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Abstract: Grain boundary solute segregation is becoming increasingly common as a means of
stabilizing nanocrystalline alloys. Thermodynamic models for grain boundary segregation have
recently revealed the need for spectral information, i.e., the full distribution of environments available
at the grain boundary during segregation, in order to capture the essential physics of the problem
for complex systems like nanocrystalline materials. However, there has been only one proposed
method of extending spectral segregation models beyond the dilute limit, and it is based on simple,
fitted parameters that are not atomistically informed. In this work, we present a physically motived
atomistic method to measure the full distribution of solute-solute interaction energies at the grain
boundaries in a polycrystalline environment. We then cast the results into a simple thermodynamic
model, analyze the Al(Mg) system as a case study, and demonstrate strong agreement with physically
rigorous hybrid Monte Carlo/molecular statics simulations. This approach provides a means of
rapidly measuring key interactions for non-dilute grain boundary segregation for any system with
an interatomic potential.

Keywords: grain boundary; segregation; atomistic modeling; solute interactions

1. Introduction

Nanocrystalline metals exhibit a wide range of useful properties that often exceed what
is achievable at the microscale [1–10]. However, they are often in unstable, nonequilibrium
states due to a high concentration of grain boundaries (GBs) that contribute to the free
energy of the system and create an increasingly large driving force for grain growth at the
nanoscale [11–14]. Alloying can provide a means of thermodynamically stabilizing the
nanocrystalline state by lowering the grain boundary energy via grain boundary solute
segregation [11,15–30]. This thermodynamic approach has been gaining increased attention
in recent years compared to kinetic methods of stabilization [31–36], due to its reliability
and relatively simple design space, which requires only thermodynamic knowledge of the
alloy system.

Prior work in this area has focused on the development of models that can pre-
dict the segregated state of alloy systems. For example, there are a number of isotherm
models that predict GB solute concentrations [37], including those of McLean [38], Fowler-
Guggenheim [39], Guttman [40], and Wynblatt and Chatain [41]. In more recent years,
this approach has been extended to specifically consider the nanocrystalline state with
regular solution, lattice Monte Carlo, and phase-field models [24,26–28,42]. However, a
major shortcoming of most all such models is their use of a single segregation energy to
characterize the entire grain boundary network, which in reality has a complex diversity
of segregation sites. The shortcomings of this assumption were recently analyzed and
corrected by Wagih and Schuh [43]. Taking inspiration from the works of White and
Stein [44] and Kirchheim [45,46], they used a spectral McLean-type isotherm, in which each
atomic grain boundary site has its own dilute limit segregation energy, and calibrated it
directly to atomistic results on nanocrystalline structures.
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Wagih and Schuh demonstrated that the spectral approach achieves significantly
better agreement with the results of full atomistic simulations on Al-Mg polycrystals.
More recently, they addressed the issue of solute-solute interactions [47], a necessary
consideration away from the dilute limit, when solutes begin to interact in the GBs, locally
affecting GB segregation there. In the spectral model, there is a wide range of such
interactions, and rather than treat them all, Wagih and Schuh showed that the addition of a
single, fitted interaction energy (assumed relevant to all sites) could account for non-dilute
interactions in an average sense, with good agreement to the overall segregated solute
concentrations [47]. However, because the parameter calculated by Wagih and Schuh was
simply fitted to the results of atomistic simulations, it is not derived from atomistic-level
physics directly. As a result, it is not generalizable without expensive computations on
each individual alloy.

The focus of this work is therefore to seek a physically motivated atomistic method to
assess solute interactions during grain boundary segregation, in a way that acknowledges
the wide diversity of sites and can be easily incorporated into existing spectral isotherm
models. For the Al-Mg system, we show how atomistic simulations can be used to measure
the full spectrum of solute interactions over the full spectrum of segregation sites in a
polycrystal. The results of such simulations lead to a simple hypothesized general form for
GB solute interactions for future modeling efforts.

2. Thermodynamics of Grain Boundary Segregation
2.1. Free Energy vs. Enthalpy of Segregation

A rigorous thermodynamic treatment of GB segregation must consider the Gibbs
free energy of segregation [48], ∆Gseg. The segregation free energy includes not only
the enthalpic contribution considered above, ∆Eseg, but also a work term, −P∆V, where
P is the pressure and ∆V is the volume change, as well as a vibrational entropy term,
−T∆Svib

seg [49], such that the free energy of segregation is given as:

∆Gseg = ∆Eseg − P∆V − T∆Svib
seg. (1)

However, the vibrational entropy component of GB segregation is generally not well
understood, and can be neglected at reasonably low temperatures, as we do here. Further-
more, P∆V is generally negligible in solids [50], and is neglected here. Self-consistency is
achieved by using only enthalpic measurements of the segregated states at 0 K via conju-
gate gradient minimization. Thus, even though configurational space is sampled at finite
temperature during the following simulations, vibrational contributions are consistently
neglected, and we can assume that ∆Gseg ≈ ∆Eseg in the isotherms presented below.

2.2. Classical Segregation Models

The first isotherm for grain boundary segregation was proposed by McLean [38], in
which the segregation energy is taken to be a single average parameter, ∆Eseg, given as the
difference in energy of the full system when a solute, B, occupies a grain boundary site,
EB

GB, vis-à-vis a bulk site, EB
c :

∆Eseg
= EB

GB − EB
c (2)

This approach assumes that the segregation energy, ∆Eseg, is independent of grain
boundary character (or the site occupied by the solute), solute concentration, and tempera-
ture (T), resulting in McLean’s isotherm [38]:

XGB

1− XGB =
Xc

1− Xc exp

(
−∆Eseg

kT

)
(3)

where XGB is the average solute concentration in the GB, Xc is the concentration in the
bulk, and k is Boltzmann’s constant.
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To extend this treatment beyond the dilute limit, Fowler and Guggenheim accounted
for concentration dependence of the segregation energy via the addition of a single interac-
tion parameter based on a heat of mixing in the GB, ΩGB [39]:

XGB

1− XGB =
Xc

1− Xc exp

(
−∆Eseg

+ 2ΩGBXGB

kT

)
(4)

which assumes that solute interactions in the bulk are negligible, due primarily to the
assumption of relatively large, dilute grains, and thus relatively constant, dilute values
of Xc ≈ Xtot, where Xtot is the total system solute concentration. This assumption can be
corrected with the addition of a term that includes the bulk heat of mixing, Ωc [51]. This
term appears consistently in more recent models that explicitly consider the nanocrystalline
grain sizes [24,26–28,42], and when combined with the mixture rule, where Xtot is fixed
and Xc and XGB can vary dependently as [52]:

Xtot =
(
1− f GB)Xc + f GBXGB, (5)

results in the complete isotherm for nanocrystalline alloys:

Xtot =
(
1− f GB)Xc + f GB

[
1− 1−Xc

Xc exp
(

∆Eseg−2ΩGBXGB
+2ΩcXc

kT

)]−1
(6)

where f GB is the volume fraction of the grain boundary, and is typically related to the grain
size, d, and grain boundary thickness, t, by the equation:

f GB = 1−
(

d−t
d

)3
. (7)

Assuming only nearest-neighbor contributions for solvent A and solute B, the heat of
mixing can be represented as:

Ωs = 1
2 zsws = 1

2 zs
(

Es
A−B −

Es
A−A+Es

B−B
2

)
(8)

where s refers to either the GB or the bulk, z is the atomic coordination, and Es
A−B, Es

A−A,
and Es

B−B are the bond energies of A− B, A− A, and B− B bonds, respectively.

2.3. Spectral Segregation Models

Following the density of sites approach introduced by White and Stein [44] and
Kirchheim [45,46], Wagih and Schuh developed a spectral model for grain boundary
segregation, which assumes that each atomic grain boundary site has its own dilute limit
segregation energy. Assuming a McLean-type contribution from each site type i with dilute
limit segregation energy ∆Eseg

i , and accounting for the mixture rule of Equation (5), Wagih
and Schuh’s spectral isotherm is given as an integral over segregation energies [43]:

Xtot =
(
1− f GB)Xc + f GB ∫ ∞

−∞ FGB
i

[
1 + 1− Xc

Xc exp
(

∆Eseg
i

kT

)]−1
d
(

∆Eseg
i

)
(9)

where FGB
i is the density of sites of type i, and was shown by Wagih and Schuh to follow a

roughly skew-normal distribution for general polycrystals:

FGB
i = 1√

2πσ
exp

[
− (∆Eseg

i −µ)
2

2σ2

]
erfc

[
− α(∆Eseg

i −µ)√
2σ

]
(10)

where α, µ, and σ are the fitted shape, location, and breadth of the dilute limit segregation
energy distribution, respectively. The values of these parameters for several hundred
binary alloys have been presented in reference [53].
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Following from Equation (4), this spectral isotherm can be adapted to account for
solute interactions in the grain boundary with a single Fowler-type interaction parameter:

Xtot =
(
1− f GB)Xc + f GB ∫ ∞

−∞ FGB
i

[
1− 1−Xc

Xc exp
(

∆Eseg
i −2ΩGBXGB

kT

)]−1

d
(

∆Eseg
i

)
.

(11)
Wagih and Schuh showed that for the Al-Mg system, the grains remain dilute even as

the GB segregation raises the concentration locally at the boundary, leading to a significant
effect via ΩGB; thus, a single fitted value of ΩGB provided a reasonably accurate description
of full atomistic simulations beyond the dilute limit [47]. For other nanocrystalline alloys,
the bulk concentration may vary more significantly, so for completeness it is appropriate
to use both GB and bulk contributions to the interactions, as in Equation (6). Thus, the
isotherm of Equation (9) can be extended to account for non-dilute interaction as follows:

Xtot =
(
1− f GB)Xc + f GB ∫ ∞

−∞ FGB
i

[
1− 1−Xc

Xc exp
(

∆Eseg
i −2Ω

GBXGB
+2ΩcXc

kT

)]−1

d
(

∆Eseg
i

)
(12)

where Ω
GB and Ωc are the average heat of mixing parameters of the grain boundary and

bulk, respectively. The overbar on the former term is introduced to acknowledge that this
ΩGB is no longer formally a single parameter in the spectral model, as there are many
sites with unique behaviors. Assessing the average value over many sites from atomistic
information will be the major focus of our efforts below.

3. Atomistic Simulation Methods
3.1. Production of Pure Al Polycrystal

A cubic polycrystal of pure aluminum was produced, with dimensions of (10 nm)3,
60,367 total atoms, and 10 grains of random orientation with an average diameter of 6 nm
(Figure 1). The polycrystal was randomly initialized via Voronoi tessellation using the
toolkit Atomsk (Version b0.11.1, University of Lille, Villeneuve d’Ascq, France) [54], fol-
lowed by structural relaxation with conjugate gradient minimization. The polycrystal was
then thermally annealed in an isothermal isobaric ensemble with a Nose-Hoover thermo-
stat/barostat, at zero pressure and a temperature of 600 K for 0.5 ns. Finally, the polycrystal
was cooled to 0 K over 0.25 ns, followed by a final conjugate gradient minimization.
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Figure 1. Visualization of the grain boundary network of the pure Al polycrystal after relaxation and
annealing, with dimensions of (10 nm)3, 10 randomly oriented grains of average diameter 6 nm, and
60,367 total atoms.
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An image of the grain boundary network is shown in Figure 1, using polyhedral
template matching to identify non-face-centered-cubic (non-FCC) regions in the Open
Visualization Tool OVITO (Version 3.5.0, Darmstadt University of Technology, Darmstadt,
Germany) [55]. All simulations here and in the remainder of this work were performed
with the LAMMPS simulation package (Version 7Aug19, Sandia National Laboratories,
Albuquerque, NM, USA) [56] and use the embedded atom method (EAM) potential by
Mendelev for Al-Mg [57].

Here it should be noted that the (10 nm)3 polycrystal used in this work, at an average
grain size of 6 nm, is significantly smaller than the (15 nm)3 and (36 nm)3 polycrystals
used by Wagih and Schuh previously [43,47], with grain sizes of 9 and 12 nm, respectively.
However, preliminary work in analyzing the grain size dependence of the segregation
energy distribution indicates that changes in the distribution with respect to grain size
are due primarily to the increased presence of triple junctions and quadruple nodes at
smaller grain sizes. While this effect is non-negligible, for most alloys, including Al-Mg,
the effective difference in segregation energy when decreasing the grain size from 12 nm to
6 nm is of at least an order of magnitude less than the effective segregation energy itself.

3.2. Dilute Limit Segregation Energy Distributions

The Al-Mg system studied in this work was chosen for the strong agreement between
its available interatomic potential [57] and density functional theory [58] when calculating
segregation energies, and because it has been previously used for spectral GB segrega-
tion analysis [47]. To compute the dilute limit segregation energy distribution of the Al
polycrystal, we follow the procedure of Wagih and Schuh [43]. We compute the energy
difference between the fully relaxed polycrystal with a single solute atom, B, at GB site i,
EB

GB, i, or at a bulk site in the center of the largest grain, EB
c :

∆Eseg
i = EB

GB, i − EB
c (13)

and systematically test every site lacking FCC coordination. The resulting discrete dis-
tribution for Al-Mg is thus shown in Figure 2, with a skew-normal function fitted to
Equation (10) overlaid. The distribution calculated here is skew-left, spans from approx-
imately −60 to 40 kJ/mol, and has a mean of −6.82 kJ/mol, all of which are in excellent
agreement with the distribution calculated previously by Wagih and Schuh for a (36 nm)3

polycrystal [43].

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 15 
 

 

An image of the grain boundary network is shown in Figure 1, using polyhedral tem-

plate matching to identify non-face-centered-cubic (non-FCC) regions in the Open Visu-

alization Tool OVITO (Version 3.5.0, Darmstadt University of Technology, Darmstadt, 

Germany) [55]. All simulations here and in the remainder of this work were performed 

with the LAMMPS simulation package (Version 7Aug19, Sandia National Laboratories, 

Albuquerque, NM, USA) [56] and use the embedded atom method (EAM) potential by 

Mendelev for Al-Mg [57]. 

Here it should be noted that the (10 nm)3 polycrystal used in this work, at an average 

grain size of 6 nm, is significantly smaller than the (15 nm)3 and (36 nm)3 polycrystals used 

by Wagih and Schuh previously [43,47], with grain sizes of 9 and 12 nm, respectively. 

However, preliminary work in analyzing the grain size dependence of the segregation 

energy distribution indicates that changes in the distribution with respect to grain size are 

due primarily to the increased presence of triple junctions and quadruple nodes at smaller 

grain sizes. While this effect is non-negligible, for most alloys, including Al-Mg, the effec-

tive difference in segregation energy when decreasing the grain size from 12 nm to 6 nm 

is of at least an order of magnitude less than the effective segregation energy itself.  

3.2. Dilute Limit Segregation Energy Distributions 

The Al-Mg system studied in this work was chosen for the strong agreement between 

its available interatomic potential [57] and density functional theory [58] when calculating 

segregation energies, and because it has been previously used for spectral GB segregation 

analysis [47]. To compute the dilute limit segregation energy distribution of the Al poly-

crystal, we follow the procedure of Wagih and Schuh [43]. We compute the energy differ-

ence between the fully relaxed polycrystal with a single solute atom, 𝐵, at GB site 𝑖, 𝐸𝐺𝐵,𝑖
𝐵 , 

or at a bulk site in the center of the largest grain, 𝐸𝑐
𝐵: 

∆�̅�𝑖
𝑠𝑒𝑔

= 𝐸𝐺𝐵,𝑖
𝐵  −  𝐸𝑐

𝐵  (11) 

and systematically test every site lacking FCC coordination. The resulting discrete distri-

bution for Al-Mg is thus shown in Figure 2, with a skew-normal function fitted to Equa-

tion (10) overlaid. The distribution calculated here is skew-left, spans from approximately 

−60 to 40 kJ/mol, and has a mean of −6.82 kJ/mol, all of which are in excellent agreement 

with the distribution calculated previously by Wagih and Schuh for a (36 nm)3 polycrystal 

[43].  

 

Figure 2. Dilute limit segregation energy distribution for Al-Mg, calculated from the (10 nm)3 poly-

crystal, with a fitted skew-normal distribution overlaid. 

Because the isotherm models presented in Section 2 assume random mixing in the 

grain boundary in order to derive the linear interaction parameters that we are attempting 

to measure, it is necessary to demonstrate that random mixing is a reasonable assumption 

Figure 2. Dilute limit segregation energy distribution for Al-Mg, calculated from the (10 nm)3

polycrystal, with a fitted skew-normal distribution overlaid.

Because the isotherm models presented in Section 2 assume random mixing in the
grain boundary in order to derive the linear interaction parameters that we are attempting
to measure, it is necessary to demonstrate that random mixing is a reasonable assumption
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to make for the Al-Mg polycrystal used in this work. Wagih and Schuh have already shown
using a two-point correlation function that, for random polycrystals with general grain
boundaries, such as those used in this work, grain boundary sites of a given segregation
energy are approximately randomly distributed along the grain boundary network in Al-
Mg [43]. To demonstrate this in a simple manner, Figure 3 plots the relationship between
the segregation energy of a given grain boundary site, and the average segregation energy
of its nearest neighbors, identified using a Voronoi analysis. For this Al-Mg polycrystal, it
is readily apparent that there is little to no correlation between a site’s segregation energy,
and those of its nearest neighbors. This, in combination with the random distribution of
segregation energies along the GB network, indicates that random mixing in the grain
boundary is a reasonable approximation from which to assess solute interactions in the GB
for this system.
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Figure 3. Correlation plot of the average segregation energy of the nearest neighbors of a given grain
boundary site vs. the segregation energy of that site for Al-Mg in the (10 nm)3 polycrystal.

It should be stressed, however, that such a random distribution of solutes is achieved
generally only in the case of mild solute-solute interactions at the grain boundary. This
condition occurs when the segregation energy dominates over the interaction energy—for
segregation energy distributions with particularly large negative tails, and at concentra-
tions low enough to access primarily those GB sites—or at temperatures high enough to
thermalize the interactions (but not GB segregation itself) and achieve some semblance
of random mixing. If the interactions are stronger, random mixing may not occur at rel-
evant temperatures. For example, we have found that in systems with strong attractive
interactions the solutes readily cluster upon GB segregation, as a prelude to outright phase
separation. For the present analysis, the competition between second phase formation and
GB segregation is explicitly not of interest (although it has been addressed in prior work
in the dilute limit [59] and we will address it in our future work beyond the dilute limit).
Future work should address in more detail how a given system may be explored to achieve
these conditions; for the moment we can proceed with confidence that the Al-Mg system is
a viable case study for the proposed model.

3.3. The True Equilibrium Segregation State: Hybrid MC/MS

To evaluate the predictions of the procedure proposed in this work, it is necessary to
obtain the equilibrated segregation state of our Al-Mg polycrystal with finite solute content.
This is done using a standard Monte Carlo (MC) procedure at a finite temperature to sample
configurational space, in combination with molecular statics relaxations [17,60–67]. The Al
polycrystal shown in Figure 1 was randomly populated with Mg solute, at concentrations
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of Xtot up to 10 percent. One step in the hybrid MC/MS procedure, referred to as one MC
step, was conducted as a series of micro-MC steps at finite temperature, followed by a
full-system relaxation at 0 K and constant pressure. Each micro-MC step consisted of a
Monte-Carlo swap, attempted with a probability given by the metropolis criterion at 600 K,
using the EAM potential for all energy evaluations. 6000 micro-MC steps were attempted
per MC step in the hybrid MC/MS procedure. 1000 to 2000 MC steps, scaling linearly with
total solute concentration, were conducted to reach adequate convergence in both system
energy and solute distribution.

The final state of the system after this process is taken as the true equilibrium segrega-
tion state, from which the final solute distribution is measured. An example equilibrated
polycrystal of Al-Mg at Xtot = 0.05 is shown in Figure 4a. The distribution of occupied sites
is shown in red in Figure 4b, and resembles prior work on this system from Ref. [47]. These
occupation distributions represent the true equilibrium segregation state, which we intend
to understand in terms of Equation (12).
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Figure 4. (a) Al-Mg polycrystal with 5% total solute, equilibrated with hybrid MC/MS at 600 K. (b) Segregation energy
distribution with the equilibrium occupied distribution shown in red. Predicted occupied distribution is shown for the
dilute case (Equation (9) (blue)). (c) For the (10 nm)3 Al-Mg polycrystal: McLean-style isotherm with effective segregation
energy ∆Eseg

e f f = −26.5 (Equation (3) (green)), dilute limit spectral isotherm (Equation (9) (blue)), and polycrystal equilibrated

via MC/MS, with a fitted linear interaction parameter ΩGB = −22.86 kJ/mol (Equation (11) (red)).

The resulting equilibrium grain boundary solute concentration, XGB, is plotted as a
function of Xtot, shown as red points in Figure 4c. In the work of Wagih and Schuh [47],
Equation (11) was simply fitted to simulation results such as these, treating the solute inter-
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action parameter(s) as unknown constants. Following this same approach here, as shown
in Figure 4c, results in a value of ΩGB = −22.86 kJ/mol. For comparison, a McLean-style
isotherm is plotted in green, using an effective segregation energy, ∆Eseg

e f f = −26.5 kJ/mol,
fitted from Equation (3) in the dilute limit. Equation (9), which includes the effect of the
segregation energy spectrum in the dilute limit, is also shown in blue.

This result, while physically motivated by the work of Fowler and Guggenheim [39],
is ultimately a fitted parameter that is not derived from atomistic-level physics directly,
and requires relatively expensive simulations to compute. Additionally, the use of a single
interaction parameter does not explicitly separate the interaction contributions from the
bulk and grain boundary. Our goal here is to instead seek a direct atomistic assessment
of those parameters, and success will be measured by our ability to reproduce the true
segregation state in Figure 4b,c.

3.4. Grain Boundary Heat of Mixing Distributions

Use of the isotherm given in Equation (12) requires knowledge of an average heat of
mixing parameter for both the bulk and grain boundary. We are not aware of any prior
measurement of the full distribution of the heat of mixing across all grain boundary sites,
so we proceed to make one here. To separate the contributions of coordination and bond
energy distributions in the grain boundary, we calculate the per-bond parameter wGB, as
given in Equation (8), in addition to the coordination of each GB site.

The coordination of each grain boundary site is calculated via Voronoi analysis in the
OVITO visualization tool. wGB is then extracted for each nearest neighbor bond of each
grain boundary site, including GB-bulk bonds, in the following manner. For a given GB site
i and nearest neighbor site j, the per-atom energy of atom I in the fully relaxed polycrystal,
EGB

ij, I J , is calculated for each of the example 2D configurations shown in Figure 5, where
atoms I and J can be occupied by either a solvent atom A or solute atom B, and the energy
of each configuration is given as:

EGB
ij, xy = 1

2 [(z
GB
i − 1)EGB

y−x + EGB
ij, x−y] (14)

where x and y can be either solute A or solvent B in the four possible permutations shown
in Figure 5, and the per-bond parameter wGB

ij for bond i− j can be calculated as:

wGB
ij =

(
EGB

ij,A−B −
EGB

ij,AA+EGB
ij,BB

2

)
= EGB

ij, BA − EGB
ij, BB + EGB

ij, AB − EGB
ij, AA. (15)
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Figure 5. Example 2d atomic configurations used to calculate the per-bond parameter wGB
ij for bond i− j, by measuring the

per-atom energy of atom I in the fully relaxed polycrystal, EGB
ij, I J , where atoms I and J can be either solvent A or solute B.

The parameter wGB
ij can then be averaged over each nearest neighbor for a given GB

site i to obtain an average per-site parameter wGB
i . This value can in turn be combined

with the atomic coordination of the site to obtain the per-site heat of mixing parameter,
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ΩGB
i , and thus the full heat of mixing distribution of the grain boundary. Here, it should

be noted that the heat of mixing parameters calculated effectively assume the structure of
the pure solvent A—in either the grain boundary or bulk, respectively—as the reference
state for both components A and B.

Following this procedure for a bulk site in the interior of a fully relaxed 16 × 16 × 16
supercell of FCC Al, values for the grain interior of zc = 12, wc = −4.72 kJ/mol, and
Ωc = −28.32 kJ/mol were obtained. Then, following this procedure for the GBs, we
achieve the distribution shown in Figure 6a. This per-site parameter exhibits a roughly
skew-normal distribution, similar to the segregation energy spectrum itself, with an average
value of wGB = −3.78 kJ/mol. We note that this spectrum confirms our earlier observations
about the modest nature of solute-solute interactions in Al-Mg, as it is far less energetic
than the GB segregation spectrum itself (cf. Figure 2); this means that at low temperatures,
thermal energy is enough to randomize the solute-solute interactions in the GBs but not to
desegregate them, achieving exactly the random mixing conditions required to evaluate
solute interactions.
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Figure 6. For every GB site in the (10 nm)3 Al-Mg polycrystal: (a) Atomic coordination of every GB site. (b) Correlation plot
of atomic coordination and per-site parameter wGB

i . (c) Average per-site parameter wGB
i . (d) Average per-site heat of mixing

parameter ΩGB
i .

To directly compare the measured per-site parameter wGB
i with the fitted parameter

ΩGB, we must also account for the atomic coordination zGB
i of each GB site, as per Equation

(8). However, wGB
i and zGB

i are not necessarily independent. Thus, to explicitly separate the
contributions due to coordination and bond energy distributions, the atomic coordination
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distribution of the grain boundary, zGB
i , was also measured and is shown in Figure 6b.

When plotting wGB
i as a function of zGB

i , as shown in Figure 6c, it is readily apparent that the
spread of wGB

i varies significantly with atomic coordination. However, there is very little
overall correlation between the two, so their rigorous site-wise combination to produce a
spectrum as in Figure 6d, followed by averaging, produces much the same result as first
averaging each distribution and then using Equation (8) subsequently. This analysis gives
an average heat of mixing parameter for the GB regions as Ω

GB
= −27.10 kJ/mol.

4. Discussion

The results in Figure 6 represent what we believe to be the first atomistic measure-
ment of the full spectrum of solute-solute interaction effects during GB segregation in a
polycrystal. As such, they permit a very detailed level of analysis of the GB segregation
state beyond the dilute limit. For example, in the spirit of exhaustive rigor, we might
consider an isotherm analysis on the basis of both the spectrum of segregation energies and
the spectrum of solute interactions across the GB, combined together in a self-consistent
probabilistic model. This is explored in Figure 7a, where the per-site dilute limit segregation
energy and interaction parameter are cross-compared, and together apparently constitute a
single 2D distribution function with a single central peak.
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Such a distribution could be modeled by, e.g., a bivariate normal (or skew-normal)
distribution [68]. Equation (9) might therefore be modified to include an integral over
the joint probability density of the segregation and interaction energies. The skewness is
small in the present case, so a bivariate normal distribution is appropriate, and has the
following form:

FGB
ij = 1√

(2π)2|Σ|
exp

[
− 1

2 (x− µ)TΣ−1(x− µ)
]

(16)

where FGB
ij varies with the vector quantities x and µ, where x contains the segregation and

interaction energies and µ their means, and Σ is their covariance matrix. For Al-Mg, we find
the bivariate normal parameters to be µ = [∆Eseg, wGB] , where wEseg = −7.10 kJ/mol
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is the mean segregation energy and ∆GB = −3.78 kJ/mol is the mean interaction energy,
with a covariance matrix given by:

Σ =

[
244.04 4.76

4.76 3.86

]
kJ/mol.

Performing an integration over both the segregation energy and interaction energy
produces the following isotherm:

Xtot =
(
1− f GB)Xc

+ f GB ∫ ∞
−∞

∫ ∞
−∞ FGB

ij

[
1− 1−Xc

Xc exp
(

∆Eseg
i −2Ω

GB
j XGB

+2Ωc

kT

)]−1

d
(

Ω
GB
j

)
d
(

∆Eseg
i

)
.

(17)

Equation (17) can be readily solved numerically, and the resulting occupation dis-
tribution and isotherm are shown in magenta in Figure 8 for Al-Mg. When this fully
atomistic solution is compared with the single-parameter Fowler-like fit in the details of
the atomic site distributions (Figure 8a), it is clear that the full bivariate distribution more
accurately captures the distribution at equilibrium. It also credibly reproduces the trend of
the isotherm in Figure 8b with no fitting parameters. Interestingly, though, the conformity
in Figure 8b is not better than can be achieved with direct fitting. Thus, even though the
full bivariate distribution approach may be more rigorous, it may not dramatically improve
predictive power over a simple linear interaction term, if one is concerned only with the av-
erage GB solute concentration and does not care about the details of site occupation. Since
the full bivariate spectrum approach adds significantly more computational complexity,
an atomistically-informed single parameter model may be a preferred solution. Introduc-
ing the directly atomistically measured average values of Ω

GB and Ωc into Equation (12)
achieves the results shown by black lines in Figure 8; the result is a reasonable compromise
between accuracy and speed.
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Figure 8. (a) For the (10 nm)3 Al-Mg polycrystal: isotherm for the polycrystal equilibrated via MC/MS at 600 K, with a
fitted linear interaction parameter ΩGB = −22.86 kJ/mol (Equation (11) (red)), spectral isotherm with the average bulk

interaction parameter Ωc = −28.32 kJ/mol and average grain boundary interaction parameter Ω
GB

= −27.10 kJ/mol
(Equation (12) (solid black)), and spectral isotherm with fitted bivariate normal distribution (Equation (17) (magenta)).
(b) Equilibrium occupied distribution, with predicted occupation distributions using: a fitted linear interaction parameter

ΩGB = −22.86 kJ/mol (Equation (11) (red)), average interaction parameters Ωc =−28.32 kJ/mol and Ω
GB

=−27.10 kJ/mol
(Equation (12) (black)) and the full fitted bivariate normal distribution (Equation (17) (magenta)).

One additional result is provided by the dashed black line in Figure 8b. This is the
prediction of Equation (12) if only the solute-solute interactions in the GB are considered,
and not the bulk interactions. As anticipated, in Al-Mg, this effect is relatively small, but
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not insignificant, especially at higher concentrations, indicating the need to account for
both the grain boundary and bulk contributions in the general case.

The above analysis shows that the general approach of using a Fowler-like composition-
dependent correction to the spectral model, as proposed by Wagih and Schuh, is indeed an
excellent compromise between simplicity and accuracy to capture GB segregation beyond
the dilute limit. However, the manner of its use proposed by those authors is computa-
tionally cumbersome: in order to rigorously compute the true segregation state in Figure 8
by MC/MS and then fit the interaction parameter takes on the order of 200 h of compute
time on a system using graphics processing unit (GPU) accelerated potential calculations
with a Nvidia Quadro P4000 graphics card (NVIDIA, Santa Clara, CA, USA) and an Intel
i7 4770 K processor (Intel, Santa Clara, CA, USA). In contrast, knowing that only a single
average interaction value is needed, the present method based on direct atomistic sampling
of solute-solute interactions becomes remarkably efficient. Rather than obtain the entire
interaction spectrum as in Figure 6, we may instead take small samples to obtain just its
mean. For the distribution shown in Figure 6d, the standard deviation of the distribution is
σGB

Ω = 14.2 kJ/mol, and a sample size of n = 100 GB sites would be sufficient to reduce the
standard error of the distribution mean to σGB

Ω
= 1.42 kJ/mol. These hundred computations

would take about 1/100 the time of the MC/MS approach above. In future work we hope
to apply this advance to rapidly screen solute-solute interactions for many alloys.

5. Conclusions

Recent progress in accounting for the full spectrum of GB segregation sites has brought
new clarity to the dilute limit situation but left the important topic of solute-solute interac-
tions at higher concentrations in need of development. Here we have explored the natural
extension of the spectral model for GB segregation by assessing a comparable distribution
of solute-solute interaction energies. The method presented here has provided what is,
to our knowledge, the first measurement of the full spectrum of solute-solute interaction
energies at the GB. The spectrum of interaction energies follows a roughly skew-normal
distribution for the Al-Mg system analyzed here, and when combined with the existing
segregation energy distribution constitutes a full bivariate (skew-) normal distribution that
describes the GB beyond the dilute limit.

A full bivariate normal distribution of site and interaction energies provides an ex-
cellent prediction of the solute distribution at equilibrium, as validated against rigorous
hybrid Monte Carlo/Molecular statics simulations, both on average and over the full
spectrum of GB sites. Importantly, though, in the present case the interactions can be
approximated by a scalar average over their full distribution and still achieve reasonable
accuracy for many practical problems. This compromise is one that has the benefit of being
fully atomistically informed, but less computationally intensive. This work thus paves
the way to use simple, inexpensive atomistic measurement to predict solute interaction
behavior during grain boundary segregation.
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