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1  | INTRODUC TION

Three‐way interactions between plants, arthropods, and microbes are 
ubiquitous and complex (Biere, Tack, & Bennett, 2013; Shikano, Rosa, 
Tan, & Felton, 2017). Arthropod‐associated bacteria can profoundly 
influence the outcome of plant–arthropod interactions (Frago, Dicke, 
& Godfray, 2012; Giron et al., 2017). For example, arthropod‐associ‐
ated microorganisms can aid in the exploitation of plant resources by 
essential nutrient supplementation (Chandler, Wilkinson, & Douglas, 
2008), degradation of complex structural metabolites (Berasategui et 
al., 2017; Hammer & Bowers, 2015; Hansen & Moran, 2014), and de‐
fense manipulation (Chung et al., 2013; Su et al., 2015).

Conversely, the symbiotic bacterial communities of arthropod 
herbivores are affected by host genotype (Brady et al., 2014), host 
plant (Wilkinson, Adams, Minto, & Douglas, 2001), and antibiotic 
treatments (Breeuwer, 1997; Staudacher et al., 2017). Host plants in‐
fluence the diversity and abundance of symbionts of aphids (Zhang, 
Cao, Zhong, Godfray, & Liu, 2016), whiteflies (Pan et al., 2014; Su 
et al., 2016), and other arthropod herbivores (Morrow, Frommer, 
Shearman, & Riegler, 2015; Strano, Malacrino, Campolo, & Palmeri, 
2017). For example, in polyphagous or oligophagous aphids, includ‐
ing Aphis gossypii (Jones, Bressan, Greenwell, & Fierer, 2011), Aphis 
citrcidus (Guidolin & Cônsoli, 2016), Aphis fabae (Chandler et al., 
2008), and Acyrthosiphon pisum (Tsuchida, Koga, Shibao, Matsumoto, 
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Abstract
Bacterial symbionts may influence the fitness of their herbivore hosts, but such ef‐
fects have been poorly studied across most invertebrate groups. The spider mite, 
Tetranychus truncatus, is a polyphagous agricultural pest harboring various bacterial 
symbionts whose function is largely unknown. Here, by using a high‐throughput 16S 
rRNA amplicon sequencing approach, we characterized the bacterial diversity and 
community composition of spider mites fed on five host plants after communities 
were modified following tetracycline exposure. We demonstrated that spider mite 
bacterial diversity and community composition were significantly affected by host 
plants and antibiotics. In particular, the abundance of the maternally inherited endo‐
symbionts Wolbachia and Spiroplasma significantly differed among spider mites that 
were reared on different plant species and were completely removed by antibiotics. 
There was an overall tendency for daily fecundity to be lower in the mites with re‐
duced bacterial diversity following the antibiotic treatment. Our data suggest that 
host plants and antibiotics can shape spider mite bacterial communities and that bac‐
terial symbionts improve mite performance.
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& Fukatsu, 2002), both primary and secondary symbionts are af‐
fected by the plant type on which the aphids feed. Host plants 
shape the diversity and abundance of larval gut symbiotic bacteria 
of the Colorado potato beetle, Leptinotarsa decemlineata, and thus 
affect the insect’s ability to manipulate plant defenses in Solanum 
hosts (Chung et al., 2017). Similarly, antibiotic treatment can also 
alter the bacterial communities of herbivores (Lehman, Lundgren, 
& Petzke, 2009; Zouache, Voronin, Tran‐Van, & Mavingui, 2009); in 
particular, antibiotic treatment significantly influences the relative 
abundance of Wolbachia, Spiroplasma, and/or Cardinium in the spi‐
der mite Tetranychus urticae (Staudacher et al., 2017). Antibiotics 
are routinely used to eliminate some endosymbionts from a wide 
range of insect species (Li, Floate, Fields, & Pang, 2014; Wilkinson, 
1998). Although previous studies showed that host plants and anti‐
biotic may be important factors in shaping the bacterial community 
of several herbivorous arthropod species, little is known about the 
effect of host plants and antibiotic treatment on the entire bacterial 
communities of spider mites.

There are over 1,000 species of spider mites (Tetranychus sp.), 
including several that are economically important pests damag‐
ing agricultural crops and ornamental plants, with approximately 
0.9 billion Euro being spent annually for their control world‐
wide (Migeon, Nouguier, & Dorkeld, 2010; Van Leeuwen, Tirry, 
Yamamoto, Nauen, & Dermauw, 2015). Spider mites host a large 
community of symbiotic bacteria, including facultative endosym‐
bionts such as Wolbachia, Rickettsia, Cardinium, and Spiroplasma 
(Chaisiri, McGARRY, Morand, & Makepeace, 2015; Zélé, Santos, 
Olivieri, et al., 2018; Zhang, Chen, Yang, Qiao, & Hong, 2016), 
which manipulate host reproduction via various phenotypic 
effects (Engelstädter & Hurst, 2009; Moran, McCutcheon, & 
Nakabachi, 2008; Werren, Baldo, & Clark, 2008). Host plants that 
lower Wolbachia prevalence in natural T. urticae populations may 
also lower egg hatchability (Zélé, Santos, Godinho, & Magalhães, 
2018), pointing to the potential for three‐way interactions be‐
tween microbes, plants, and spider mites.

Among spider mites, Tetranychus truncatus is a highly polyph‐
agous species found on over 60 host plant species, including eco‐
nomically important crops such as bean, cotton, cucumber, tomato, 
and eggplant (Bolland, Gutierrez, & Flechtmann, 1998). Tetranychus 
truncatus is the dominant mite species in China and has diverse host 
plants (Zhang et al., 2013). We previously demonstrated that T. trun‐
catus harbor various endosymbiotic bacteria, including Wolbachia, 
Cardinium, and Spiroplasma (Zhang, Chen, et al., 2016), and affect 
host reproduction through cytoplasmic incompatibility (CI) (Zhang, 
Yang, Zhu, & Hong, 2018; Zhao, Zhang, & Hong, 2013). Infection 
prevalence of Wolbachia in T. truncatus natural populations is related 
to ecological factors, such as host plant, temperature, and climate 
(Zhu et al., 2018), but the interaction between these factors and host 
fitness is not clear.

In this study, we explore host plant and antibiotic influences 
on spider mite symbiotic bacterial communities and performance 
under controlled environmental conditions. Recent developments 
in sequencing technologies and molecular tools have enhanced 

opportunities to characterize the microbial diversity associated 
with spider mites (Sugio, Dubreuil, Giron, & Simon, 2015). We used 
a high‐throughput 16S rRNA amplicon sequencing procedure to in‐
vestigate whether antibiotic treatment and host plant influence the 
composition and structure of T. truncatus bacterial communities and 
host performance. The results highlight roles of host plant and an‐
tibiotics in shaping the bacterial community of herbivores and high‐
light impacts of bacterial diversity on mite fecundity.

2  | MATERIAL S AND METHODS

2.1 | Plants

Five host plant species were used in this study: Gossypium hirsutum 
L. cultivar Nannong 10 (cotton), Cucumis sativus L. cultivar Lufeng 
(cucumber), Solanum lycopersicum L. cultivar Hezuo 903 (tomato), 
S. melongena L. cultivar Suquqi (eggplant), and Phaseolus vulgaris L. 
cultivar Sucaidou 11 (bean). Seeds of the five plants were purchased 
from Jiangsu Academy of Agricultural Sciences. Plants were germi‐
nated in soil for 2 weeks. Individual plants were grown in plastic pots 
in a climate‐controlled room at 25 ± 1°C, 60% relative humidity, and 
under a 16‐hr light: 8‐hr dark photoperiod. Plants were used for ex‐
periments at the 4‐ to 6‐leaf stage.

F I G U R E  1   Overview of experimental procedure describing 
the different rearing condition used to compare the performance 
of antibiotic‐untreated and antibiotic‐treated spider mites after 
maintenance on different host plant and collection of samples for 
DNA extraction
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2.2 | Spider mite antibiotic treatment and rearing

Spider mites were originally collected from bean (Phaseolus vulgaris 
L.) leaves in Hohhot, Inner Mongolia, northeast China in August 
2014. Mites were reared on detached bean leaflets in a climate‐con‐
trolled room at 25 ± 1°C, 60% relative humidity, and a light:dark (L:D) 
photoperiod of 16:8 hr. Individuals used to establish various mite 
strains were all derived from one adult female to minimize genetic 
variation between lines (Figure 1).

To investigate the effect of antibiotics on microbial communities 
associated with T. truncatus spider mites, lines of mites were treated 
with antibiotics. For the antibiotic treatment, 30 adult females mites 
were reared on bean leaf disks on cotton wool soaked with tetracy‐
cline solution (0.1%, w/v) for three generations. Untreated control 
mites were reared on leaf disks placed on water‐saturated cotton 
wool. After treatment, lines were maintained in a mass‐rearing en‐
vironment without antibiotics for approximately 15 generations to 
establish T. truncatus lines on different host plants. The treated lines 
are referred to as AB‐T and the untreated lines as AB‐UT.

2.3 | Establishment of T. truncatus lines on different 
host plants

To characterize the microbial communities associated with spider 
mites that feed on different hosts, lines were established by trans‐
ferring adult female mites (ca. 400) of both the AB‐UT and AB‐T lines 
from bean to cotton, tomato, cucumber, or eggplant. Four independ‐
ent lines on each plant have been created. Lines were maintained on 
detached leaves from these hosts for six generations in a climatically 
controlled environment at 25 ± 1°C with 60% relative humidity and a 
16L:8D photoperiod. More than 200 mites were transferred at each 
generation.

To generate mites for experiments, we used 4‐ to 6‐day‐old adult 
females from each strain to produce eggs on the adaxial surface of 
detached plant leaflets placed on water‐soaked cotton. After 6 hr of 
egg production, all mites were removed from the leaflets. The eggs 
were allowed to hatch and mature in a climate‐controlled room for 
another 13 days; this was done to obtain spider mites of the same 
age. The adult female mites were then collected for the performance 
assay and for DNA extraction (Figure 1).

2.4 | Spider mite performance assay

To investigate the effect of host plants on spider mite perfor‐
mance, we assessed spider mite fecundity on different plants 
using the method described by Staudacher et al. (2017) with minor 
modifications. The mite lines were maintained on detached leaves 
from five different plants in a climate room (25 ± 1°C, 16 hr:8 hr, 
light:dark, 60% RH). For the performance assay, leaf disks of bean, 
cucumber, cotton, and eggplant (diameter ca. 3 cm) and tomato 
leaflet (at least 4 cm in length) were placed on a cotton bed soaked 
in water. Five adult female mites (2 ± 0.25 d) were placed on each 
leaf disk (or leaflet), 24 leaf disks (or leaflets) per line (treated or 

not with antibiotics) and per plant species (n = 5 species). After 
4 days, the number of eggs produced by mites was recorded using 
a stereomicroscope.

2.5 | DNA extraction, quantitative real‐time 
polymerase chain reaction (qPCR), and 16S rRNA 
amplicon sequencing

Fifteen adult female spider mites from each of the replicated plants 
belonging to the five different plant species were pooled to form 
one sample for DNA extraction. DNA was extracted from each sam‐
ple using the E.Z.N.A.® Soil DNA Kit (Omega Bio‐Tek, Norcross, GA, 
USA) according to manufacturer’s protocols.

The Wolbachia and Spiroplasma densities in spider 
mite samples were estimated by qPCR as described pre‐
viously (Zhang et al., 2018). Briefly, we used primers de‐
signed to amplify a 141‐bp fragment of wsp from Wolbachia 
(wQF1,	 5′‐GAGCAGCGAATGTAAGCAATC‐3′,	 and	 wQR1,	 5′‐
AATAACGAGCACCAGCATAAAG‐3′)	 and	 a	 141‐bp	 fragment	
of 16S rRNA from Spiroplasma	 (sQF1,	 5′‐TGTAGTTCTCAGGGA	
TTGTTTTCTC‐3′,	 and	 sQR1,	 5′‐CGCTTCCACCATCGCTCTT‐3′).	
The PCR products of primers specific for wsp from Wolbachia and 
16S rRNA from Spiroplasma were amplified by conventional PCR; 
then, the PCR products were purified using the AxyPrep TM DNA 
Gel Extraction Kit (Axygen) and cloned into a pEASY‐T1 vector 
(TransGen Biotech, Beijing, China). A standard curve was gener‐
ated using a serial dilution of plasmids containing one copy of the 
target sequence. Absolute quantification of wsp and 16S rRNA 
copy number was calculated using threshold values (Ct).

The V3–V4 region of the 16S rRNA gene was amplified from each 
sample	using	the	primer	pair	341F	(5′‐CCTAYGGGRBGCASCAG‐3′)	
and	806R	(5′‐GGACTACNNGGGTATCTAAT‐3′).	PCR	was	performed	
in a 25 μl volume that contained 12.5 μl 2× Taq Master Mix (Vazyme 
Biotech, China), 0.5 μl primer (20 μM each), and 1 μl of DNA, or ul‐
trapure water for the PCR‐negative controls. The PCR conditions 
were as follows: 95°C for 5 min, followed by 27 cycles of 95°C for 
30 s, 55°C for 30 s, and 72°C for 45 min, and a 72°C final extension 
for 10 min. PCR product quality was verified by gel electrophoresis. 
Amplicons were extracted from 2% agarose gels and purified using 
the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union 
City, CA, USA) according to manufacturer’s instructions and quanti‐
fied using QuantiFluor™‐ST (Promega, USA). Purified PCR products 
were quantified by Qubit®3.0 (Life Invitrogen), and 24 amplicons 
with different barcodes were mixed equally. DNA concentration 
was adjusted to 25–35 ng/μl per sample before sequencing. All DNA 
samples were sent for sequencing, except for those of the treated 
line 4 on bean and line 3 on cucumber and the untreated line 3 on 
cotton, because the DNA concentration of three samples was less 
than required by the criteria. The pooled DNA product was used to 
construct an Illumina paired‐end library following Illumina’s genomic 
DNA library preparation procedure. Then, the amplicon library was 
paired‐end (2 × 250 bp) sequenced on an Illumina HiSeq 2500 plat‐
form (Shanghai Biozeron Co., Ltd) using standard protocols.
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2.6 | Sequence processing and analyses

Sequences were provided as adapter‐clipped fastq files and ana‐
lyzed in Quantitative Insights into Microbial Ecology (QIIME), 
which is a standard pipeline for microbial community analysis 
(Caporaso et al., 2010). Raw fastq files were demultiplexed and 
quality‐filtered using QIIME 1.17 with the following criteria: (a) 
The 250‐bp reads were truncated at any site with an average qual‐
ity score <20 over a 10‐bp sliding window, and truncated reads 
that were shorter than 50 bp were discarded; (b) exact barcode 
matches, two‐nucleotide mismatches in primer matching, and 
reads that contained ambiguous characters were removed; and 
(c) only sequences that overlap longer than 10 bp were assembled 
based on their overlapping sequences. Reads that could not be as‐
sembled were discarded.

Operational taxonomic units (OTUs) were clustered with 97% 
similarity cutoff using UPARSE 7.1 (https://drive5.com/uparse/), and 
chimeric sequences were identified and removed using UCHIME. 
The phylogenetic affiliation of each 16S rRNA gene sequence was 
analyzed with RDP Classifier (https://rdp.cme.msu.edu/) against 
the Silva 16S rRNA database using a confidence threshold of 70% 
(Amato et al., 2013). To avoid bias, OTUs (<0.1% abundance) were 
excluded from subsequent analysis. Rarefaction analysis was gener‐
ated using Mothur 1.21.1 to determine Good’s coverage, Chao 1, and 
Simpson and Shannon diversity indices (Schloss et al., 2009).

2.7 | Statistical analyses of bacterial community

All statistical analyses were carried out in R ver 3.3.1 (R Development 
Core & Team, 2016).

Diversity of the bacterial communities in the samples was de‐
termined by computing Simpson and Shannon indices, while spe‐
cies richness was estimated through counting OTUs or computing 
ACE (abundance‐based coverage estimator) and Chao 1 indices 
(Hill, Walsh, Harris, & Moffett, 2003; Hughes, Hellmann, Ricketts, 
& Bohannan, 2001; Shannon, 1948; Simpson, 1949). To determine 
whether diversity measures were significantly different between 
samples from the different host/antibiotic treatments, we used 
two‐way ANOVAs after validation of the normal distribution of the 
residuals.

To determine whether feeding in different host plants or/and 
antibiotics caused major changes in community structure, a Bray–
Curtis dissimilarity matrix was calculated and analysis of molecular 
variance (AMOVA) was used. Multi‐response permutation proce‐
dures (MRPP) analyses were also used to compare community com‐
position between samples from the different treatments. Variation 
in bacterial taxonomic composition among samples was visualized 
using principal coordinates analyses (PCoA). PCoA was performed 
using the R package “vegan.”

To test the effect of antibiotics and/or host plant species on 
mite oviposition, we constructed a general linear model with two 
factors, antibiotics and host plant, treated as a fixed factor, and av‐
erage number of eggs per females per day as response variables, 

which were firstly verified to follow normal distributions. If inter‐
action terms were insignificant, mite oviposition was subjected to 
a one‐way ANOVA. The R package “lsmeans” was used for multiple 
comparisons. Sequence counts of 10 OTUs (Wolbachia, Spiroplasma, 
Halomonas, Acinetobacter, Pelagibacterium, Pseudomonas, 
Comamonas, Paucibacter, Cloacibacterium, and Sphingobium) and 
wsp and 16S rRNA copy numbers follow a quasipoisson‐distributed, 
one‐way ANOVA were performed to detect the different of relative 
abundance of those OTUs in AB‐UT and AB‐T spider mite among 
five host plant species, respectively.

3  | RESULTS

3.1 | Overview of T. truncatus bacterial communities

Analyses of 16S rRNA amplicon sequences yielded a total of 865,578 
reads after quality check, with an average of 23,394 sequences per 
sample. The majority of the rarefaction curves approached satu‐
ration, which indicated that our sampling depth accurately char‐
acterized the bacterial diversity of the majority of these samples 
(Supporting Information Figure S1).

Diversity and species richness index values are provided in 
Supporting Information Table S1, and their mean (±SEM) is plotted in 
Figure 2. OTU identification resulted in 54 genera distributed in 36 
families, 25 orders, and seven phyla of bacteria (Figure 3; Supporting 
Information Figure S2). Good’s coverage for each sample was more 
than 99% (Supporting Information Table S1). Overall most of the se‐
quences from the bacterial communities associated with T. trunca‐
tus lines belonged to Gammaproteobacteria (44.95%), followed by 
Alphaproteobacteria (33.91%), Betaproteobacteria (13.54%), and 
Flavobacteria (2.22%) (Supporting Information Table S2).

3.2 | Changes in bacterial communities with host 
plants and antibiotic treatment

The species diversity of spider mite bacterial communities, indi‐
cated by Shannon indexes, was significantly affected by the in‐
teraction between host plant species and antibiotics (F4,27 = 4.80, 
p < 0.01). The significant interactions found for Shannon indexes 
come from a significant effect of antibiotic treatment in eggplant 
(t = 3.20, p = 0.02) and tomato (t = 3.40, p = 0.01), while it has no 
effect on the other three plant species (bean: t = 0.28, p = 0.99; 
cotton: t = 0.39, p = 0.99; cucumber: t = 1.91, p = 0.29; Figure 2). 
The number of observed OTUs was significantly affected by host 
plant species (F4,31 = 2.68, p < 0.05) and antibiotics (F1,31 = 13.16, 
p < 0.01), but not by their interaction (F4,27 = 1.89, p = 0.14). Thus, 
except for spider mites reared on cotton, OTU number richness 
index was reduced in lines that had been exposed to antibiotics 
when reared on the same plant species, which suggest that the 
species richness of bacteria tended to decrease after antibiotic ex‐
posure (Figure 2). Moreover, there were substantial plant‐specific 
variations of bacterial composition at the family (Figure 3) and phy‐
lum levels (Supporting Information Figure S2), and in the relative 

https://drive5.com/uparse/
https://rdp.cme.msu.edu/
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abundance of the 10 most common OTUs (Supporting Information 
Table S2; Figure 4) between treated and untreated lines. Antibiotic 
treatment significantly increased the relative abundances of OTU4 
(Acinetobacter) (F1,31 = 9.65, p < 0.05) and OTU10 (Cloacibacterium) 
(F1,31 = 10.36, p < 0.05) in spider mites on five host plants; how‐
ever, the difference among them was not significant (F4,31 = 2.06, 
p = 0.11; F4,31 = 0.67, p = 0.62, respectively; Supporting Information 
Figure S3). Overall, these results indicated that the species richness 
and diversity of spider mites bacterial communities depend on host 
plant species and antibiotics.

To visualize variation in bacterial community structure on differ‐
ent samples, we plotted the results of a PCoA based on Bray–Curtis 
dissimilarity distances (Figure 5). These distances and weighted 
UniFrac distances revealed significant differences in bacterial com‐
munities when mite lines were maintained on the different plant 
species (Bray–Curtis: F9,36 = 4.422, R2 = 0.596, p < 0.001; weighted 
UniFrac: F9,36 = 6.237, R2 = 0.675, p < 0.001). MRPP analyses also 
revealed that bacterial communities were significantly different 
among host types (p < 0.001).

3.3 | Abundance of Wolbachia and Spiroplasma on 
different plants

The facultative endosymbionts Wolbachia and Spiroplasma were not 
detected in any of the spider mites reared on any of the plants in 
populations treated with antibiotics (Supporting Information Figure 
S4; Figure 6). There were significant effects of host plant species 
on the relative abundances of Wolbachia (LR Chisq = 52.89, df = 4, 
p < 0.001) and Spiroplasma (LR Chisq = 52.89, df = 4, p < 0.001) in 
untreated mites (Figure 6). Wolbachia and Spiroplasma were more 
abundant in spider mites that fed on tomato and eggplant com‐
pared with all other host plants (Supporting Information Figure S4; 
Figure 6).

F I G U R E  2   Alpha diversity indexes without singletons from 
antibiotic‐untreated and antibiotic‐treated spider mites that were 
reared for six generations on different host plants. (a) OTUs; (b) 
Shannon index; (c) Simpson index; and (d) Chao 1 index. Horizontal 
lines indicate the mean (±SE) of biological replicates. Superscripts 
(a, b) above horizontal lines indicate significant differences between 
antibiotic‐untreated mites that were reared on different host plants 
(p < 0.05). “*” represents significant difference between antibiotic‐
untreated and antibiotic‐treated spider mites on the same host 
plant (p < 0.05). n.s.: not significant

F I G U R E  3   Family‐level bacterial composition of antibiotic‐untreated and antibiotic‐treated spider mites that were reared for six 
generations on different host plants, as deduced by massive 16S rRNA sequencing
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3.4 | Endosymbiont effects on T. truncatus 
performance

The average number of eggs laid per female per day was significantly 
affected by antibiotic (F1,224 = 20.04; p < 0.001) and host plants 
(F4,224 = 84.59; p < 0.001), but not by their interaction (F4,220 = 20.04; 
p = 0.879). Both of AB‐T and AB‐UT spider mites that fed on bean, 
cucumber, and eggplant laid more eggs compared with mites fed 
on cotton and tomato (Figure 7). Antibiotic treatment significantly 
reduced fecundity on bean (t	=	−2.54;	 p < 0.05), cotton (t	=	−2.34;	
p < 0.05), and tomato (t	=	−3.41;	p < 0.01) (Figure 7).

4  | DISCUSSION

In this study, we investigated the impact of host plant and antibiotic 
treatment on bacterial diversity and bacterial community composi‐
tion of the spider mite T. truncatus. We demonstrated that the bac‐
terial diversity of T. truncatus was influenced by host plant species 
and antibiotic. In particular, the abundance of the facultative endo‐
symbionts Wolbachia and Spiroplasma was also influenced by host 
plant species and was completely eliminated by the antibiotic treat‐
ment. Intriguingly, when assessing offspring production in the mites 
exposed to the different conditions, we found that daily fecundity 

F I G U R E  4   Heatmap of relative abundance for the 20 most abundant OTUs from spider mites that were reared for six generations on 
different host plants

F I G U R E  5   Principal coordinates analysis (PCoA) comparing bacterial communities of antibiotic‐untreated and antibiotic‐treated spider 
mites that were reared on different host plants. PCoA based on Bray–Curtis distance values computed for whole communities from spider 
mites that were reared on different host plants
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tended to be lower in the mites with reduced bacterial diversity 
following the antibiotic treatment across five host plants. The re‐
sults highlight that host plants and antibiotics can shape spider mite 

bacterial communities and that bacterial symbionts improve mite 
performance.

4.1 | Host plant and antibiotic treatment effects 
on the spider mite microbial communities

In this study, the host plants tested strongly altered the composi‐
tion of the microbial community (diversity and abundance) in spider 
mites. Similarly, research on Colorado potato beetles (Chung et al., 
2017), whiteflies (Su et al., 2016), aphids (Guidolin & Cônsoli, 2016), 
and pine processionary moths (Strano et al., 2017) have shown that 
populations that fed on different plant species had differing mi‐
crobial communities. Here, we found that spider mites that were 
switched from bean to other host plants experienced changes in 
bacterial community diversity and species richness, especially for 
the main bacterial species. These changes could reflect immediate 
effects of host plants on bacterial communities after mites fed on 
the plants, or longer term effects given that mites were held on dif‐
ferent host plants for multiple generations. The changes observed 
here may reflect the role of the microbial community in the ability 
of spider mites to cope with different host plants (Hansen & Moran, 
2014; Jaenike, 2015; Tsuchida, Koga, & Fukatsu, 2004), but testing 
such hypothesis is beyond the scope of this study (i.e., fecundity 
was only characterized on the host plants on which the lines were 
maintained).

The relative abundance of maternally inherited endosymbionts 
should be taken into account when studying bacterial communities 
across host populations, as variation in bacterial density may im‐
pact host biology and ecology (Fromont, Riegler, & Cook, 2017). In 
the current study, both Wolbachia and Spiroplasma were detected 
in T. truncatus, which were also widespread in T. urticae (Enigl & 
Schausberger, 2007; Hoy & Jeyaprakash, 2005). We also found that 
host plant had effects on the relative amounts of Wolbachia and 
Spiroplasma. Changes in relative abundance of symbionts with host 
have been noted for other polyphagous insects, including pea aphids 
(Tsuchida et al., 2002), cowpea aphid (Brady & White, 2013), chest‐
nut weevils (Toju & Fukatsu, 2011), and others (Pan et al., 2014). 
There are several potential explanations for the effects of host plant 
species on symbiotic bacterial communities. First, plant secondary 
metabolites or phytotoxins may possess variable antibacterial ac‐
tivities (Harborne, 1993), which could influence population growth 
(Kohl & Dearing, 2012). Each plant has a different secondary metab‐
olite profile, such as terpenoids and glycoalkaloids in tomato (Falara 
et al., 2011; Milner et al., 2011), glycoalkaloids in eggplant (Milner 
et al., 2011), cucurbitacin in cucumber (Balkema‐Boomstra et al., 
2003), protease inhibitors in bean (Visôtto, Oliveira, Ribon, Mares‐
Guia, & Guedes, 2009), and gossypol in cotton (Bottger, Sheehan, & 
Lukefahr, 1964). In addition to secondary metabolites, physical prop‐
erties of different host plants, such as leaf toughness and trichomes, 
may influence bacterial communities, because they directly impact 
spider mite growth and physiochemical interactions between bacte‐
ria and their insect hosts (Chung et al., 2017). Alternatively, the host 
may manipulate its endosymbiont titer to compensate for specific 

F I G U R E  6   Sequence counts of two OTUs of antibiotic‐
untreated and antibiotic‐treated spider mites that were reared 
for six generations on different host plants. (a) Wolbachia; (b) 
Spiroplasma. Horizontal lines indicate the mean of biological 
replicates. Superscripts (a, b) above horizontal lines indicate 
significant differences between host plants (p < 0.05)

F I G U R E  7   Fecundity (number of eggs laid/female/day) of spider 
mites on different plant species. Horizontal lines in the boxes 
represent medians, whiskers represent the 10th–90th percentiles, 
and dots represent data points outside of this range. “*” represents 
significant difference between antibiotic‐untreated and antibiotic‐
treated spider mites on the same host plant (p < 0.05)
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deficiencies in the nutrient profile of its host plant (Zhang, Cao, et al., 
2016). However, at this stage, it is unclear whether the high relative 
abundances of Wolbachia and Spiroplasma in mite lines from tomato 
and eggplant are adaptively significant.

Previous studies have shown that antibiotic treatment alters 
the bacterial community of mites and other herbivores; in particu‐
lar, antibiotic treatment influences the relative abundance of some 
facultative endosymbionts (Breeuwer, 1997; Lehman et al., 2009; 
Staudacher et al., 2017). Here, the number of OTUs and species di‐
versity were reduced regardless of host plant. The facultative endo‐
symbionts Wolbachia and Spiroplasma were completely absent from 
the antibiotic‐treated populations, which were consistent with the 
effects produced by antibiotics in previous studies (Staudacher et 
al., 2017; Xie, Sun, Xue, & Hong, 2016).

One unexpected finding was that the relative abundance of 
Acinetobacter, Pseudomonas, Halomonas, Pelagibacterium, and 
Cloacibacterium was increased by antibiotic treatment. Prior ex‐
posure to plant toxins can enhance the diversity of gut microbes 
in herbivores (Kohl & Dearing, 2012). Bacterial taxa frequently re‐
ported in plants include the genera Pseudomonas, Bradyrhizobium, 
Azorhizobium, Azospirillum, and Bacillus (Partida‐Martinez & Heil, 
2011). Perhaps, Pseudomonas and Bacillus, which were detected in 
T. truncatus in this study, may have been obtained from the host 
plant. Antibiotic treatments that remove part of the microbial com‐
munity might then lead to a suitable living environment for other 
bacteria. This might correspond to de novo colonization after treat‐
ment. It has to be noted that, the symbiotic bacterial communities of 
arthropod herbivores may also be affected by host genotype (Brady 
et al., 2014), how the host impact the plant–bacterial community in‐
teraction in spider mite should thus be considered in future studies.

4.2 | Host plant and antibiotic treatment effects on 
T. truncatus performance

Many facultative endosymbionts are not essential for host survival 
but can have an important impact on insect life history traits (Giron 
et al., 2017; O’Neill, Werren, & Hoffmann, 1997). Our previous study 
showed that reproductive parasites, such as Wolbachia, Cardinium, 
and Spiroplasma, are widespread in T. truncatus (Zhang, Chen, et al., 
2016), and those facultative endosymbionts influence host repro‐
duction via various phenotypic effects (Engelstädter & Hurst, 2009). 
The abundance of Wolbachia and Spiroplasma in spider mites was 
strongly influenced by host plant, and the presence of these en‐
dosymbionts can enhance spider mite performance in a host plant‐
specific manner. Moreover, the presence of these endosymbionts is 
positively correlated with spider mite fecundity on specific plants.

A couple of different scenarios might explain how these en‐
dosymbionts can influence spider mite performance on different 
host plant species. Herbivore‐associated microbes can positively 
and negatively influence insect fitness by mediating plant defenses 
and detoxifying phytochemicals (Chung et al., 2013, 2017 ) or en‐
zymes, such as hydrolases, glucosidases, phosphatases, and gluta‐
thione transferases (Dowd & Shen, 1990; Shen & Dowd, 1991). For 

instance, the presence/absence of the bacterial endosymbionts 
Wolbachia, Cardinium, or/and Spiroplasma in the spider mite T. urti‐
cae has also been previously reported as altering distinct plant de‐
fense parameters and affecting mite performance, but there were 
no indications of a causal link between the two (Staudacher et al., 
2017). Western corn rootworms (Diabrotica virgifera) infected with 
Wolbachia suppressed defense‐related genes in maize roots and 
altered host performance compared with uninfected rootworms 
(Barr, Hearne, Briesacher, Clark, & Davis, 2010). Another expla‐
nation is that microbes could improve the nutritional properties 
of the herbivore’s diet for certain plant species, which allows 
females to allocate more resources to egg production (Douglas, 
1998; Feldhaar et al., 2007). Buchnera synthesize essential amino 
acids and other substances that are absent from their host aphid’s 
diet, and if the symbiont is removed, the host grows very slowly 
and cannot reproduce (Douglas, 1996; Koga, Tsuchida, & Fukatsu, 
2003). Wolbachia genome analysis revealed that they lack many 
essential biosynthetic pathways (Wu et al., 2004). Therefore, it is 
likely that Wolbachia impose a nutritional burden on their hosts, 
and host–symbiont competition for key resources, such as amino 
acids (Caragata, Rances, O’Neill, & McGraw, 2014), sugars (Markov 
& Zakharov, 2006), or iron (Gill, Darby, & Makepeace, 2014), could 
influence host performance.

Although the antibiotic treatments resulted in the complete re‐
moval of Wolbachia and Spiroplasma from the mites, various other 
bacterial strains were also affected, making attribution to specific bac‐
teria difficult. Future experiments might focus on the performance of 
spider mites with or without symbionts from natural populations with 
multiple host plants. Polyphagous arthropod‐associated microbes 
could have played a role in adaptation to new hosts and host range 
expansion (Chu, Spencer, Curzi, Zavala, & Seufferheld, 2013; Jaenike, 
2015). Because T. truncatus is a polyphagous pest and harbors dif‐
ferent species of bacterial symbionts, an association of reproductive 
bacteria with spider mites might help them adapt to new host plants.

Host plant‐dependent impacts of symbiotic microorganisms 
on the fitness of herbivorous insects may be a widespread and 
currently unrecognized dimension in insect–plant interactions 
(Chandler et al., 2008). Here, we found that host plant and an‐
tibiotic treatment influenced the T. truncatus symbiotic bacterial 
community; in particular, there were effects on the relative abun‐
dances of the endosymbionts Wolbachia and Spiroplasma in T. trun‐
catus, which in turn may have altered host performance. Further 
studies are needed to determine whether spider mite‐associated 
microbes alter spider mite fitness by mediating plant defenses and 
detoxifying phytochemicals. Documenting the presence of the mi‐
crobial community and identifying their effects on hosts can have 
important implications for the management of this pest species 
(Crotti et al., 2012; Oliver, Degnan, Burke, & Moran, 2010).
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