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Abstract: Dealing with uncertainty in applications of machine learning to real-life data critically
depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been sug-
gested for the purpose of estimating ID, but no standard package to easily apply them one by one
or all at once has been implemented in Python. This technical note introduces scikit-dimension,
an open-source Python package for intrinsic dimension estimation. The scikit-dimension package
provides a uniform implementation of most of the known ID estimators based on the scikit-learn
application programming interface to evaluate the global and local intrinsic dimension, as well as
generators of synthetic toy and benchmark datasets widespread in the literature. The package is
developed with tools assessing the code quality, coverage, unit testing and continuous integration.
We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets)
benchmarking of methods for ID estimation for real-life and synthetic data.

Keywords: intrinsic dimension; effective dimension; Python package; method benchmarking

1. Introduction

We present scikit-dimension, an open-source Python package for global and local
intrinsic dimension (ID) estimation. The package has two main objectives: (i) foster
research in ID estimation by providing code to benchmark algorithms and a platform to
share algorithms; and (ii) democratize the use of ID estimation by providing user-friendly
implementations of algorithms using the scikit-learn application programming interface
(API) [1].

ID intuitively refers to the minimum number of parameters required to represent a
dataset with satisfactory accuracy. The meaning of “accuracy” can be different among
various approaches. ID can be more precisely defined to be n if the data lie closely to a
n-dimensional manifold embedded in Rd with little information loss, which corresponds to
the so-called “manifold hypothesis” [2,3]. ID can be, however, defined without assuming
the existence of a data manifold. In this case, data point cloud characteristics (e.g., linear
separability or pattern of covariance) are compared to a model n-dimensional distribution
(e.g., uniformly sampled n-sphere or n-dimensional isotropic Gaussian distribution), and
the term “effective dimensionality” is sometimes used instead of “intrinsic dimensionality”
as such n giving the most similar characteristics to the one measured in the studied point
cloud [4,5]. In scikit-dimension, these two notions are not distinguished.

The knowledge of ID is important to determine the choice of machine learning algo-
rithm, anticipate the uncertainty of its predictions, and estimate the number of sufficiently
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distinct clusters of variables [6,7]. The well-known curse of dimensionality, which states
that many problems become exponentially difficult in high dimensions, does not depend
on the number of features, but on the dataset’s ID [8]. More precisely, the effects of the
dimensionality curse are expected to be manifested when ID � ln(M), where M is the
number of data points [9,10].

Current ID estimators have diverse operating principles (we refer the reader to [11]
for an overview). Each ID estimator is developed based on a selected feature (such as the
number of data points in a sphere of fixed radius, linear separability or expected normalized
distance to the closest neighbor), which scales with n: therefore, various ID estimation
methods provide different ID values. Each dataset can be characterized by a unique
dimensionality profile of ID estimations, according to different existing methods, which can
serve as an important signature for choosing the most appropriate data analysis method.

Dimensionality estimators that provide a single ID value for the whole dataset belong
to the category of global estimators. However, datasets can have complex organizations and
contain regions with varying dimensionality [9]. In such a case, they can be explored using
local estimators, which estimate ID in local neighborhoods around each point. The neigh-
borhoods are typically defined by considering the k closest neighbors. Such approaches
also allow repurposing global estimators as local estimators.

The idea behind local ID estimation is to operate at a scale where the data manifold can
be approximated by its tangent space [12]. In practice, ID is sensitive to scale, and choosing
the neighborhood size is a trade-off between opposite requirements [11,13]: ideally, the
neighborhood should be big relative to the scale of the noise, and contain enough points.
At the same time, it should be small enough to be well approximated by a flat and uniform
tangent space.

We perform benchmarking of 19 ID estimators on a large collection of real-life and
synthetic datasets. Previously, estimators were benchmarked based mainly on artificial
datasets representing uniformly sampled manifolds with known ID [4,11,14], comparing
them for the ability to estimate the ID value correctly. Several ID estimators were used
on real-life datasets to evaluate the degree of dimensionality curse in a study of various
metrics in data space [15]. Here, we benchmark ID estimation methods, focusing on their
applicability to a wide range of datasets of different origin, configuration and size. We
also look at how different ID estimations are correlated, and show how scikit-dimension
can be used to derive a consensus measure of data dimensionality by averaging multiple
individual measures. The latter can be a robust measure of data dimensionality in various
applications.

Scikit-dimension was applied in several recent studies for estimating the intrinsic
dimensionality of real-life datasets [16,17].

2. Materials and Methods
2.1. Software Features

Scikit-dimension is an open-source software available at https://github.com/j-bac/
scikit-dimension (accessed on 18 October 2021).

Scikit-dimension consists of two modules. The id module provides ID estimators,
and the datasets module provides synthetic benchmark datasets.

2.1.1. id Module

The id module contains estimators based on the following:

• Correlation (fractal) dimension (id.CorrInt) [18].
• Manifold-adaptive fractal dimension (id.MADA) [19].
• Method of moments (id.MOM) [20].
• Principal component analysis (id.lPCA) [3,21–23].
• Maximum likelihood (id.MLE) [24–26].
• Minimum spanning trees (id.KNN) [27].

https://github.com/j-bac/scikit-dimension
https://github.com/j-bac/scikit-dimension
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• Estimators based on concentration of measure (id.MiND_ML, id.DANCo, id.ESS,
id.TwoNN, id.FisherS, id.TLE) [4,28–33].

The description of the method principles is provided together with the package
documentation at https://scikit-dimension.readthedocs.io/ (accessed on 18 October 2021)
and in reviews [5,9,14].

2.1.2. Datasets Module

The datasets module allows user to test estimators on synthetic datasets; Figure 1. It can
generate several low-dimensional toy datasets to play with different estimators as well as a
set of synthetic manifolds commonly used to benchmark ID estimators, introduced by [14]
and further extended in [11,28].

Figure 1. Example usage: generating the Line–Disk–Ball dataset [10]), which has clusters of varying local ID, and coloring
points by estimates of local ID obtained by id.lPCA.

2.2. Development

Scikit-dimension is built according to the scikit-learn API [1] with support for Linux,
MacOS, Windows and Python >= 3.6. The code style and API design are based on the
guidelines of scikit-learn, with the NumPy [34] documentation format, and continuous
integration on all three platforms. The online documentation is built using Sphinx and
hosted with ReadTheDocs.

2.3. Dependencies

Scikit-dimension depends on a limited number of external dependencies on the
user side for ease of installation and maintenance:

• Matplotlib [35]
• Pandas [36].
• Scikit-learn [1].
• Numba [37].
• SciPy [38]
• NumPy [34].

2.4. Related Software

Related open-source software for ID estimation have previously been developed in
different languages such as R, MATLAB or C++ and contributed to the development of
scikit-dimension.

In particular, refs. [10,39–41] provided extensive collections of ID estimators and
datasets for R users, with [40] additionally focusing on dimension reduction algorithms.

https://scikit-dimension.readthedocs.io/
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Similar resources can be found for MATLAB users [42–45]. Benchmarking many of the
methods for ID estimation included in this package was performed in [15]. Finally, there
exist several packages implementing standalone algorithms; in particular for Python,
we refer the reader to complementary implementations of the GeoMLE, full correlation
dimension, and GraphDistancesID algorithms [46–49].

To our knowledge, scikit-dimension is the first Python implementation of an ex-
tensive collection of ID methods. Compared to similar efforts in other languages, the
package puts emphasis on estimators, quantifying various properties of high-dimensional
data geometry, such as the concentration of measure. It is the only package to include ID
estimation based on linear separability of data, using Fisher discriminants [4,32,50,51].

3. Results
3.1. Benchmarking Scikit-Dimension on a Large Collection of Datasets

In order to demonstrate the applicability of scikit-dimension to a wide range of real-
life datasets of various configurations and sizes, we performed a large-scale benchmarking
of scikit-dimension, using the collection of datasets from the OpenML repository [52]. We
selected those datasets having at least 1000 observations and 10 features, without missing
values. We excluded those datasets which were difficult to fetch, either because of their
size or an error in the OpenML API. After filtering out repetitive entries, 499 datasets were
collected. Their number of observations varied from 1002 to 9,199,930, and their number
of features varied from 10 to 13,196. We focused only on numerical variables, and we
subsampled the number of rows in the matrix to a maximum of 100,000. All dataset
features were scaled to unit interval using Min/Max scaling. In addition, we filtered out
approximate non-unique columns and rows in the data matrices since some of the ID
methods could be affected by the presence of identical (or approximately identical) rows or
columns.

We added to the collection 18 datasets, containing single-cell transcriptomic measure-
ments, from the CytoTRACE study [53] and 4 largest datasets from The Cancer Genome
Atlas (TCGA), containing bulk transcriptomic measurements. Therefore, our final collection
contained 521 datasets altogether.

3.1.1. Scikit-Dimension ID Estimator Method Features

We systematically applied 19 ID estimation methods from scikit-dimension, with
default parameter values, including 7 methods based on application of principal component
analysis (“linear” or PCA-based ID methods), and 12 based on application of various other
principles, including correlation dimension and concentration of measure-based methods
(“nonlinear” ID methods).

For KNN and MADA methods, we had to further subsample the data matrix to a
maximum of 20,000 rows; otherwise they were too greedy in terms of memory consumption.
Moreover, DANCo and ESS methods appeared to be too slow, especially in the case of
a large number of variables: therefore, we made ID estimations in these cases on small
fragments of data matrices. Thus, for DANCo, the maximum matrix size was set to
10,000 × 100, and for ESS to 2000 × 20. The number of features was reduced for these
methods when needed, by using PCA-derived coordinates, and the number of observations
were reduced by random subsampling.

In Table 1, we provide the summary of characteristics of the tested methods. In more
detail, the following method features were evaluated (see Figure 2).

Firstly, we simply looked at the ranges of ID values produced by the methods across
all the datasets. These ranges varied significantly between the methods, especially for the
linear ones (Figure 2A).

Secondly, we tested the methods with respect to their ability to successfully compute
the ID as a positive finite value. It appeared that certain methods (such as MADA and TLE),
in a certain number of cases produced a significant fraction of uninterpretable estimates
(such as “nan” or negative value); Figure 2B. We assume that in most of such cases, the
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problem with ID estimation is caused by the method implementation, not anticipating
certain relatively rare data point configurations, rather than the methodology itself, and
that a reasonable ID estimate always exists. Therefore, in the case of an uninterpretable
value due to method implementation, for further analysis, we considered it possible to
impute the ID value from the results of application of other methods; see below.

Thirdly, for a small number of datasets, we performed a test of their sensitivity to
the presence of strongly redundant features. For this purpose, we duplicated all features
in a matrix and recomputed the ID. The resulting sensitivity is the ratio between the
ID computed for the larger matrix and the ID computed for the initial matrix, having
no duplicated columns. It appears that despite most of the methods being robust with
respect to such a matrix duplication, some (such as PCA-based broken stick or the famous
Kaiser methods popular in various fields, such as biology [54,55]), tend to be very sensitive
(Figure 2C), which is compliant with some previous reports [15].

Table 1. Summary table of ID methods characteristics. The qualitative score changes from “−−−” (worst) to “+++” (best).

Method Name Short
Name(s) Ref(s) Valid

Result

Insensitivity
to

Redundancy

Uniform
ID Estimate
in Similar

Datasets

Performance
with Many

Observations

Performance
with Many

Features

PCA
Fukunaga-Olsen

PCA FO,
PFO [15,22] +++ +++ +++ +++ +++

PCA Fan PFN [23] +++ +++ +++ +++ +++
PCA maxgap PMG [56] +++ −−− + +++ +++

PCA ratio PRT [57] +++ +++ + +++ +++
PCA participation

ratio PPR [57] +++ +++ ++ +++ +++

PCA Kaiser PKS [54,58] +++ − +++ +++ +++
PCA broken stick PBS [55,59] +++ −− +++ +++ +++

Correlation
(fractal)

dimensionality
CorrInt, CID [18] + +++ ++ + +

Fisher separability FisherS, FSH [4,32] ++ +++ +++ ++ +++
K-nearest

neighbours KNN [27] ++ −− −− − ++

Manifold-adaptive
fractal dimension

MADA,
MDA [19] − +++ +++ − +

Minimum
neighbor

distance—ML

MIND_ML,
MMk,

MMi
[28] +++ +++ ++ ++ +

Maximum
likelihood MLE [25] ++ +++ ++ ++ +

Methods of
moments MOM [20] +++ +++ +++ ++ +

Estimation within
tight localities TLE [33] −− +++ +++ ++ +

Minimal
neighborhood
information

TwoNN,
TNN [31] ++ +++ +++ ++ +++

Angle and norm
concentration

DANCo,
DNC [29] + +++ +++ −−− −−−

Expected simplex
skewness ESS [56] +++ +++ +++ −−− −−−

Some of the datasets in our collection could be combined in homogeneous groups
according to their origin, such as the data coming from quantitative structure–activity
relationship (QSAR)–based quantification of a set of chemicals. The size of the QSAR
fingerprint for the molecules is the same in all such datasets (1024 features): therefore, we
can assume that the estimate of ID will not vary too much across the datasets from the
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same group. We computed the coefficient of a variation of ID estimates across three such
dataset groups, which revealed that certain methods tend to provide less stable estimations
than the others; Figure 2D.

Finally, we recorded the computational time needed for each method. We found
that the computational time could be estimated with good precision (R2 > 0.93 for all ID
estimators), using the multiplicative model: Time = c × Nα

obj × Nβ
var, where Nobj and Nvar

are the number of objects and features in a dataset, correspondingly. Using this model fit
for each method, we estimated the time needed to estimate ID for data matrices of four
characteristic sizes; Figure 2E.

Figure 2. Illustrating different ID method general characteristics: (A) range of estimated ID values; (B) ability to produce
interpretable (positive finite value) result; (C) sensitivity to feature redundancy (after duplicating matrix columns); (D) uni-
form ID estimation across datasets of similar nature; (E) computational time needed to compute ID for matrices of four
characteristic sizes.

3.1.2. Metanalysis of Scikit-Dimension ID Estimates

After application of scikit-dimension, each dataset was characterized by a vector of
19 measurements of intrinsic dimensionality. The resulting matrix of ID values contained
2.5% missing values, which were imputed, using the standard IterativeImputer from the
sklearn Python package.

Using the imputed matrix and scaling it to z-scores, we performed principal compo-
nent analysis (Figure 3A,B). The first principal component explained 42.6% percent of the
total variance in ID estimations, with all of the methods having positive and comparable
loadings to the first principal component. This justifies the computation of the “consensus”
intrinsic dimension measure, which we define here as the mean value of individual ID
estimate z-scores. Therefore, the mean ID can take negative or positive values, roughly
dividing the datasets into “lower-dimensional” and “higher-dimensional” (Figure 3A,C).
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The consensus ID estimate weakly negatively correlated with the number of observations
(Pearson ρ = −0.25, p-value = 10−9) and positively correlated with the number of features
in the dataset (r = 0.44, p-value = 10−25). Nevertheless, even for the datasets with similar
matrix shapes, the mean ID estimate could be quite different (Figure 3C).

The second principal component explained 21.3% of the total variance in ID estimates.
The loadings of this component roughly differentiated between PCA-based ID estimates
and non-linear ID estimation methods, with one exception in the case of the KNN method.

Figure 3. Characterizing OpenML dataset collection in terms of ID estimates. (A) PCA visualizations of datasets characterized
by vectors of 19 ID measures. Size of the point corresponds to the logarithm of the number of matrix entries (Nobj × Nvar).
The color corresponds to the mean ID estimate taken as the mean of all ID measure z-scores. (B) Loadings of various
methods into the first and the second principal component from (A). (C) Visualization of the mean ID score as a function of
data matrix shape. The color is the same as in (A). (D) Correlation matrix between different ID estimates computed over all
analyzed datasets.

We computed the correlation matrix between the results of application of different ID
methods (Figure 3D), which also distinguished two large groups of PCA-based and “non-
linear” methods. Furthermore, non-linear methods were split into the group of methods,
producing results similar to the correlation (fractal) dimension (CorrInt, MADA, MOM,
TwoNN, MLE, TLE) and methods based on the concentration of measure phenomena
(FisherS, ESS, DANCo, MiND_ML).

In order to illustrate the relation between the dataset geometry and the intrinsic dimen-
sion, we produced a gallery of uniform manifold approximation and projection (UMAP)
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dataset visualizations, with an indication of the ambient dataset dimension (number of
features) and the estimated ID, using all methods; Figure 4. One of the conclusions that
can be made from this analysis is that the UMAP visualization is not insightful for truly
high-dimensional datasets (starting from ID = 10, estimated by the FisherS method). In
addition, some datasets, having large ambient dimensions, were characterized with a low
ID by most of the methods (e.g., ‘hill-valley’ dataset).

Figure 4. A gallery of UMAP plots computed for a selection of datasets from OpenML collection, with indication of ID
estimates, ranked by the ID value estimated using Fisher separability-based method (indicated in the left top corner). The
ambient dimension of the data (number of features Nvar) is indicated in the bottom left corner, and the color reflects the
ID/Nvar ratio, from red (close to 0.0 value) to green (close to 1.0). On the right from the UMAP plot, all 19 ID measures are
indicated, with color mapped to the value range, from green (small dimension) to red (high dimension).
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4. Conclusions

scikit-dimension is to our knowledge the first package implemented in Python,
containing implementations of the most-used estimators of ID.

Benchmarking scikit-dimension on a large collection of real-life and synthetic
datasets revealed that different estimators of ID possess internal consistency and that
the ensemble of ID estimators allows us to achieve more robust classification of datasets
into low- or high-dimensionality.

The estimation of intrinsic dimensionality of a dataset is essential in various applica-
tions of machine learning to real-life data. We can mention here several typical use cases,
where the scikit-dimension package can be used, but this description is by no means
comprehensive.

Firstly, learning low-dimensional data geometry (e.g., learning data manifolds or more
complex geometries, such as principal graphs [60,61]) frequently requires preliminary data
dimensionality reduction for which one has to estimate the ‘true’ global and local data
dimensionality. For example, in the analysis of single-cell data in biology, the inference of
so-called cellular trajectories can give different results when more or less principal data
dimensions are kept. In higher dimensions, more cell fate decisions can be distinguished,
but their inference becomes less robust [62,63]. Some advanced methods of unsupervised
learning, such as quantifying the data manifold curvature, require knowledge of data
ID [64]. In mathematical modeling of biological and other complex systems, it is frequently
important to estimate the effective dimensionality of the dynamical process, from the data
or from simulations, in order to inform model reduction [17,65,66]. In medical applications
and in the analysis of clinical data, knowledge of consensus data dimensionality was shown
to be important to distinguish signal from noise and predict patient trajectories [16].

Secondly, high-dimensional data geometry is a rapidly evolving field in machine
learning [67–69]. To know whether the recent theoretical results can be used in practice, one
has to estimate the ID of a concrete dataset. More generally, it is important to know if an
application of a machine learning method to a dataset will face various types of difficulties,
known as the curse of dimensionality. For example, it was shown that, under appropriate
assumptions, robustness of general multi-class classifiers to adversarial examples can be
achieved only if the intrinsic dimensionality of the AI’s decision variables is sufficiently
small [70]. Knowledge of ID can be important to decide if one can benefit from the blessing
of dimensionality in the problem of correcting the AI’s errors when deploying large, pre-
trained legacy neural network models [32,71]. Estimating data dimensionality can suggest
the application of specific data pre-processing methods, such as hubness reduction of point
neighborhood graphs, in the tasks of clustering or non-linear dimensionality reduction [72].
In a recent study, estimating dataset ID was used to show that some old ideas on fighting the
curse of dimensionality by modifying global data metrics are not efficient in practice [15].
In this respect, explicit control of the ID of AI models’ latent spaces appears to be crucial
for developing robust and reliable AI. Our work adds to the spectrum of tools to achieve
this aim.

Thirdly, local ID can be used to partition a data point cloud in a way that is comple-
mentary to standard clustering [73]. In 3D, this approach can be used for object detection
(see Figure 1), but it can be generalized for higher-dimensional data point clouds. Interest-
ingly, local ID can be related to various object characteristics in various domains: folded
versus unfolded configurations in a protein molecular dynamics trajectory, active versus
non-active regions in brain imaging data, and firms with different financial risk in company
balance sheets [74].

Future releases of scikit-dimension will continuously seek to incorporate new es-
timators and benchmark datasets introduced in the literature, or new features, such as
alternative nearest neighbor search for local ID estimates. The package will also include new
ID estimators, which can be derived using the most recent achievements in understanding
the properties of high-dimensional data geometry [71,75].
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