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Pollen germination and pollen tube growth are important biological events in the
sexual reproduction of higher plants, during which a large number of vesicle trafficking
and membrane fusion events occur. When secretory vesicles are transported via the
F-actin network in proximity to the apex of the pollen tube, the secretory vesicles
are tethered and fused to the plasma membrane by tethering factors and SNARE
proteins, respectively. The coupling and uncoupling between the vesicle membrane and
plasma membrane are also regulated by dynamic cytoskeleton, proteins, and signaling
molecules, including small G proteins, calcium, and PIP2. In this review, we focus on
the current knowledge regarding secretory vesicle delivery, tethering, and fusion during
pollen germination and tube growth and summarize the progress in research on how
regulators and signaling molecules participate in the above processes.
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INTRODUCTION

In seed plants, the production of seeds depends on double fertilization. Mature pollen grains are
tri-cellular and composed of two small sperm cells and a large vegetative cell in Arabidopsis. One
of the two sperm cells fuses with an egg to form a diploid zygote that develops into an embryo,
and the other fuses with the polar nucleus to form a primary endosperm nucleus; this process is
called double fertilization (Shi and Yang, 2010). The developmental progression of plant double
fertilization is well coordinated: it starts with pollen falling on the stigma; the pollen adheres,
hydrates, and germinates on the stigma via specific recognition (Sprunck, 2020). Then, the pollen
germinates to produce a tubular structure (the pollen tube) that rapidly elongates through polar
growth, penetrates the stigma, and grows in style tissues to ultimately deliver the two immotile
sperm cells into the ovule to complete double fertilization (Zheng et al., 2018). Since the proper
pollen germination and tube growth are essential for two sperm cells transporting to female
gametophyte, so exploring the molecular mechanism of pollen germination and pollen tube growth
is of great interest in the field.

Pollen germination and pollen tube elongation form the whole process by which polarity
is established and maintained. In this process, many cell wall materials, such as pectins and
cellulose, are contained as cargo in vesicles with an average diameter of 0.182 µm (Ketelaar
et al., 2008; Chebli et al., 2012). These vesicles arise from the Golgi and trans-Golgi network
(TGN) and are directionally transported toward and fused with the plasma membrane (PM)
at polar exocytosis sites to enable the membrane extension and sustained synthesis of new cell
wall material (Wang et al., 2016; Zheng et al., 2018; Grebnev et al., 2020; Guo and Yang, 2020).
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A better understanding of the molecular mechanisms of pollen
germination and tube growth is key for successful sexual
reproduction.

The process of pollen germination includes polarity
establishment and site determination (Liu et al., 2018), after
which the germinated pollen can continue membrane expansion
for directional tube growth. Via membrane trafficking and
integration, cell wall materials, proteins, and other components
for germination and membrane expansion are transported and
released; these processes are essential for pollen germination
and tube growth (Chebli et al., 2012; Wang et al., 2016). It is
generally thought that membrane contact between secretory
vesicles and the PM is the most important cellular activity that
coordinates pollen germination and pollen tube growth (Gu and
Nielsen, 2013; Guo and Yang, 2020). If directional transport-
and release-related processes are inhibited, pollen germination
and subsequent tube growth and fertilization events will be
strongly affected. In recent years, the progress in understanding
the dynamic coordination between endocytosis and exocytosis
in pollen tubes has been summarized and reviewed (Zhang
et al., 2019; Guo and Yang, 2020). In this review, we focus on
the process of secretory vesicle directional targeting the PM,
which involves vesicle delivery, tethering, and fusion during
pollen germination and tip growth, as well as on the different
regulators involved, such as some key signaling proteins and
other molecules.

VESICLE DELIVERY

It is generally thought that vesicles are transported by motor
protein-mediated directed transport along microfilaments (MFs)
toward the target membrane in plant cells, while in animal cells,
the microtubule network serves as the track (Coudrier, 2007;
Madison et al., 2015; Ueda et al., 2015; Duan and Tominaga,
2018). Experimental data also suggest that plant MFs maintain
greater stability than animal MFs and can withstand long-
distance vesicle transport (Ren et al., 2019).

Although massive dynamic vesicular transport is dependent
on the MF network, the coordination between vesicles and
their MF tracks shows quite different dynamic patterns during
pollen germination and tube growth (Lan et al., 2018; Liu et al.,
2018). Recent research has revealed that actin filaments rotate
along the outer edges of pollen grains and then gather in future
pollen germination sites, forming collar-like actin structures.
Genetic and pharmacological evidence has further revealed an
interdependent relationship between the mobility of vesicles
and the polymerization of actin filaments. AtFH5, a highly
expressed FORMIN protein in Arabidopsis thaliana pollen, is
located in vesicles and promotes actin assembly; in turn, the
force produced by MF polymerization pushes vesicles to the
potential germination site (Figure 1A; Liu et al., 2018). In the
pollen tube, the actin cytoskeleton shows a well-organized and
highly dynamic structure that might correspond to the specific
functions in different regions (Figure 1B; Xiang et al., 2007; Fu,
2015). In the shank region, the parallel F-actin cables are thought
to serve as tracks for transporting organelles and vesicles to the

pollen tube tip (Hepler and Cheung, 2001; Vidali et al., 2001).
In the subapical region, the MFs are short and dense and form
a collar-like zone, which might be used as a filter to prevent large
organelles and other large membrane structures from entering
the tip region (Kroeger et al., 2009; Dong et al., 2012; Diao et al.,
2020). In the apical region of the pollen tube, actin filaments are
highly dynamic and are thought to organize vesicle docking and
fusion with the PM of the pollen tube tip (Vidali et al., 2001;
Qu et al., 2013). Interestingly, there exist two alternative possible
working patterns between F-actin and secretory vesicles during
pollen germination and tube growth (Figures 1A,B). However,
it is not yet clear how these two coordination patterns work and
whether they equally contribute to pollen germination and tube
growth. Furthermore, single molecular techniques and in vitro
simulation assays are expected to be introduced that will help
to reveal how single F-actin molecules function on vesicles and
elucidate the underlying mechanism.

To ensure that secretory vesicles are delivered to the PM
along the correct route, actin filaments need to be temporally and
spatially coordinated and arranged in a highly dynamic manner.
Different classes of actin-binding proteins (ABPs) are involved in
this regulation. Among the ABPs, class I formins are very exciting
candidate coordinators of actin and vesicle dynamics, since they
can localize to secretory vesicles, bind to F-actin, and directly
regulate F-actin dynamics (Deeks et al., 2005; Cvrckova et al.,
2014; Li S. et al., 2017; Lan et al., 2018; Liu et al., 2018). Lan’s et al.
research showed that MF nucleation factor formins (FORMIN3
and FORMIN5) can localize to the PM at the tip of the pollen
tube and initiate MF assembly (Lan et al., 2018). The pollen
germination percentage is significantly reduced in fh3-2 fh5-3
mutant plants. Loss of actin filaments in the pollen tubes of fh3fh5
mutants reduces the velocity of tip-directed vesicle transport
and alters the apical vesicle accumulation pattern, supporting
the idea that apical actin filaments and their regulatory formin
proteins can regulate vesicle trafficking (Ye et al., 2009; Lan et al.,
2018). It would be very interesting to explore deeply whether
and how these pollen-expressed formin proteins are involved in
vesicle trafficking and integration processes. Another family of
ABPs, the profilins, can interact with formins via the FH1–FH2
domain to enhance filament elongation rates and to thin and
elongate actin bundles (Zhang et al., 2016; Li S. et al., 2017). Some
actin depolymerization factors, such as ADF5 and actin-bundling
proteins (i.e., VILLIN2 and VILLIN5), have been reported to
affect actin dynamics, further influencing pollen germination
and tube growth; however, there is no evidence showing an
interaction with vesicle trafficking or vesicle integration (Qu et al.,
2013; Zhu et al., 2017; Diao et al., 2020). Although it is known that
the dynamic organization of MFs and their regulatory proteins
are essential for targeting of vesicles to the PM for secretion,
the underlying molecular mechanism is still unclear, especially
regarding how actin organization interacts with secretory vesicles
and directs vesicle targeting. Which protein families may be
involved during this process still needs to be further explored.

Compared to the role of the MF cytoskeleton in vesicle
delivery, the roles of microtubules in pollen tubes are less
clear. Pollen tubes contain many microtubule motors of the
kinesin family, and pollen-expressed kinesin proteins are believed
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FIGURE 1 | Pattern of vesicle transport in pollen grains and pollen tubes. (A) AtFH5 is located to vesicles and promotes actin assembly, the force produced from
microfilament polymerization push vesicles’ rotational movement to the potential germination sites. Bottom: The box in the upper is enlarged. (B) Vesicles are
transported along the microfilaments by moto proteins in the shank region, giving rise to a reverse-fountain cytoplasmic streaming pattern, the microfilaments are
arranged into an actin fringe at the subapical region. Top: Pollen grains with pollen tubes. Bar is 20 µm. Middle: The box in the top is enlarged. Bottom: The box in
the middle is enlarged. (C) An enlarged image of dotted frame in A and B. Vesicles are tethered and fused to the plasma membrane by tethering factors and
SNAREs. Objects are not to scale.

to be involved in the distribution of organelles during pollen
tube growth (Cai and Cresti, 2010). Further exploration of the
function of the microtubule network, especially the role this
network plays in vesicle trafficking during pollen germination
and tube growth, would provide more information and help to
comprehensively elucidate the role of the cytoskeleton.

Signaling molecules such as the small G protein Rho of
plant GTPase (ROP), the second messenger Ca2+, and the
phospholipid molecule phosphatidylinositol-4,5-bisphosphate
(PIP2) play important roles in pollen germination and vesicle
transport in pollen tubes (Berken and Wittinghofer, 2008;
Steinhorst and Kudla, 2013; Feiguelman et al., 2018). As
molecular switches, small G proteins have two forms: an
inactivated GDP-bound form and an active GTP-bound form.
ROPs are regulated by ROPGEFs, ROPGAPs, and RHOGDIs
(Berken, 2006). In A. thaliana, ROP1, ROP3, and ROP5 are
expressed in pollen tubes. ROPs regulate cytoskeletal dynamics
and endocytosis through their downstream effector proteins. The
pollen-specific protein ROP1 accumulates in the PM of the top
of the pollen tube to regulate the Ca2+ concentration gradient,
activate the RIC3 pathway, and promote actin depolymerization
(Gu et al., 2005; Zhou et al., 2015). Moreover, ROP1 also activates
RIC4 to promote actin assembly, change the arrangement of
the MF skeleton, and induce the accumulation and transport of

vesicles to the tip region (Gu et al., 2005; Lee et al., 2008). These
results indicate that ROP1 is involved in vesicle transport through
regulation of MFs in pollen tubes. However, it is still unclear
whether establishment of pollen polarity is also regulated by ROP
during pollen germination.

PIP2 localizes at the pollen tube apical PM. The balance of
its distribution and content is very important for maintenance
of the normal growth of pollen tubes (Monteiro et al., 2005;
Zhang and McCormick, 2010). PI(4,5)P2 is synthesized by PIP5K
kinase, and the pollen germination and pollen tube polarity
growth of the pip5k4 homozygous mutant are significantly
impaired (Sousa et al., 2008). Ischebeck et al. (2011) found
that overexpression of PIP5K10 or PIP5K11 enlarged the
tip of the pollen tube and caused abnormal arrangement
of the MF cytoskeleton, indicating that PI(4,5)P2 regulates
dynamic changes in the MF cytoskeleton. Phosphatidylserine
(PS) is abundant in the inverted-cone zone of the apical
pollen tube in Arabidopsis. Recent research has revealed that
loss of apical localization of PS and significantly decreased
distribution lead to obvious decreases in vesicle numbers and
an obvious increase in pollen tube width, which indicates
that tip-localized PS establishment is important for vesicle
targeting/trafficking and polar growth of pollen tubes in
Arabidopsis (Zhou et al., 2020).
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Although the oscillation of [Ca2+]cyt follows the growth rate
pulse, the oscillation of the pollen tube growth rate is consistent
with changes in vesicle dynamics (Holdaway-Clarke et al., 1997;
Parton et al., 2001). When pollen tubes reach the growth peak,
considerable exocytosis is observed at the top of the test tube.
Ca2+-dependent ABP LILIM1 binds F-actin bundles in lily pollen
and protects them from depolymerization under low [Ca2+]cyt
(Wang et al., 2008). In contrast, with increases in [Ca2+]cyt,
villin/gelsolin family members cut off actin filaments, decrease
the activity of profilin, and reduce the polymerization of MFs
(Zhang et al., 2010). The above data indicate that Ca2+ can
indirectly affect vesicle transport in pollen tubes. Whether it can
also directly affect cytoskeletal dynamics or intracellular vesicle
transport remains to be further studied.

VESICLE TETHERING

After vesicles are delivered in proximity to the target membrane,
contact is required between the vesicle and target membrane
before fusion, and multisubunit tethering complexes are thought
to enable this initial encounter (Figure 1C). The first contact
between vesicles and the PM is mediated mainly by the exocyst
complex (Yu and Hughson, 2010; Pleskot et al., 2015; Mei et al.,
2018). The exocyst complex is composed of the subunits Sec3,
Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84, which are
highly conserved in eukaryotes (TerBush et al., 1996; Mei et al.,
2018). There are two models for the mechanism by which the
exocyst complex performs its tethering function in yeast and
mammalian cells (Yu and Hughson, 2010). In the first model,
Sec3 and Exo70 interact directly with P(4,5)P2 on the PM to
mark secretion sites (He et al., 2007; Zhang et al., 2008). The
remaining six subunits form a subcomplex, which is recruited
to the vesicle membrane through interaction between Sec15 and
the Rab GTPase Sec4p (Guo et al., 1999). In the other model, all
eight subunits of the exocyst complex assemble into two different
subcomplexes. One of them is composed of Sec3, Sec8, Sec5,
and Sec6, which are anchored to the membrane through Sec3
and directly interact with P(4,5)P2. Another subcomplex consists
of Sec10, Sec15, Exo70, and Exo84, which are located on the
vesicle. Then, interaction between Sec8 and Sec10 assembles the
two subcomplexes into a complete exocyst complex to complete
the process of vesicle tethering to the PM (Katoh et al., 2015;
Heider et al., 2016; Polgar and Fogelgren, 2018). However, the
molecular mechanism of the exocyst complex in plants is still
poorly understood. Mutations in plant exocyst subunits, such
as sec6, sec15a, and sec5a/sec5b single and double mutations,
cause defects in pollen germination and tube growth, while
sec8 and sec3a mutations have been reported to cause male-
specific transmission defects (Cole et al., 2005; Bloch et al., 2016;
Li Y. et al., 2017).

Pollen grain germination has been found to be defective in
a sec3a/SEC3A heterozygous mutant (Li Y. et al., 2017), while
in overexpression lines, multiple tips emerge from pollen grain
surfaces, and GFP-SEC3A signals appear only in the PM at
the tip of the growing pollen tube (Bloch et al., 2016). These
results suggest that SEC3A plays an important role in establishing

polarity during pollen germination and tube growth. In addition,
in sec3a/GFP-SEC3A-overexpressing complementation lines, a
strong positive correlation between the localization of GFP-
SEC3A at the tips of growing pollen tubes and the secretion of
esterified pectins suggests that GFP-SEC3A might work as an
intracellular marker for exocytosis. It would be very interesting
to explore how SEC3A and other components coordinate to
participate in the vesicle secretion process and which other
essential proteins/other molecules are secreted by the exocyst-
related pathway. The localization and dynamics of SEC8 in
pollen tubes are consistent with those of SEC3A, and the
homozygous sec8-null mutant also shows defects in male-specific
transmission, similar to the sec3a mutant (Cole et al., 2005; Hala
et al., 2008), which indicates that SEC3A and SEC8 may function
together to participate in polar transport and the release of key
contents for germination and tube growth. There are 23 potential
EXO70 genes in Arabidopsis, and mutations in EXO70 subunits
cause different defects in pollen germination and tube growth
(Elias, 2003; Synek et al., 2006, 2017; Li et al., 2010; Vukasinovic
and Zarsky, 2016). The diversity of EXO70 family genes implies
that there is a large degree of functional redundancy among
the subunits. EXO70C2 seems to play a dominant role together
with EXO70C1, since the exo70c1exo70c2 double mutation causes
a complete pollen-specific transmission defect (Synek et al.,
2017). The yeast two-hybrid system has identified interactions
of Arabidopsis SEC3A with EXO70A1, SEC10 with SEC15b, and
SEC6 with SEC8; these findings indicate that the plant exocyst
complex might be structurally conserved and similar to that
in animal and yeast cells (Hala et al., 2008). Given data from
dynamic imaging analysis of exocyst components in other plant
tissues and cells (e.g., root epidermal cells) and the molecular
mechanisms of tethering in other cell types (Fendrych et al.,
2013), it is reasonable to hypothesize that the exocyst complex
also functions as a tethering complex for vesicle transport
during pollen germination and tube growth. In the future, some
alternative imaging methods could be developed and applied
to pollen cells to track the dynamic pattern of each particle
component. The results of such studies would offer us more
details about how the exocyst complex functions in tethering
secretory vesicles.

In yeast cells, sec3p and Exo70p can be recruited to the
PM by binding directly with P(4,5)P2, and other subunits are
assembled at the active secretion site by Sec4p (Novick et al.,
2006). Similarly, the exocyst complex is also expressed in polar
secretory active sites in animal cells (Anitei et al., 2006). Although
the interaction of SEC3A and PIP2 in plant cells has been
confirmed by in vitro assays, in vivo analysis of the truncated
SEC3A protein with loss of the key PIP2 interaction domain
has indicated that the interaction does not affect SEC3A apical
PM localization and functionality in Arabidopsis (Bloch et al.,
2016). However, different results from ectopic expression of the
same truncated protein have been obtained in tobacco cells,
so the interaction and functionality between PIP2 and exocyst
components in plant cells still need to be explored (Bloch et al.,
2016; Li Y. et al., 2017).

The Rho small G proteins Cdc42, RHO1, and RHO3 regulate
the polar localization of sec3p and exo70p in yeast cells
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(Finger et al., 1998; Zhang et al., 2008). In plant cells, it has been
found that ICR/RIP, an effector protein of ROP, can form a
complex with active ROP1 and SEC3A to regulate root cell polar
growth (Lavy et al., 2007; Li Y. et al., 2017; Li et al., 2008). It would
be very interesting to screen and identify whether some ROP
effector or regulatory proteins interact with the exocyst complex
and coordinate the tethering process during pollen germination
and tube growth.

A general model of exocyst action suggests that most of the
components that arrive at the PM and tether secretory vesicles
cannot localize properly after disruption of the actin cytoskeleton
(Synek et al., 2014). In budding yeast, gene mutations in
SEC10 and SEC15 strongly affect the cytoskeleton, leading to
significant defects in the actin cytoskeleton (Aronov and Gerst,
2004). Inhibition of the interaction between EXO70 and the
Arp2/3 complex blocks the formation of actin-based membrane
protrusions and affects cell motility in animal cells, which
indicates the special role EXO70 might play in coordinating
the cytoskeleton and membrane trafficking during cell migration
(Zuo et al., 2006). Recent research has revealed that For1F is
a fusion protein containing both the exocyst complex subunit
(SEC10) domain and the conserved actin-nucleating factor
(formin) domain and that this new fusion protein is essential
for polar growth in Physcomitrella patens (van Gisbergen et al.,
2018). This work suggests that both the exocyst complex and
actin filaments are essential and cooperate in tethering secretory
vesicles during exocytosis. Further exploration of exocyst–
cytoskeleton interactions in different cell types would offer some
very important clues and elucidate possible cooperative strategies
in plant cells, which could help us to better understand the
molecular mechanism of vesicle trafficking.

VESICLE FUSION

Membrane fusion occurs after the tethering of vesicles and
target membranes; soluble N-ethylmaleimide-sensitive factor
attachment receptors (SNAREs) play a major role in membrane
fusion Figure 1C (Uemura et al., 2004; Lipka et al., 2007;
Sanderfoot, 2007). SNAREs are classified as Qa-, Qb-, Qc-, and
R-SNAREs based on their conserved residues, and all contain a
hydrophobic SNARE domain. The SNARE proteins located in the
PM and endosomes are listed in Figure 2. The Qa-SNARE family
members AtSYP124, AtSYP125, and AtSYP131 are exclusively
expressed in male gametophytes (Silva et al., 2010; Ichikawa et al.,
2015; Slane et al., 2017). The syp124syp125syp131 mutant shows
more severe male gametophyte defects than the syp124syp125
double mutant, and the pollen tube stops growing during passage
through the style, suggesting functional redundancy (Silva et al.,
2010; Ichikawa et al., 2015; Slane et al., 2017). SYP131 is
mainly stably located in the PM, while SYP124/SYP125 seems
to circulate between the PM and endosomes. Therefore, SYP124
and SYP125 may be responsible for membrane fusion in the
recycling pathway, while SYP131 may preferentially mediate the
membrane fusion of secretory vesicles and contribute to the
growth of pollen tubes (Silva et al., 2010; Ichikawa et al., 2015;
Slane et al., 2017). VAMP72 family proteins are plant-specific

FIGURE 2 | SNAREs located in the plasma membrane and endosomes.
Genes that are highly expressed in pollen, which are highlighted in red.

R-SNARE proteins that are located mainly in the PM (Lipka et al.,
2007). It has been found that the pollen tubes of vamp721+/−

vamp722+/− show a certain proportion of curly phenotypes,
and half of them lack the Ca2+ channel AtCNGC18 on the
PM (Meng et al., 2020). The N-terminal longin domains of
AtVAMP721 and AtVAMP722 interact with AtMLO5, recruit
AtCNGC18 to relocate to the PM, affect the local cytoplasmic
Ca2+ concentration, and regulate the directional responses of
pollen tubes to extracellular signals (Meng et al., 2020). However,
research on SNAREs has been scarce; thus far, there have been
no reports about Qb- and Qc-SNARE proteins in pollen. The
specific members of the SNARE complex that are expressed in
pollen and their functions in pollen germination and tube growth
are unclear.

Many studies have shown that Ca2+ plays an important
regulatory role in vesicle fusion (Konopka-Postupolska and
Clark, 2017). In Arabidopsis, the localization of Qa-SNARE in
pollen is also regulated by Ca2+ ions. The polarity establishment
of SYP125 before germination seems to be related to the
establishment of a Ca2+ gradient, and the location of SYP124
and SYP125 is also changed while Ca2+ flux is disturbed,
suggesting that Ca2+ regulates vesicle fusion in many ways
(Silva et al., 2010; Ichikawa et al., 2015). In addition, the
distribution of SYP124 and SYP125 is closely related to MFs,
MFs depolymerization destroys their localization (Silva et al.,
2010; Ichikawa et al., 2015); and some actin or actin-related
proteins have been identified in a interactome analysis of SNARE
proteins (Fujiwara et al., 2014). In animal cells, synaptotagmin
(SYT) proteins have been reported to regulate vesicle fusion
(Kweon et al., 2019). There are seven SYTs in Arabidopsis
(Ishikawa et al., 2020). In the plant SYT family, SYT1 is the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 January 2021 | Volume 8 | Article 615447

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-615447 January 16, 2021 Time: 21:19 # 6

Ruan et al. Vesicle Secretion in Pollen Cell

most extensively characterized protein; it acts as an endoplasmic
reticulum (ER)–PM tethering factor and participates in biotic and
abiotic stress responses in plants (Schapire et al., 2008; Siao et al.,
2016). SYTs contain conserved C-terminal tandem C2A and C2B
domains and interact with phosphatidylinositol, SNAREs, and
Ca2+ channel proteins to regulate endocytosis/exocytosis (Wu
et al., 2014). It will be interesting to study whether plant cells
implement a similar regulatory mechanism in the processes of
pollen germination and tube growth. SYT2 is expressed mainly
in Arabidopsis pollen and is located in the Golgi and PM, and
the SYT2-C2AB domain binds to the phospholipid membrane
in a Ca2+-dependent manner (Wang et al., 2015). The pollen
germination rate of syt2 mutants is decreased, and pollen tube
elongation is restricted (Wang et al., 2015), but the relationship
between SYT2 and vesicle fusion during pollen germination and
pollen tube growth needs to be further confirmed. Annexin, a
Ca2+ channel protein, can bind to membrane phospholipids
in a Ca2+-dependent manner and can also bind MFs. Thus,
it may provide an important connection among intracellular
Ca2+ signaling, the actin cytoskeleton, and the membrane
and participate in intracellular vesicle trafficking (Konopka-
Postupolska and Clark, 2017). Ann5 is a Ca2+ channel protein
that is highly expressed in mature pollen grains and pollen tubes
of A. thaliana, and a decrease in its expression leads to severe
sterility (Lichocka et al., 2018). Ann5 seems to participate in
pollen development, germination, and pollen tube elongation
by promoting Ca2+-regulated intimal transport, but the exact
mechanism needs to be further studied (Zhu et al., 2014a,b;
Lichocka et al., 2018).

PROSPECTS

Pollen germination and pollen tube growth are important
biological processes in plant sexual reproduction. Many vesicle
trafficking, tethering, and fusion events take place during polar
pollen germination and tube elongation. In past years, some
key tethered factors and SNARE family members have been

identified and characterized. However, there are still some key
issues that have not yet been resolved, such as the molecular
mechanism of each subunit of the exocyst complex and each
member of the SNARE family during pollen germination and
pollen tube growth. Recent studies have revealed that actin
filaments not only participate in intracellular vesicle transport as
tracks but also provide the driving forces for vesicle trafficking.
Further study is needed to determine whether and how MFs
function in vesicle tethering and fusion with the PM and to
reveal the interplay between these processes. In addition, Ca2+

is an important signaling molecule for pollen germination and
tube growth (Iwano et al., 2004; Hepler et al., 2012; Steinhorst
and Kudla, 2013); thus, it will be very meaningful to study
which and how Ca2+ channels or calcium binding proteins
are involved in the regulation of vesicle fusion during pollen
germination and pollen tube growth. It is believed that the
development of microscopic technologies and research methods
will enable in-depth analysis of vesicle delivery, tethering,
and fusion to the PM during pollen germination and pollen
tube growth.
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