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Simple Summary: Climate change is one of the major threats to plant diversity and is expected
to force species distributions into latitudinal or altitudinal shifts. The complex biology of orchids,
and their many interactions with other organisms, increases their vulnerability in a changing cli-
mate. This study focuses on how climatic alterations will affect the distribution of the fly orchid
(Ophrys insectifera L.), one of the most well-known and distinctive Ophrys species in Europe, using
models that predict the species range changes in the future, based on environmental factors. The
orchid’s environmentally suitable area is projected to shift northwards but downhill in the future,
experiencing a moderate overall range contraction. More specifically in near- and long-term future, it
is expected to be lost in South Europe, especially from the Balkans, while it will gain areas in North
Europe, with the UK, Scandinavia, and the Baltic countries being among the winners. These results,
although conservative since they are based only on abiotic variables, provide useful insights on
the fly orchid’s response to future climatic change, and can serve as a basis for further studies on a
finer scale.

Abstract: Numerous orchid species around the world have already been affected by the ongoing
climate change, displaying phenological alterations and considerable changes to their distributions.
The fly orchid (Ophrys insectifera L.) is a well-known and distinctive Ophrys species in Europe, with a
broad distribution across the continent. This study explores the effects of climate change on the range
of O. insectifera, using a species distribution models (SDMs) framework that encompasses different cli-
matic models and scenarios for the near- and long-term future. The species’ environmentally suitable
area is projected to shift northwards (as expected) but downhill (contrary to usual expectations) in
the future. In addition, an overall range contraction is predicted under all investigated combinations
of climatic models and scenarios. While this is moderate overall, it includes some regions of severe
loss and other areas with major gains. Specifically, O. insectifera is projected to experience major area
loss in its southern reaches (the Balkans, Italy and Spain), while it will expand its northern limits to
North Europe, with the UK, Scandinavia, and the Baltic countries exhibiting the largest gains.

Keywords: climate change; fly orchid; Ophrys; Orchidaceae; orchid distribution; range contraction;
range shift; species distribution models (SDMs)

1. Introduction

During the last few decades, abrupt climatic changes have induced considerable
shifts in the spatiotemporal climatic regimes across the globe [1], with strong effects on all
levels of biodiversity already being reported [2–7]. Several studies have shown that many
organisms will or have already experienced significant range shifts due to climate change,
with a poleward or uphill direction. Although the majority of species observed to shift
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their distributions are abiding to this pattern, there are some that migrate southwards or
downhill, showing a wide variety of range alterations [4,5,8]. On the other hand, organisms
that fail to migrate or adapt may be more vulnerable to extinction [9]. The number of such
species is predicted to increase on a global scale [10,11]. However, local extirpations are
already widespread for several species [12]. Adding to this, dispersal due to the changing
climatic conditions will not help them avoid extinction, even when combined with niche
shifts [6].

Climate change has been listed as a potential threat for plants [13]. The main in-
fluence comes from changes in climatic factors like temperature and precipitation that
play an important role for the plants’ life cycle [2,3], leading to altered phenologies, mis-
matches on their interactions with other organisms (e.g., pollinators), and distribution
area changes [11,13–15]. Global warming seems to force plant species to shift their ranges
in latitudinal and/or elevation gradients, in search of more favorable climatic condi-
tions [4,16], while in certain cases, it can even act as an amplifier of their vulnerability to
extinction [13,17–19]. In both hemispheres, plant species tend to migrate towards the poles,
while in altitudinal gradient, they shift mostly uphill (e.g., [4,13,16,20,21]), with exceptions
of species following opposite directions existing for both patterns (i.e., towards the equator
and downhill, respectively (see [4,5]).

Like all plants, orchids are affected by climatic changes, and their response to those al-
terations has already been studied. Cases of phenological shifts have been reported [7,22–25]
discussing not only changes in orchid flowering patterns, but also the impact of global
warming on orchid-pollinator interactions. In addition, numerous studies have been pub-
lished about the effects of climate change on the distribution of orchids (e.g., [26–30]),
reporting different levels of area change, from low to severe range contractions or even
expansions. As for the range shifts, orchids seem to follow the general poleward and uphill
trends as a general rule (e.g., [31,32], although there may be some contradictory patterns at
a local or regional level [33]. Both temperature and precipitation play an important role
in driving distribution changes in orchids (e.g., [33–37]). Additionally, orchid species will
be affected by climatic fluctuations in these quantities, and climatic models foresee major
increases in the variability of both these factors [38,39].

One of the concerns regarding species’ distributions, is that species may be driven
either into regions that are unfavorable or very limited in their extent (e.g., [10]). Orchi-
daceae are one of the families that are under-assessed regarding their vulnerability to
extinction [40]. They could face especially significant losses to their distributions and
associated population declines [41–43], because of the complexity of their life cycle and
their symbiotic dependence on other organisms that could act as an amplifier of extinction
probability. Consequently, orchids could face greater risks from global warming than in
other families [44].

The fly orchid (Ophrys insectifera L.) is one of the most distinctive Ophrys, serving as
the type species of the genus. It is characterized by a wide distributional range throughout
the continent [45,46], and it can be found in a variety of habitats over a broad altitudinal
extent [45,47]. However, in most cases, it occurs in areas with increased soil moisture
(damp soils), and always in full sun or semi-shaded sites (see [47–49]). Thus, despite its
widespread occurrence in Europe, there is cause for concern regarding the conservation of
this species in the future. The scope of this paper is to investigate whether such concerns
have a reasonable basis. For this purpose, the study focuses on the effects of climate change
on the distribution of O. insectifera in the upcoming decades, using a species distribution
models (SDMs) framework under different combinations of global circulation models
(GCMs), share socioeconomic pathways (SSPs), and future time periods.

2. Materials and Methods
2.1. Study Species

The fly orchid (Ophrys insectifera L.) was first observed and described in the 1750s
by Linnaeus, during his trip to the Baltic islands [50], and serves as the type species of
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the genus Ophrys. It is one of the most distinctive bee orchids, with its lax inflorescence
bearing the characteristic fly-resembling flowers, that, in contrast to their appearance, are
pollinated by male digger wasps of the genus Argogorytes (A. mystaceus and A. fargeii) [51].
It is a tuberous perennial orchid, with a height varying from (12-)15 to 50 cm, which can be
found in bloom during May–July (depending on the region), in damp, full sun/semi-shade
sites, in a variety of habitats (from woodlands and forest edges to fens and grasslands),
and in a broad altitudinal range (0–1700 m a.s.l.) [45,47]. O. insectifera is a species native
to Europe, and in contrast to the mainly Mediterranean range of other bee orchids, it
has an extended distribution throughout the continent [45]. Extending from Ireland and
Northern Spain to Ukraine (West–East Axis), and from Scandinavia and the Baltic countries
to Italy and Northern Greece (North–South Axis) [46], its distribution center lies in Central
Europe. However, marginal occurrences can be found in Russia and Northern Norway,
thus characterizing O. insectifera as a rather temperate species and the northernmost bee
orchid [47] (Figure 1a). Despite its wide range throughout the European continent, its
populations can be locally dense or even locally rare, with only scattered occurrences [52].
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Figure 1. (a) Ophrys insectifera distribution map, compiled with data downloaded from IUCN [53],
(b) map including the total occurrence data for O. insectifera retrieved from GBIF and other sources,
and the study area defined as a buffered α-hull extent of occurrence (EOO). Both maps are designed
in QGIS v.3.18 ‘Zürich’, using ETRS89—Lambert Conformal Conic Coordinate Reference System.
Photo of the species taken in June 2019 at Mt. Tzoumérka (Epirus, NW Greece).

2.2. Species Occurrence Dataset and Coordinate Thinning Procedures

Occurrence data for Ophrys insectifera were downloaded from the Global Biodiversity
Information Facility (GBIF) database (a total of 63,574 occurrences) [54]. In this dataset,
available occurrences for Greece (20 occurrences; ‘Orchids of Greece’ project database,
Assist. Prof. Spyros Tsiftsis pers. comm.), Serbia (seven occurrences; [55]), Bulgaria
(six occurrences; [56]), and Romania (four occurrences; Mihai Bobocea pers. comm.) were
added. The original occurrence dataset for O. insectifera derives from the available data
from GBIF. However, as shown in Figure 1a, the distribution of the species contains other
countries as well (e.g., in Eastern Europe and the Balkans), for which there are no data in the
GBIF repository. This issue could question the reliability of the predictions for the species’
range. Nevertheless, it was tackled to some extent with the aforementioned occurrence data
additions, and by setting the species distribution area to be equal to the extent of occurrence



Biology 2022, 11, 497 4 of 20

(EOO) as proposed by guidelines from the International Union for Conservation of Nature
(IUCN) [57]. This extent of occurrence was used as a proxy for the species distribution [58]
and was calculated using the R-package ‘ConR’ 1.3.0 [59] with the alpha-hull method,
adding a buffer around the calculated extent to cover all occurrence data.

All non-georeferenced occurrences were removed from the dataset, as well as any pre-
1970 data in order to match the temporal resolution of WorldClim v2.1 baseline data [60].
All points with coordinate uncertainty > 9.25 km were also removed, so as to be in line
with the resolution of the selected environmental variables (see Section 2.3). Moreover,
the functions ‘clean_coordinates’ of the ‘CoordinateCleaner’ 2.0.18 R package [61] and
‘elimCellDups’ function from the ‘enmSdm’ 0.5.3.3 R package [62] were used to further
clean the occurrence dataset and eliminate any duplicate records, respectively.

The remaining occurrence data were spatially thinned using the R package ‘spThin’
0.1.0 [63] following Robertson et al. [64], resulting in a dataset of 3914 records (here-
after GeoThin). However, according to Varela et al. [65], environmental thinning may
lead to improved model performance. To that end, spatially thinned occurrences were
further thinned based on the representative and uncorrelated environmental variables
occurring in the study area (see Section 2.3), following Varela et al. [65] (and the code pro-
vided at: https://github.com/SaraVarela/envSample; last accessed on 26 February 2022).
After environmental thinning, the second occurrence dataset consisted of 1802 records
(hereafter, EnvThin).

2.3. Environmental Data

Current and future climatic data (minimum temperature, maximum temperature, av-
erage temperature, precipitation, and 19 bioclimatic variables) were downloaded from the
WorldClim v2.1 database [60] at a 5 arc minutes resolution. Regarding future projections,
data from the Coupled Model Intercomparison Project—Phase 6 (CMIP6) were obtained for
two time slices, 2070 (timeframe 2061–2080, representing ‘near-term future’) and 2090 (time-
frame 2081–2100, representing ‘long-term future’), for three GCMs (BCC-CSM2-MR [66],
MIROC-ES2L [67], MRI-ESM2-0 [68]), and four different SSP scenarios [69] (SSP1-2.6,
SSP2-4.5, SSP3-7.0, SSP5-8.5). Extra-terrestrial solar radiation and 16 additional bioclimatic
variables were constructed for all time-slices using functions from the R package ‘envirem’
2.2 [70]. Elevation data were downloaded via the CGIAR-CSI data-portal [71], and five
topographical variables (slope, aspect, heat load index, topographic position index and
terrain ruggedness index) were then estimated, with the R packages ‘raster’ 3.3.13 [72] and
‘spatialEco’ 1.2-0 [73]. Soil variables were extracted from the SoilGrids 2.0 database [74]
via Web Coverage Services (WCS) in QGIS v.3.18.0 ‘Zürich’ [75] at a 5 arc minutes res-
olution. The function ‘vifcor’ from the R package ‘usdm’ 1.1.18 [76] was used to assess
multicollinearity. From the initial set of 52 chosen predicting variables, 20 did not show
any collinearity problems (Spearman rank correlation < 0.7 and VIF < 10; [77]) and were,
thus, included in the analyses (Table S1).

2.4. Species Distribution Models

The realized climatic niche of Ophrys insectifera was modeled by combining the occur-
rences’ dataset with current environmental predictors in an ensemble modelling scheme, to
reduce model algorithm uncertainty [78,79]. This process was followed for both thinning
procedures (GeoThin and EnvThin occurrence datasets).

Fine-tuned SDMs were fitted based on four different algorithms: random forests (RF),
boosted regression trees (BRT), Bayesian additive regression trees (BART) and maximum
entropy (MaxEnt), via the R packages ‘SDMtune’ 1.1.4 [80], ‘embarcadero’ 1.2.0.1003 [81]
and ‘ENMeval’ 0.3.1 [82], respectively. Before the procedure of model fitting, spatial
cross-validation was applied in order to reduce spatial autocorrelation [83], by spatially
partitioning the dataset in four blocks, using the function ‘get.block’ from the R package
‘ENMeval’ 0.3.1 [82]. Regarding the algorithms RF and BRT, models’ hyperparameters
were fine-tuned using the functions ‘reduceVar’ and ‘optimizeModel’ of the ‘SDMtune’
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R package [80]. There, any variables with low permutation importance (nperm = 100;
<5%) were sequentially removed until the optimum Jackknife test TSS was reached, and
afterwards, the hyperparameter combination of the best performing model based on
test TSS was identified. For BART, fine-tuning process was applied using the functions
‘bart.step’ and ‘retune’ as described in Carlson et al. [84]. For MaxEnt, the combinations
between linear, quadratic, and hinge feature classes were explored, since they lead to
more comprehensive and better-performing models [85]. The regularization multipliers
ranged from 1 to 10 with a step value of 0.1, resulting in 600 candidate models. Optimal
MaxEnt model settings were identified based on threshold-dependent (i.e., omission rate)
evaluation metrics, in order to prevent overfitting and improve model transferability, as
model predictions based on information criteria lead to oversimplified models with low
predictive performance [86].

Pseudo-absences (PAs) for O. insectifera were generated following the recommen-
dations of Barbet-Massin et al. [87] and Liu et al. [88]: 30,000 background points were
randomly sampled within the study area (defined in Section 2.2), since poor background
sampling may lead to a truncated environmental response [89].

The prediction capability of each one of the models was evaluated using a selection of
discrimination and calibration metrics. In order to avoid any misleading result by relying
to a single metric [90–92], four discrimination (AUC, AUC-PR, Sørensen’s index, TSS) and
three calibration (Brier score, Cohen’s Kappa, Continuous Boyce Index (CBI)) metrics were
selected for the evaluation [93–98]. The aforementioned metrics were calculated using
functions from the ‘CalibratR’ 0.1.2, ‘DescTools’ 0.99.40, ‘ecospat’ 3.2, ‘enmSdm’ 0.5.3.2,
‘Metrics’ 0.1.4, ‘MLmetrics’ 1.1.1 and ‘modEvA’ 2.0, R packages [62,99–104].

Variable importance for each model was estimated via the functions ‘varImp’
(nperm = 1000), ‘varimp’ and ‘var.importance’ from the ‘SDMtune’, ‘embarcadero’ and
‘ENMeval’ R packages, respectively.

The potential distribution of O. insectifera was projected under current and future
climate conditions, for all algorithms separately (regarding MaxEnt, the ‘clogclog’ output
was used, which is analogous to the occurrence probability predictions from the remaining
algorithms [85]), as well as via an ensemble model framework [79], based on calibrated
models with TSS ≥ 0.6 (to avoid poorly calibrated ones). The contribution of each model
to the ensemble forecast was weighted according to its TSS score. Five ensemble methods
were selected (median, mean, weighted mean, committee average and PCA-based), to
tackle performance uncertainty [105], and from these the best ensemble model was selected
based on TSS and Sorensen’s index [92].

The resulting habitat suitability maps were transformed to binary based on the metric
that maximizes the sum of sensitivity and specificity [96,106,107] and the one that maxi-
mizes Sorensen’s index as suggested by Leroy et al. [92]. Afterwards, those were compared
to the binary maps obtained for each GCM and SSP. As a conservative approach, the
suitability of any cells that had non-zero values in the clamping mask was set to NA [108].
Regarding models produced by ‘embarcadero’, the suitability of any cells that had an
uncertainty value equal to or higher than the 90% of the cells was set to NA.

Finally, function ‘BIOMOD_RangeSize’ of the R package “biomod2” 3.3.7 [109] was
used to assess the projected range change of the species, for the individual and ensemble
models for both thinning procedures. O. insectifera, like all orchids, produces numerous
dust-like seeds, with extremely low weight, that theoretically can “travel” for long dis-
tances [110]. To that end, for this analysis an unlimited dispersal capacity was assumed for
the species range.

2.5. Distribution Shift in Latitudinal and Altitudinal Gradient

In order to test if the distribution of Ophrys insectifera shifts latitudinally in the future,
the median centroids of distributions of current and future time slices were calculated
based on the binarized habitat suitability from the ensembles of both thinning procedures,
and for all GCMs/SSPs, using the function ‘st_centroid’ of the R package ‘sf’ 1.0.5 [111].
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A distance matrix between current and future centroids was calculated for all cases (near-
and long-term future for EnvThin and GeoThin ensemble) from the homonymous toolbox
in QGIS v.3.18.0 ‘Zürich’ [75] software. Moreover, to examine the altitudinal shift of the
species, elevation data from the CGIAR-CSI data-portal were used in order to extract
the mean altitude for the current and future projections, for all combinations of thinning
procedures, GCMs and SSPs. Finally, for both types of shifts, non-parametric tests were
used, in order to check for any statistically significant difference (functions ‘kruskal.test’
and ‘pairwise.wilcox.test’ of the R-package ‘stats’).

2.6. Response of the Most Important Variable in Locations of Interest

In order to investigate the effect of the most important variable on the distribution of
Ophrys insectifera, two locations were selected from the species’ range that represent areas
of consistent loss and gain and are congruent under all studied combinations of models
and scenarios. Three sets of simulations were utilized for each one of the selected GCMs:
the historical simulation (1986–2014), SSP1-2.6 (best-case scenario), and SSP5-8.5 (worst-
case scenario) for the period 2015–2100. Simulations for MIROC-ES2L and MRI-ESM2-0
were retrieved from the Copernicus Climate Data Store (https://cds.climate.copernicus.
eu/; accessed on 31 January 2022) using the “cdsapi” python tool (https://pypi.org/
project/cdsapi/; accessed on 31 January 2022), while BCC-CSM2-MR simulations were
retrieved from the Earth System Grid Federation (https://esgf-data.dkrz.de/projects/
esgf-dkrz/; accessed on 31 January 2022) using bash scripts. Data were analyzed in their
native horizontal resolution, and the required variable is calculated from the original data,
following the definition by [58], for every year during the period 1986–2100 for each GCM
and SSP. Time series were extracted without smoothing, based on the grid point that was
the nearest neighbor to each one of the two selected locations. The processing of the
raw files was performed using Climate Data Operators (https://code.mpimet.mpg.de/
projects/cdo/; accessed on 31 January 2022), while data were plotted using the R package
‘ggplot2’ [112].

3. Results

All models—apart from MaxEnt—performed sufficiently well (TSS: 0.747 ± 0.232;
AUC: 0.895 ± 0.120; PRAUC: 0.782 ± 0.317; Cohen’s Kappa: 0.598 ± 0.318; CBI: 0.994 ± 0.009;
Sorensen’s index: 0.794 ± 0.011; Brier Score: 0.059 ± 0.049; see Table S2). Ensemble mod-
els performed equally well (median AUC: 0.994 ± 0.003; Brier score: 0.000 ± 0.000; CBI:
0.978 ± 0.043; Sorensen’s index: 0.774 ± 0.052; TSS: 0.947 ± 0.028; see Table S3).

Among all the response variables, temperature seasonality had the highest contribu-
tion for the majority of combinations of thinning procedures and algorithms, followed by
the Thornthwaite Aridity Index. Exceptions to this were the case of EnvThin-BART, where
Thornthwaite Aridity Index was the most important variable followed by Temperature
seasonality, and the ones of EnvThin-RF, GeoThin-RF and GeoThin-BRT, where elevation
and Precipitation Seasonality were the second most important variables (Table S4).

The resulting habitat suitability maps that were similar for the ensemble of both
thinning procedures (Figure 2 and Figure S2) were converted into binary maps, and then
compared to the binary maps obtained for each GCM, SSP scenario, time-slice, and thinning
procedure. Since the outcome of the ensemble modeling for the current and future potential
distribution of Ophrys insectifera was largely similar across all combinations of thinning
procedures and future scenarios, results for the EnvThin ensemble were selected to be
shown in-text. In addition, for future predictions, only SSP1-2.6 and SSP5-8.5 are presented
in-text, as best-case and worst-case scenario, respectively.

https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://pypi.org/project/cdsapi/
https://pypi.org/project/cdsapi/
https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://code.mpimet.mpg.de/projects/cdo/
https://code.mpimet.mpg.de/projects/cdo/
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Figure 2. Current habitat suitability map for Ophrys insectifera, for the ensemble model using the
environmental thinning procedure. Map is designed in QGIS v.3.18 ‘Zürich’, using ETRS89—Lambert
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Ophrys insectifera is projected to experience moderate overall contraction of its environ-
mentally suitable area in the near-term future (mean contraction in the worst-case scenario
of the presented EnvThin ensemble: 15.59%—2070; mean current occurrence lost for the
worst-case scenario of the presented EnvThin ensemble: 27.65%—2070; Table 1). However,
the species is expected to face large changes across its distribution. A considerable area
loss is observed (mean expected loss: 38.48% for the worst-case future scenario of EnvThin
ensemble in 2070; Table 1), mainly at the southern parts of the species’ distribution, as
well as at its west and east edges (Figure 3). O. insectifera is also anticipated to show an
increase of environmentally suitable areas in the near future (mean expected gain: 22.9%
for the worst-case scenario of EnvThin ensemble in 2070; Table 1). This gain is observed
mainly at the leading edge of the distribution, with some sporadic suitable areas’ increase
at regions on both sides and close to the distribution centre (Figure 3). Results for long-term
future (2090) show similar trends for the range changes of the species. Contraction of
environmentally suitable areas is expected to be higher than in 2070 (mean contraction for
the EnvThin ensemble in 2090: 27.51%; mean current occurrence lost for the worst-case
scenario of the presented EnvThin ensemble: 40.12%—2090; Table 1). Loss of currently
occupied areas is expected to be larger than in 2070 (mean expected loss: 48.87% for the
worst-case scenario of EnvThin ensemble in 2090; Table 1), and observed at the trailing
edge of the distribution in the south (Figure S2). Area gain is slightly lower than in 2070
(21.35%; Table 1) and located in the same areas at the northern parts of the distribution
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(Figure S2). The results are consistent throughout all combinations of GCMs, SSPs and
future time slices, for both EnvThin and GeoThin ensemble models (see Figures S3–S8 and
Tables S5 and S6).
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Figure 3. Current and future potential distribution maps for Ophrys insectifera EnvThin ensemble
model. Left-hand panel: red-brown coloring indicates the cells the species currently potentially
occupies. Each map is showing the transition from the present time-period to each respective
GCM and SSP combination. Right-hand panel: future potential distribution maps of 2070 for the
combinations of three GCMs (BCC, MIROC, and MRI) and two SSPs (SSP1-2.6 and SSP5-8.5) as
‘best’ and ‘worst’ case scenario. Grid cells with red coloring indicate the areas where the species
is currently present but will not be in the future. Grey coloring represents cells where the species
currently occupies and will continue to occupy in the future. White stands for the cells where the
species is not currently present will not be in the future, while blue grid cells indicate the areas where
the species is not currently present but will occupy in the future. All maps are designed in QGIS
v.3.18 ‘Zürich’, using ETRS89—Lambert Conformal Conic Coordinate Reference System.
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Table 1. Percentages of area loss, gain, overall area change and current occurrences lost for future
projections of Ophrys insectifera. For the future, 2 time slices, 2070 (2061–2080) and 2090 (2081–
2100), are presented for all selected global circulation models (BC: BCC-CSM2-MR, MI: MIROC-
ES2L, MR: MRI-ESM2-0) and two shared socioeconomic pathways (SSP1: best-case scenario, SSP5:
worst-case scenario). The presented values are for the ensemble model with the environmental
thinning procedure.

Time Slice Transition GCM Area Loss (%) Area Gain (%) Overall
Change (%)

Current
Occurrences

Lost (%)

2070

Present to
SSP1-2.6

BC 20.58 17.45 −3.14 8.27
MI 16.40 21.12 4.72 10.54
MR 38.29 14.36 −23.93 22.03

Mean 25.09 17.64 −7.45 13.60

Present to
SSP5-8.5

BC 51.42 23.89 −27.54 38.46
MI 20.03 29.36 9.33 13.37
MR 44.00 15.44 −28.55 31.13

Mean 38.48 22.90 −15.59 27.65

2090

Present to
SSP1-2.6

BC 20.07 15.03 −5.04 8.99
MI 16.13 22.91 6.78 10.27
MR 31.64 13.25 −18.39 16.98

Mean 22.61 17.06 −5.55 12.08

Present to
SSP5-8.5

BC 77.03 25.65 −51.38 73.20
MI 40.51 23.41 −17.09 30.91
MR 29.06 15.00 −14.06 16.26

Mean 48.87 21.35 −27.51 40.12

The northwards shift of the species can be observed more easily by looking at the
centroid movement. The centroids of all projected future environmentally suitable areas
of Ophrys insectifera for the selected ensemble appear to be always lying to the north and
mainly northwest of the current centroid, with very few exceptions, e.g., BC85 centroid
in the presented ensemble, that is placed to the northeast of the current (Figure 4 and
Figure S10). The distance between the current and future centroids depended on the
combination of GCM and SSP, and in the presented EnvThin ensemble for 2070 varied
from 59.6 to 323.5 km (MI26 and BC85 respectively; Table S9). For 2090, the centroids for
all combinations of GCMs and SSPs show similar patterns (Figures S9 and S11), with the
distance between the current and future centroids being even larger (85.7 to 759.2 km, for
MI26 and BC85 respectively; Table S9). Results are consistent among all combinations
of GCMs, SSPs and future time slices for both EnvThin and GeoThin ensemble models
(Figures S12–S15 and Table S10).

The results for the altitudinal shift test showed a moderate downhill movement for
all different combinations of GCMs and SSPs of future projections for both 2070 and 2090
(Table 2 and Table S7; 2070 Kruskal-Wallis test x2 = 863.38, df = 6, p < 0.001; 2090 Kruskal-
Wallis test x2 = 3504.2, df = 6, p < 0.001). The species can currently be found at a mean
altitude of 542.6 m a.s.l. for the presented ensemble, while in future it is expected to be
found in areas with a mean altitude lower by ca. 100–140 m for the worst-case scenario
of 2070 and 2090 respectively. Similar results have been observed for all combinations of
GCMs, SSPs and future time slices for the GeoThin ensemble (Table S8).
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Figure 4. Median centroids for current and future projected distributions of Ophrys insectifera, for
the EnvThin ensemble in 2070 time slice. Black point represents the current distribution’s median
centroid, the blue points stand for the future best-case scenario (SSP1-2.6), and the magenta points
for the future worst-case scenario (SSP5-8.5). GCMs differentiate by shape: BCC—circle, MIROC—
diamond, MRI—square. Map is designed in QGIS v.3.18 ‘Zürich’, using ETRS89—Lambert Conformal
Conic Coordinate Reference System.

Figure 5 shows the time series for temperature variability (yielded as the most impor-
tant variable in SDMs) for the two selected locations, Greece and the UK, at the southern
and northern reach of Ophrys insectifera, respectively. As mentioned in Section 2.6, these
two locations were selected as examples for comparison purposes, since they consistently
exhibit high rates of area loss (Greece) and gain (UK) in all future projections. Temperature
seasonality in Greece displays a consistent increase with a high intra-annual variability for
all GCMs, which is maximized for the worst-case scenario. On the other hand, GCMs for
the UK exhibit a considerable consensus compared to Greece. Over this location, temper-
ature seasonality also shows an increasing trend, however the magnitudes of change are
significantly smaller than in Greece.
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Table 2. Mean altitude for present and future projections of Ophrys insectifera distribution. For the
future, two time slices, 2070 (2061–2080) and 2090 (2081–2100), are presented for all selected global
circulation models (GCMs) and two shared socioeconomic pathways (SSPs), representing ‘best’- and
‘worst’-case scenarios respectively. BC: BCC-CSM2-MR, MI: MIROC-ES2L, MR: MRI-ESM2-0. SSP1-
2.6: ‘best’-case scenario, SSP5-8.5: ‘worst’-case scenario. The presented values are for the EnvThin
ensemble model.

Time Slice SSP Period/GCM Mean Altitude (m)

Present Current 542.6

2070

SSP1-2.6
BC 484.7
MI 520.3
MR 467.5

SSP5-8.5
BC 428.6
MI 447.8
MR 447.0

2090

SSP1-2.6
BC 504.6
MI 505.0
MR 498.3

SSP5-8.5
BC 278.4
MI 442.9
MR 492.7
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Figure 5. Temperature seasonality variation for two selected locations of Ophrys insectifera distribution
over the time period 1986–2100. UK (in blue) represents an area of range gain, while Greece (in red)
an area of range loss. Two shared socioeconomic pathways (SSPs) are presented, as best-case and
worst-case scenarios (SSP1-2.6 and SSP5-8.5, respectively). In all panels, each line represents a global
circulation model (GCM): BCC-CSM2-MR (cyan line); MIROC-ES2L (yellow line); MRI-ESM2-0 (coral
red line).
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4. Discussion

On the basis of results obtained in this study, the environmentally suitable area of
Ophrys insectifera is expected to shift northwards. Its future centroid will shift by 59.6 to
323.5 km (EnvThin ensemble’s MIROC SSP1-2.6 and BCC SSP5-8.5, respectively; Table S9)
from its current location, which lies close to the tripoint of France, Germany and Switzerland
(Figure 4). This northward shift is robust under all investigated climatic models, scenarios,
and future time frames (Figures S9–S15). By contrast, there is no consistent direction,
westward or eastward in the forecasts for the environmentally suitable areas. This migra-
tion pattern of the fly orchid is in line with the prevailing trend anticipated for plants in
general (see [4,13,16]), and for other orchid species in Europe, including Cypripedium calceo-
lus [32], Epipactis helleborine [35], Himantoglossum hircinum [31,113], Orchis militaris, O. simia,
O. anthropophora and O. purpurea [26].

Also expected is a moderate downhill movement (under all investigated climatic
models, scenarios and future time frames; Tables S7 and S8). In the presented EnvThin
ensemble model O. insectifera shows a mean altitudinal difference of 115 m by 2070 and
of 265 m by 2090 (Table 2). Although this downhill shift goes against the common uphill
pattern, it has been observed before. Lenoir et al. [5] found that 30.9% of forest plant species
in Europe are expected to move to lower elevation in the future, while Chen et al. [4]
showed that species exhibit high variation of shifts across groups and regions, with ca.
25% of the studied taxa moving downhill, in contrast to the mainstream uphill trend. This
may be due to a complex interaction between the altitudinal and latitudinal temperature
gradients, that strongly affect the niche patterns in areas of extended elevation shift.

There have been long-term observations of orchid species in Europe, which report
decline in numbers, as well as a systematic contraction of the range in certain European
orchids [114,115]. This contraction is expected to intensify due to climatic change. For
example, Epipactis helleborine is expected to face a decrease of 25–40% of its suitable habitat
areas until 2080 [35], Traunsteinera globosa is projected to show a future range contraction
of 18–32% [29], and Orchis militaris, that is anticipated to decrease by up to 61.3% in the
future worst-case scenario [26]. O. insectifera follows the same trend as other orchids with
temperate extent, showing a moderate contraction pattern, for all studied models and
scenarios, which will reach 27.5% in the worst-case scenario in the long-term future.

According to Evans et al. [26], as climate continues to change, areas in Northern
Europe will become more suitable for orchid species, in contrast to southern European
countries that are expected to experience more intense climatic alterations (see also [1]).
The aforementioned future changes in the suitable areas of Ophrys insectifera are mainly
driven by temperature variability, and aridity (see Table S4). Temperature is known to
influence orchid distributions and abundance (e.g., [35,37,116]). Although orchids can be
tolerant to temperature seasonal changes, large fluctuations can have negative effects on
the life cycle and the species’ population dynamics [117]. Soil moisture is also a factor
that strongly influences orchid distributions, through its effect on the below-ground stages
of the orchids’ life cycle [118]. However, soil moisture, being a factor associated with
microclimate [117], cannot be easily included in a large-scale analysis, and thus is absent
from available databases. Nevertheless, aridity can serve as a proxy for soil moisture, and
thus the distribution changes of the species exhibit considerable dependence on this factor.

Despite the overall moderate change predicted in this study, O. insectifera will exhibit
strong patterns of environmentally suitable area loss and gain in certain locations. More
specifically, the species will show high percentages of loss at the southern reach of its
current extent (Figure 3 and Figures S2–S8). This includes Spain, Italy, and countries of
the Balkan Peninsula such as Bulgaria and Greece, from which it will disappear entirely.
On the other hand, the northern reach of the species distribution will see large gains of
suitable areas. Among the regions projected to show gain in the north of Europe, the
Baltic countries, Scandinavia and especially the UK appear as gain hotspots (Figure 3 and
Figures S2–S8). O. insectifera is the only Ophrys with a European temperate distribution that
is found in a wide altitudinal range across its extent, but always in sites with increased
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water presence [45,48], in contrast to other bee orchids, that are adapted to drier condi-
tions occurring in Mediterranean habitats [47]. Larger fluctuations and high increase of
temperature seasonality observed in the south of Europe are in contrast to the less intense
ones to the north (Figure 5). This, combined with the vast increase of aridity, can explain
the projected changes of the species in future decades. This result is also in line with the
findings of Thuiller et al. [18], that found high percentages of plant species’ loss in the
southern parts of Europe (up to 62.1% in Mediterranean mountainous areas), and high
percentages of species’ turnover in Northern Europe (Central Atlantic, Continental and
Boreal biogeographic regions).

The anticipated gain of area to the north reach of O. insectifera seen in this study is
in contrast to trends observed so far. Declines of the species have been observed in the
Netherlands, Flanders, Estonia and the UK [114,119–121], with an exception coming from
Denmark, where the species has been showing an increase the last 30 years [122]. However,
such declines from the past to present, probably reflect previous land use change (see [123]).
Although the key driver of declines in the future is likely to be climatic, land use change
will also play an important role.

On the other hand, the observed loss in southern Europe under all investigated cases
can also raise concerns about the conservation of the species’ diversity. More specifically, at
the southwest border of O. insectifera distribution, there have been described two endemic
subspecies, O.insectifera subsp. subinsectifera in the Spanish Pyrenees, and O. insectifera
subsp. aymoninii in the French Causses region [46,47]. Although they differentiate in a
phenological aspect, their genetic differentiation is rather weak [124]. Additionally, at
the southeastern limits of the species’ distribution, Greek and Bulgarian populations of
O. insectifera were genetically distant from others, and were characterized by a unique
haplotype, underlining a cryptic diversity within the species [124]. According to this
study’s results, areas that currently host this diversity at the trailing edge of the species are
projected to be lost in future time slices, under all combinations of models and scenarios of
climate change, pointing to an urgent need for conservation of genetic resources.

Despite the favorable performance metrics and the congruence of results between all
combinations of models and scenarios, the estimated predictions for O. insectifera could be
characterized as conservative, and potentially underestimating the actual trends. Among
the limitations of SDMs, is the difficulty in modelling the effect of interaction between
species, population dynamics and evolution. Orchids are known to depend on symbiotic
relationships with other organisms above and below ground for their survival [125,126].
O. insectifera is a specialist that relies on two specific digger wasp species (Argogorytes
spp.) for its pollination [48]. Below-ground, it also relies on interactions with fungi of
Tulasnellaceae (at the mature stage) and Ceratobasidiaceae (at the protocorm stage) [127].
These interactions add a level of complexity when dealing with climatic changes; in order
for a species to shift its distribution without further adaptations, so should its close part-
ners. An alternative outcome in such a situation is the evolution of new or substantially
modified interactions. Evolution driven by climatic change has been stated before for the
genus Ophrys, that during the Pleistocene exhibited high diversification rates and shifted
from wasp- to bee-pollinated [128]. However, it should be noted that this past evolution
due to climate change occurred over a much longer time scale compared to the current
climatic alterations, where many species will fail to cope with its comparatively rapid
pace [19]. As for their population dynamics, orchids have shown great variability of intra-
and interspecific growth rates [126], and at the same time show a degree of resilience to
environmental changes. Nevertheless, extremes of environmental variability can result to
more dramatic population declines, which, combined with orchids’ massive fecundity, can
lead to population extirpations [129] and further range changes of orchid taxa. However,
such effects are beyond the intended scope of this paper.
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5. Conclusions

This study explored the effects of climate change on the distribution of the fly orchid
(Ophrys insectifera L.) in the near- and long-term future, by means of a species distribution
models (SDMs) framework, under different combinations of global circulation models
(GCMs), share socioeconomic pathways (SSPs), and three different future time periods.
According to our findings, O. insectifera is expected to face moderate contractions of its
environmentally suitable area in the future, with a projected loss at the warm edge of its
distribution under all possible cases examined. However, a possible expansion of its envi-
ronmentally suitable area is observed on its leading edge, while the species is anticipated
to move northwards and downhill to cope with the changing environmental conditions.

These results provide a basis for further investigation of the effects of the changing
climate on this particular orchid. Additional studies should focus on combining outcome of
SDMs with dynamic population models, especially for populations that are anticipated to
face major climatic changes, as well as those at the leading edges of the species’ distribution,
where gain is expected. Of special importance are issues involving land-use change, since
such factors are believed to be behind widely reported declines in orchid abundance in
Europe, which contrasts with the increases expected in northern Europe due to climatic
shifts. The effect of land use change is also listed among the factors that strongly affect
the distributions of orchid species (see [123]), hence, further work should focus on how
changes in land use can affect the distribution of Ophrys insectifera in future decades.
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