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Abstract Haematopoietic stem cells (HSC) are situated at the
apex of the haematopoietic differentiation hierarchy, ensuring
the life-long supply of mature haematopoietic cells and
forming a reservoir to replenish the haematopoietic system
in case of emergency such as acute blood loss. To maintain a
balanced production of all mature lineages and at the same
time secure a stem cell reservoir, intricate regulatory programs
have evolved to control multi-lineage differentiation and self-
renewal in haematopoietic stem and progenitor cells (HSPCs).
Leukaemogenic mutations commonly disrupt these regulatory
programs causing a block in differentiation with simultaneous
enhancement of proliferation. Here, we briefly summarize key
aspects of HSPC regulatory programs, and then focus on their
disruption by leukaemogenic fusion genes containing the
mixed lineage leukaemia (MLL) gene. Using MLL as an ex-
ample, we explore important questions of wider significance
that are still under debate, including the importance of cell of
origin, to what extent leukaemia oncogenes impose specific
regulatory programs and the relevance of leukaemia stem cells
for disease development and prognosis. Finally, we suggest
that disruption of stem cell regulatory programs is likely to
play an important role in many other pathologies including
ageing-associated regenerative failure.
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Regulatory programs in normal haematopoietic stem
and progenitor cells (HSPCs)

HSCs reside in the bone marrow, where they represent in the
mouse approximately 1 in 20,000 nucleated haematopoietic
cells. Though mostly quiescent [1], HSCs actively contribute
to steady state haematopoiesis [2], which in turn is largely
driven by long-lived multipotent progenitor cells [3, 4]. To
maintain a balanced production of the more than ten distinct
mature haematopoietic cell types throughout adult life, both
HSC self-renewal and multi-lineage differentiation need to be
tightly controlled. Despite their rarity, powerful protocols for
the prospective isolation of HSCs have been developed, with
the latest protocols providing over 60% purity when assayed
by single cell transplantation [5]. Nevertheless, their low
abundance has been a major obstacle towards the generation
of detailed insights into the regulatory programs definingHSC
function, because many classical biochemical assays require
1000 or 100,000 of cells that simply are not available for
highly purified HSCs. There is renewed hope that new single
cell profiling technologies will provide a step-change in our
understanding of molecular processes controlling HSC func-
tion. This is based on a number of recent publications that (i)
defined the transcriptional landscape at single cell resolution
[6], (ii) used single cell profiling to train literature-curated
network models [7], as well as validating an HSPC regulatory
network model built on detailed characterization of gene reg-
ulatory sequences [8] and (iii) characterized the transcriptional
status of multipotent myeloid precursor cells at single cell
resolution [9].

Despite the clear challenges in deciphering regulatory pro-
grams operating in HSPCs, some key concepts have neverthe-
less been identified over the past two decades. Firstly, HSC
self-renewal most likely requires extracellular external signals
(for example from the bone marrow niche), since HSCs
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cannot be propagated efficiently in vitro, where a drive to
differentiate outstrips any inherent self-renewal capability
[10]. Several HSC niches have been proposed with most re-
search focussed on the endosteal [11] and vascular niches
[12]. In vivo live imaging [13] partially unified these two
concepts by showing that HSCs expansion after BM impair-
ment is taking place in a highly vascularized area where oste-
oblasts are surrounded by blood vessels. Of note, it has been
reported that the majority of HSCs need, for their mainte-
nance, factors secreted by perivascular stromal and endothelial
cells [14–16]. Secondly, core circuits of transcription factors
define the cellular identity of haematopoietic lineages, such as
erythroid, megakaryocyte, or granulocytic cells [17–19].
Multipotent cells, on the other hand, are characterized by
low-level co-expression of genes affiliated with distinct line-
age programs, such as the co-expression of erythroid and my-
eloid genes within the same single cells [20–24]. Thirdly, the
classical haematopoietic tree with a sequence of binary fate
choices is most likely not an accurate reflection of in vivo
haematopoietic production, since for example HSCs with re-
stricted or even uni-lineage long-term reconstitution ability
have been identified [25–27], and there seem to be multiple
differentiation routes that can converge on some of the mature
lineages [28]. As with any other biological system, much can
be learnt about the properties of HSPCs by studying systemic
perturbations. In this context, particular attention has been
paid to studying leukaemia models as system-wide perturba-
tions since direct translational relevance will come from a
better understanding of the molecular processes that operate
in normal HSPCs and are disrupted in leukaemia.

Perturbation of HSPC regulatory programs in acute
myeloid leukaemia

Research during the past 15 years has established that the cell
of origin receiving the initial leukaemogenic mutation in acute
myeloid leukaemia (AML) is situated within the HSPC com-
partment [29–31]. Of interest, while full-blown frank leukae-
mia may be characterized by the expression of surface
markers associated with more mature progenitors such as the
granulocyte-macrophage progenitor (GMP) [32, 33], it is now
thought that the initial mutation more likely occurs within
cells residing in the most immature stem and progenitor com-
partment [34, 35]. Moreover, it has been shown that the ability
of an oncogene to transform cells at increasingly mature
HSPC stages is oncogene specific [36]. It has been
hypothesised that these oncogene specific effects are at least
in part related to the degree to which the transforming gene
can induce self-renewal in maturing HSPCs that are increas-
ingly distant from the most immature stem cells that naturally
possess such activity.

Despite the apparent phenotypic variety of different types
of AML driven by both oncogene and cell-of-origin specific
effects, common themes have emerged of how HSPC regula-
tory programs need to be perturbed to cause the leukaemic
AML phenotype. This has lead to a classification into types
1 and 2 AML oncogenes: drivers of proliferation or of the
block in differentiation, respectively [37, 38]. A combination
of types 1 and 2 oncogenes would then create a perfect storm
for leukaemia development, as illustrated for example by the
combination of activating growth factor mutations (Flt3 or c-
Kit) in combination with translocations involving the Runx1
transcription factor. Here, the growth factor mutations cause
enhanced proliferation and survival of progenitors, thought to
be simultaneously blocked from differentiation by the
dominant-negative action of Runx1 fusion proteins [39–42].
However, it needs to be noted that with more detailed molec-
ular characterization of additional AML leukaemogenic mu-
tations, a more complex picture is emerging where individual
mutations cannot be classified into strict categories, as they
may affect both proliferation and differentiation, and may do
so differently depending onwhich other mutations are present.
This suggests that the original model is not only simplistic but
in fact may not be useful any longer.

Of particular interest are leukaemogenic mutations com-
monly associated with childhood acute leukaemias, because
it has become apparent that these tumours often have a com-
paratively low genetic complexity, where two (or even one)
genetic hits are thought to be sufficient to cause malignant
transformation [43, 44]. Consequently, these diseases offer a
more readily interpretable model for the analysis of perturbed
HSPC regulatory programs. In the subsequent sections, we
will explore in more detail the acute leukaemia cell of origin,
and then focus on leukaemogenic perturbations involving the
expression of fusion proteins that contain the N-terminal por-
tion of the MLL gene.

Leukaemia cell of origin

Disease development is characterized by dynamic processes
that often begin years before clinical onset. If genetic alter-
ations give survival advantages, the consequence is the growth
of a prevalent population, as introduced by Peter Nowell [45]
in 1976. Accumulation of sequential somatic mutations in a
single clone and subclonal selection lead to the growth of a
predominant population with survival advantages. This model
has been revisited over the years [46, 47]. For many cancers,
the target cell of the transformation events is still unknown.
The first evidence for a stem cell origin of cancer was dem-
onstrated by Philip Fialkow in Chronic Myelogenous
Leukaemia (CML) [48]. Ten years later, L. J. Smith and col-
leagues, showed that blast cells from patients with acute leu-
kaemia can co-express markers of both myelopoiesis and
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lymphopoiesis [32]. The hypothesis for the existence of leu-
kaemia stem cells (LSCs) able to extensively proliferate and
sustain leukaemia, came from the observation that prolifera-
tion of the majority of leukaemic blasts in AML is finite [49],
and only some of the leukaemic cells could form spleen col-
onies when transplanted in vivo [30]. In the late ‘90s, the use
of mouse xenograft models demonstrated that only
CD34+CD38− human AML purified cells (which can be as
low as 0.2% of the total leukaemic cells) were able to repop-
ulate non-obese diabetic mice with severe combined immuno-
deficiency disease (NOD/SCIDmice) and transfer AML. This
subset of LSC cells was defined as SCID leukaemia-initiating
cells (SL-IC). A significant number of those (2%) retained the
CD34+CD38− phenotype in vivo confirming their self-
renewal property [34]. These observations suggest that for
most AML subtypes, immature normal HSPCs rather than
committed progenitors, are the target for leukaemic
transformation.

However, several studies support an alternative model
whereby AML LSCs derive from a downstream progenitor
phenotypically identified as CD34+CD38−CD90− [50]. Of
note, fusion transcripts for the AML1-ETO leukaemia onco-
gene were detected in both blast cells (CD90−) and normal
HSCs (CD90+). However, the latter could differentiate into
normal lineage committed cells in vitro without expanding
the pool of leukaemic CD90− blasts, indicating that chromo-
somal translocation may occur in the HSC compartment but
transformation into frank AML may require additional muta-
tions that take place in a more downstream population being
CD90−. Additionally, primary human CD34+ AML samples
were shown to cluster into two CD90− immunophenotypic
groups: GMP-like and more immature LMPP-like cells [51].
Interestingly, gene expression profiles of these LSC popula-
tions showed higher similarity with their respective normal
counterparts rather than the normal HSC profile.

Further evidence that there is not just a single HSPC regu-
latory program that is susceptible to leukaemic transformation
comes from Acute Promyelocytic Leukaemia (APML) pa-
tients where the PML-RARα fusion gene is present in a more
differentiated population being CD34−CD38+ [52]. Jamieson
et al., showed that non self-renewing cells were transformed
into LSC in human blast crisis chronic myeloid leukaemia
(CML), where activation of the Wnt/β-catenin pathway en-
hanced self-renewal ability of BCR-ABL expressing
granulocyte-macrophage progenitors [53]. This study further
shows that LSCs could also derive from a differentiated ma-
ture cell which can re-acquire self-renewal properties to gen-
erate a tumorigenic cell. Furthermore, in vivo transplantation
mouse models using primary human MLL-AF4 and -ENL
leukaemias have demonstrated that committed progenitors
with a CD34+CD38+CD19+ surface marker phenotype were
able to give rise to infant ALL [54]. Finally, exciting studies
have also provided a definition of the leukaemia cell of origin

based on the chromatin landscape, which represents a power-
ful platform for the identification of new epigenetic bio-
markers [55, 56].

However, identification of LSCs cannot be achieved solely
by means of cell surface markers, but critically requires func-
tional assays. Thus, understanding the pathways controlling
LSCs properties is crucial for the development of new thera-
pies. Oxidative stress variations have been observed to differ-
ently correlate with the self-renewal potential of LSC and
HSC [57]; inhibitors of the aryl- hydrocarbon receptor
(AhR) pathway have been described to block AML cell dif-
ferentiation [58]; epigenetic inhibitors have been developed to
selectively cause apoptosis of AML LSC [59]. Mutations in
genes involved in epigenetic processes are indeed involved in
the early event of AML evolution, also defined as pre-
leukaemic state [60]. These genes are involved in DNA meth-
ylation such as DNA methyltransferase 3 alpha (DNMT3A),
histones modifications like sex comb like 1 (ASXL1) and
chromatin looping like IKAROS family zinc finger
1(IKZF1). Finally, global chromatin changes result also in a
complex deregulation of transcriptional programs. It has been
recently described that even in the absence of MLL rearrange-
ments, MEIS1 transcriptional program can be activated, as a
consequence of its promoter hypomethylation, by DNMT3A
mutations [61].

Cell of origin for pre-leukaemia development

The emergence of subclones after treatment [62, 63] causing
relapse has been described in several leukaemias including
paediatric leukaemia [64] and CML [65]. Hope and col-
leagues observed in 2004 proliferation rate heterogeneity in
LSCs of AML patients [66]. Quiescence of a subset of LSCs
may not only explain the recent discovery that mutations in
genes regulating proliferation may be a late event during leu-
kaemogenesis [60], but is also consistent with a model where-
by the quiescent normal HSCs are the cell of origin for at least
some initiating pre-leukaemic mutations. The earliest
clonality studies suggesting the existence of pre-leukaemic
HSCs were published by Philip J. Fialkow and colleagues,
where X chromosome-linked glucose-6-phosphate dehydro-
genase (G6PD) was used as a marker to study clonal remission
[67]. At remission, blasts no longer carried the cytogenetic
aberration but expressed the Bleukaemic^ G6PD allele sug-
gesting a leukaemic clonal remission. Long-term remission
in AML patients with AML1-ETO translocation similarly
showed fusion gene levels in normal single cell derived mye-
loid and erythroid colonies obtained via isolation of purified
HSCs [68]. Further insights into the pre-leukaemic clonal evo-
lution model come from the comparison of DNA copy num-
ber abnormalities between diagnostic and relapse samples of
paediatric patients with ALL. Fifty-two percent of clones at
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relapse were antecedent to clones at diagnosis, and the rela-
tionship between them was further confirmed via Ig and Tcell
antigen receptor (TCR) deletions analysis. This unequivocally
confirms that the majority of relapse clones derive from a
common ancestral one present in small number at diagnosis
that acquires additional genetic alterations before emerging as
relapse clone [64].

The first study that isolated pre-leukaemic cells in AML
patients was published in 2012 [69]. Target exome sequencing
was applied on human residual HSC Lin−CD34+CD38− lack-
ing expression of the AML markers TIM3 and CD99. Even
though these cells appeared functionally normal, generating
long-term engraftment into NSG mice with both myeloid and
lymphoid lineage, they were also demonstrated to be the cel-
lular reservoir causing relapse. In fact, Bsilent^ mutations in
critical epigenetic regulators like TET2 were identified in five
out of six cases analysed both in purified leukaemic cells and
in a fraction of residual HSCs. However, in all cases FLT3-
ITD and IDH1 genes were found mutated in AML cells only.
Finally, through single cells analysis, sequential acquisition of
those mutations in pre-leukaemic cells was demonstrated.
Taken together therefore, current evidence suggests that pre-
leukaemic cells are closely related to normal HSC and form a
cellular reservoir where primary mutations (Bsilent^ muta-
tions) accumulate until secondary events (as FLT3-ITD muta-
tion) confer proliferative advantage that causes frank leukae-
mia. Perturbation of regulatory programs during leukaemo-
genesis therefore is likely to be a multi-step process, suggest-
ing that detailed knowledge of the stepwise subversion from
normal to pre-leukaemic to leukaemic will be required to ob-
tain a detailed molecular understanding of the underlying pro-
cesses. As outlined in the previous section, knowing the fu-
sion oncogenes is only part of the story, because the cellular
context within which they are activated is equally important.

MLL-rearranged leukaemia

Leukaemias characterized by chromosomal translocations af-
fecting the MLL gene, encoding a histone H3 lysine 4 (H3K4)
methyltransferase, on chromosome segment 11q23 [70], have
poor prognosis [71]. MLL rearrangements are responsible for
more than 70% of infant (<1 year) leukaemias with either
myeloid (AML), or lymphoid (ALL) immonophenotype
[43]. MLL translocations occur also in 10% of adult AML
[72] and in therapy related acute leukaemias (t-AL), often
characterized as tAML, following treatment with topoisomer-
ase II inhibitors [73]. The MLL gene has been found
rearranged with multiple partners (more than 50 translocation
partners have been identified). Among the most common,
MLL-AF9 t(9;11) is mainly associated with AML in both
paediatric and adult patients; MLL-AF4 t(4;11) is associated
with a lymphoid/mixed-lineage phenotype (mainly ALL), and

MLL-ENL t(11;19) drives paediatric ALL and adult AML
(only a small fraction of adult patients develop MLL-ENL
ALL) [70]. The dismal prognosis of MLL-rearranged (MLL-
r) leukaemia is associated with disease relapse [74].

Retroviral mouse models of MLL-r leukaemia

Several mouse models bearing MLL fusion proteins have
been developed in order to understand MLL fusion mediated
leukaemogenesis. However, discrepancies between mouse
leukaemic models and human leukaemias in terms of ability
ofMLL fusions to generate the same lineage leukaemia (AML
or ALL), as observed in patients, and latency in leukaemia
development, make the deconstruction of MLL-r leukaemia
development a challenge. One of the first mouse leukaemic
models with MLL fusion, was described by Lavau et al. in
1997 [75]. Retroviral transduction of MLL-ENL into lineage-
depleted or c-kit sortedmouse bonemarrow (BM)HSPCswas
followed by culture in methylcellulose. Infected
haematopoietic progenitors maintained self-renewal potential
in vitro. MLL-ENL expressing progenitors were phenotypi-
cally immature myelomonocytic cells being c-kit+, Mac1+ and
Sca-1−, and when cultured with granulocyte colony-
stimulating factor (G-CSF), terminally differentiated in ma-
ture granulocytes. Moreover, their injection into SCID mice,
caused death due to AML development. However, while the
MLL-ENL translocation gives rise also to human ALL [70],
no lymphoid markers were expressed on MLL-ENL express-
ing cells in the retroviral mouse model. More recent studies
demonstrated transforming ability of MLL fusions (both
in vitro and in vivo) also inmore differentiated haematopoietic
progenitor cells [76] such as common myeloid progenitors
(CMPs) and granulocytic/monocytic-restricted progenitors
(GMPs). By contrast, megacaryocytic/erythroid-restricted
progenitors (MEPs) injected mice did not develop AML.
Overall, this suggests that MLL-ENL is able to confer a self-
renewal regulatory program to some but not all committed
progenitors [77]. Subsequent genome wide studies demon-
strated that MLL-ENL transcriptional reprogramming hap-
pens fast during transformation, and the immediate phase of
leukaemogenesis is similar to the progression phase character-
ized not only by HoxA cluster up-regulation but also by gen-
eral transcriptional downregulation involving key
haematopoietic transcription factors Gata2, Gfi1b and
Zfpm1 [78].

Of note,murine models [76, 79, 80] often fail to reproduce
the biphenotypic feature observed in MLL-r leukaemia pa-
tients with co-expression of some myeloid and lymphoid
genes. Zeisig et al. [81] first reported a MLL-ENL transfor-
mation model based on a biphenotypic lymphoid/myeloid
phenotype. Similarly, when infected murine BM cells were
cultured in methylcellulose with Flt3-ligand, stem cell factor
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(SCF) and interleukin-7 (IL-7) to sustain lymphopoiesis [82],
B220+CD19+ and B220+CD19− B cells appeared after
4 weeks. The latter generated leukaemia in vivo characterized
by splenomegaly, lymph node enlargement and an overgrown
thymus, where cells showed a myeloid morphology, yet
expressed the B220 lymphoid marker.

Non-retroviral models of MLL-r leukaemia

All the studies described so far used retroviral models, which
may not generate expression levels representative of the en-
dogenous gene loci involved in the translocation events. Since
expression levels are critical determinants of cellular program-
ming, it is not surprising that constitutive and conditional
knock-in mouse models have provided another powerful ap-
proach to analyse MLL-r leukaemias. In 1996, Corral et al.
[83] engineered expression of the MLL-AF9 oncogene via
homologous recombination [84]. Engineered mice, bearing
the MLL-AF9 fusion, developed leukaemia restricted to the
myeloid lineage despite of the widespread expression of the
fusion gene. Moreover, AML development was characterized

by long latency suggesting the need of genetic alterations for
complete leukaemic transformation. A Cre-Lox recombina-
tion approach generated MLL-AF9 [85] and MLL-ENL [86]
mouse models able to rapidly develop AML. Furthermore, de
novo MLL-ENL translocations caused myeloproliferative-
like myeloid leukaemia development in all mice in which
Cre recombinase was expressed from Lmo2, Lck and Rag1
genes (expressed in non-differentiated cells, T-cell linage and
early staged of lymphoid lineage, respectively); while no hae-
matological malignancies were observed in MLL-ENL Cd19-
Cre (gene expressed in B cell lineage) [87]. Overall, these data
demonstrate that the MLL-ENL fusion is leukaemic when
expressed in stem cells and progenitors excluding the B-cell
compartment [87, 88].

Importantly, an endogenous knock-in mouse model using
the MLL-AF9 oncogene [89], demonstrated that GMPs were
refractory to leukaemic transformation in complete contrast to
previous retroviral studies [76, 79]. While only 100 HSCs and
2500CMPs from knock-inmice were able to produce AML in
the majority of the recipients, all mice transplantedwith higher
doses of GMPs did not develop any disease. The ability of
GMPs to be transformed in retroviral studies seems to be
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related to the different levels of oncogene expressed (170-fold
higher then knock-in GMPs). By contrast, a doxycycline
(Dox) inducible mouse model, targeting MLL-ENL to the 3′
UTR of the Col1a1 gene [90], showed that both HSCs and
MPPs failed to induce leukaemia in vivo [33]. AML develop-
ment was observed only when Dox was administrated to mice
4 weeks after HSC transplantation suggesting that MLL-ENL
expression could interfere with in vivo homing. The authors
therefore suggested that granulocyte-monocyte-lymphoid
progenitors (GMLPs), as a subpopulation of the wider
Lineage−Sca-1+c-kit+ (LSK) population [91], and GMP pre-
cursors (pGMs) represent the most permissive cellular envi-
ronment for regulatory program perturbations that can cause
leukaemia development. Nevertheless, a recent study pub-
lished in 2016 [92] using another MLL-AF9 Dox inducible
mouse model (67), showed that both long-term HSCs (LT-
HSCs) and GMP were transformed by MLL-AF9 induction,
where transformation in LT-HSCs resulted in a more aggres-
sive AML phenotype. Taken together, rather than providing
conclusive answers to the molecular processes underlying
AML development in patients, these studies further highlight
the intricacies of perturbing regulatory programs and the com-
plex interplay of parameters such as cellular context and on-
cogene expression level. Given that no mouse model seems
perfect, it may be argued that research efforts need to be
refocused onto molecular studies with human patient samples,
especially since genome engineering has become so much
easier with the new clustered regulatory interspaced short pal-
indromic repeats (CRISR) system [93].

Concluding remarks

Regulatory programs in HSPCs need to be finely balanced to
maintain normal haematopoiesis and are vulnerable to genetic
perturbations that result in the development of malignant dis-
ease. Despite the remaining disagreements between the vari-
ous retroviral and transgenic models, it is clear that the cell of
origin influences leukaemia biology and prognosis (see
Fig. 1). Secondly, even within a group of related oncogenes
such as all the MLL fusions, the type of MLL translocation
together with the nature of the cellular environment strongly
influences leukaemia onset and phenotype [54, 88].

Further difficulties in understanding this interplay come
from inconsistencies between human disease and the murine
models. MLL-ENL expressing cells give rise to AML in
mouse models [75, 76, 94] while in human patients, this trans-
location is mainly involved in paediatric ALL [70]. Moreover,
mouse models reconstructing MLL-AF4 ALL have been dif-
ficult to develop, which may at least partly be caused by lim-
itations of retroviral technology [95]. While MLLAF4 is as-
sociated with paediatric and human ALL [70] and can cause
transformation of early B -cells, constitutive knock-in mouse

models and mice conditionally expressing MLL-AF4 fusion
develop only mature B-cell lymphomas [96, 97].

Overall, these discrepancies are likely to not only be a con-
sequence of intrinsic differences between the human and the
mouse system but also because of the many variables associ-
ated with both in vitro and in vivo studies. Cellular permissive-
ness might be influenced by the specific strategy used to purify
HSPCs [33] as well as oncogene delivery methods [91, 92].
Moreover, a preferential association of someMLL fusionswith
specific leukaemia subtypes could be under microenvironmen-
tal influence or dependent on cytokine signalling sensitivity
[98]. The involvement of secondary mutations associated with
MLL translocations will have major impacts on the way regu-
latory programs are perturbed, and therefore will be linked
with the aggressiveness of the disease. Although MLL-r
AML had been considered to have a low mutation frequency
[44], some MLL leukaemia models show long latency preced-
ed by a pre-leukaemic phase [75, 99]. Accordingly, a recent
cancer genome sequencing study on MLL-r AML patients has
identified mutations in SPI1gene [100], a powerful HSPC tran-
scription factor whose role in murine AML had already been
defined at genomic scale [101].

Much remains to be learnt about the complex regulatory
programs that are responsible for stem cell function during both
tissue maintenance and repair. The haematopoietic system offers
exciting opportunities to not only define these processes in nor-
mal cells, but also to learn how system perturbations can lead to
disease development. While current research efforts are largely
aimed at improving our understanding of perturbations that cor-
rupt normal HSPCs towards creating a malignant state, many of
the underlying principles will be widely applicable to other in-
stances of stem cell state subversion. In non-haematopoietic
tissues, adult stem cell deficiencies, particularly in old age, are
associatedwith both imbalances in tissuemaintenance as well as
regenerative failure. A better understanding of the mechanisms
that underlie the corruption of stem cell regulatory programs is
therefore of broad therapeutic relevance [102].
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