exam-
ined, the average fractal dimension was dB  =  1.731 
(Fig. 5). This has the biological interpretation that a 
unit increase in the log of the box length (modular 
extent of promoter sequence similarity) is met with a 
1.731-fold decline in the log of the graph size (num-
ber of nodes). It is noteworthy that the weakest fractal 
structure was displayed by σ28 which was the regulon 
whose consensus sequence appeared in the genome. 
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Figure 1. Promoter frequencies in genomes: Log-log plots of complementary cumulative distribution functions for occurrences of promoter motifs in the full 
genome: σ28 (n = 122 genes, α = 0.300, R2 = 0.615), σ54 (n = 151, α = 1.925, R2 = 0.819), σ24 (n = 799, α = 2.567, R2 = 0.907), and σ70 (n = 4010, α = 1.704, 
R2 = 0.935).
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Figure  2. Largest connected components following extractions of 
x-section by thresholding of three E. coli regulons. Each promoter net-
work was broken into subgraphs based on edge weights using a series 
of integer threshold values (X i), shown along the top of the figure). 
An x-section retained only edges of weight x = X i bp-sharing between 
promoter sequences (nodes) (every other step is shown in the figure).
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Figure 3. x-sectional profiles of number of nodes and edges for predicted 
promoters (lines) along with 95% confidence intervals (CIs, shaded 
regions). CIs were based on Monte Carlo simulations of random pro-
moter networks built from sets of promoters of random base sequence, 
each with footprint and spacer attributes drawn from a predicted pro-
moter set. Whereas predicted promoters were in close juxtaposition in 
promoter space (sharing  ∼7–8 bp out of 11 or 15), random promoter 
networks had significantly more diffuse footprints (2–4 bp shared) con-
sistent with binomial expectations. Vertical dashed lines mark the phase 
transitions predicted by percolation theory.
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Figure 4. Fractal nuclei of the four regulons captured at upper phase transitions. A) σ24, dB = 1.492; B) σ70, 1.911; C) σ28, 1.929; D) σ54, 1.590. Promoter 
abundance in the E. coli K-12 genome is shown as node size variation. The consensus sequence (orange node) for σ28 occurred in the genome, others 
did not and are included for heuristic purposes. Networks were rendered using Pajek.13
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Figure 5. Fractal analysis of the upper phase transition nucleus for the four E. coli σ regulons: Log-log plots of box number (lB) versus graph size (normal-
ized number of nodes) for LCC. Fractal dimensions (mean dB = 1.731) and coefficients of determination (mean R2 = 0.957): σ28 (dB = 1.929, R2 = 0.949), 
σ54 (dB = 1.590, R2 = 0.959), σ24 (dB = 1.492, R2 = 0.978), and σ70 (dB = 1.911, R2 = 0.943).

Regulons with a highly fractal nucleus did not utilize 
their consensus promoter in the E. coli genome.

DLA model of promoter evolution
These findings, including the mean fractal dimen-
sion of dB  =  1.731, suggested a specific repulsive 
mechanism for development of a fractal nucleus in a 

promoter network. A dimension of d = 1.7 is typical 
of fractals arising by diffusion-limited aggregation 
(DLA).25 In the general 2-d model, particles diffuse 
randomly as a Brownian motion, occasionally stick-
ing to a growing cluster. Growth is through prefer-
ential attachment, but not to the oldest particles as 
in a scale-free model of network growth.26 Instead, 
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particles attach preferentially to the growing arms of 
the cluster since the arms increasingly obstruct access 
to the central region. It appears as though the center 
repulses any new additions.

A promoter network growing by DLA would be 
regulated by both repulsive and attractive forces, 
mediated on the micro-scale through DNA-protein 
binding chemistry, and on the macro-scale by 
population-level fitnesses, all organized around the 
consensus promoter. The consensus would form an 
attractor in transcriptional promoter networks because 
it represents the optimal binding chemistry for σ, and 
departures from the consensus would weaken and 
eventually eliminate this binding capacity.4 Yet it 
appears that the consensus and canonical motifs rarely 
participate directly in transcription perhaps because 
they bind σ too firmly.2,4,19–21 The resulting lowered 
population-level fitness would repulse additions from 
the network center.

These dynamics are analogous to the inter-
atomic attractive and repulsive forces that include 
the van der Waals interactions.23 Our interpretation 
comports with the recent generalization that repul-
sion is a critical prerequisite to fractal development 
in most complex networks.27,28

Concluding Remarks
Our results suggest a link between the development 
of scaling relations in genome structure and function. 
This correspondence is in part anticipated by the 
Zipf-Mandelbrot law,29,30 though genome work to 
date has emphasized frequency (structural) scaling 
without integrating topological (functional) scaling.
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