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Abstract: Background/Introduction: Plasma protein binding (PPB) continues to be a key aspect
of antibiotic development and clinical use. PPB is essential to understand several properties of
drug candidates, including antimicrobial activity, drug-drug interaction, drug clearance, volume of
distribution, and therapeutic index. Focus areas of the review: In this review, we discuss the basics
of PPB, including the main drug binding proteins i.e., Albumin and α-1-acid glycoprotein (AAG).
Furthermore, we present the effects of PPB on the antimicrobial activity of antibiotics and the current
role of PPB in in vitro pharmacodynamic (PD) models of antibiotics. Moreover, the effect of PPB on
the PK/PD of antibiotics has been discussed in this review. A key aspect of this paper is a concise
evaluation of PPB between animal species (dog, rat, mouse, rabbit and monkey) and humans. Our
statistical analysis of the data available in the literature suggests a significant difference between
antibiotic binding in humans and that of dogs or mice, with the majority of measurements from the
pre-clinical species falling within five-fold of the human plasma value. Conversely, no significant
difference in binding was found between humans and rats, rabbits, or monkeys. This information may
be helpful for drug researchers to select the most relevant animal species in which the metabolism
of a compound can be studied for extrapolating the results to humans. Furthermore, state-of-the-
art methods for determining PPB such as equilibrium dialysis, ultracentrifugation, microdialysis,
gel filtration, chromatographic methods and fluorescence spectroscopy are highlighted with their
advantages and disadvantages.

Keywords: plasma protein binding; fraction unbound; pharmacokinetics; antibiotics; interspecies
differences; equilibrium dialysis; ultracentrifugation

1. Introduction

Plasma protein binding (PPB) is essential for predicting and understanding several
important properties of novel antibiotics, including volume of distribution, clearance,
therapeutic index and drug-drug interaction [1–3]. Plasma is composed of several proteins
that act as transporters of exogenous and endogenous molecules throughout the circulatory
system and, to a lesser extent, in the interstitial space of tissue. Among these proteins,
albumin and α-1-acid glycoprotein (AAG) are responsible for most of the small molecular
weight drug molecule binding, whereas globulins and lipoproteins are responsible to a
lesser extent [4,5]. Figure 1 shows the interaction of drug molecules with plasma protein
albumin. Together, they are believed to have a major impact on the pharmacokinetic profile
of exogenous compounds, but also play a role as diagnostic markers, highlighting their
potential for clinical applications [6]. Human serum albumin (HSA) is the most abundant
protein in human plasma and contributes to the maintenance of pH and osmotic pressure
in the bloodstream at concentrations of 500 to 700 µM [5]. HSA carries peptides, drugs,
fatty acids, bilirubin and other endogenous compounds [7]. The formation of non-covalent
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complexes of small molecular weight molecules with HSA may prevent susceptibility to
excretory pathways, including renal glomerular filtration and enzymatic reactions in the
liver and bloodstream [8]. AAG, a minor acute-phase component of plasma, is primarily
synthesized by hepatocytes and functions as a carrier protein mainly for basic and neutral
lipophilic endogenous compounds [9].
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The pharmacological effect of a certain drug is dependent on both its pharmacokinetic
(PK) and pharmacodynamic (PD) properties. The effects of PPB on the PK of antibiotics have
been studied extensively [10], but whether PPB also affects PD and antimicrobial activity (by
reducing the non-protein-bound fraction) continues to be debated [11]. This may be due to a
lack of standardized in vitro PD models to quantify the impact of PPB of antimicrobials [12].
These divergent results may be due to the use of different experimental media with different
protein amounts and types [13,14] or the heterogeneous methods (time-kill curves, MIC assays,
dynamic models) used to study the effects of PPB in vitro. A prerequisite for all models is the
precise measurement of the fraction of free antibiotics in order to correctly evaluate the impact
of PPB on the PD of an antibiotic.

Here we provide an overview of the effects of PPB on the antimicrobial activity of
antibiotics and the role of PPB in in vitro PD models of antibiotics. By comparing human
PPB data for a variety of drugs with PPB data from different animal species, we gain insight
into the potential of extrapolating PPB and PK/PD data from animals to humans.

2. Protein Binding: General Principles

Several proteins are involved in the protein binding of antibiotics including plasma
proteins, extracellular tissue proteins and/or intracellular tissue proteins. In vivo, drug
molecules are either bound to plasma or tissue proteins, or in an unbound/free state.
Moreover, PPB properties greatly vary between drugs [15,16]. Since bound drugs are
too large to penetrate most biological membranes, only unbound fractions can enter the
target tissue and exert the expected pharmacological effect. Hence, PPB significantly
influences the PD of drugs. Acidic drugs, including β-lactam antibiotics, fluoroquinolones
and nonsteroidal anti-inflammatory drugs (NSAIDs), primarily bind to albumin [7,17].
In contrast, alkaline drugs, such as verapamil, propranolol and lidocaine, bind to the
acute phase protein AAG. In addition, lipophilic molecules (i.e., steroid hormones) and
some acidic drugs (i.e., phenobarbital) also bind to AAG [18,19]. Other proteins such as
corticosteroid binding globulin are essential for binding some specific drugs including
glucocorticoids, but do not play an essential role in general drug-protein binding [20]. The
PPB properties of drugs are further affected by inflammation. Albumin concentrations
decrease during inflammation, whereas AAG levels increase [21]. Finally, protein binding
processes are influenced by several factors such as pH, temperature and concentration of
the drug, which must be considered when investigating PPB properties in vitro.
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3. Effect of Plasma Protein Binding on Antibiotics
3.1. Pharmacokinetics

Only the free/unbound fraction of small molecules diffuses into the extravascular
space where it exerts pharmacological activity and may cause side effects [22–24]. Therefore,
PPB may lead to lower concentrations of free antibiotics in the target tissue, which could
reduce antimicrobial activity. This effect is enhanced for certain antibiotics with more
pronounced PPB [23]. On the other hand, if poorly water-soluble drugs bind to serum
proteins, their tissue distribution may improve due to better solubilization. Similarly, PPB
may also enhance antimicrobial efficacy, with plasma proteins acting as drug reservoirs,
resulting in prolonged duration of drug concentrations above the bacterial minimum
inhibitory concentration (MIC) [23,25,26]. However, the concentrations of unbound drugs
may never reach therapeutic levels when their binding to plasma proteins is too high or
irreversible. Therefore, the binding properties of drugs must be determined prior to the
development process [27]. Some antibiotics exhibit variation in their PPB that may alter
certain PK parameters, but rarely impact clinical activity [20]. Changes in PPB due to
drug-drug interactions can rapidly affect unbound fractions of drugs and be a source of
adverse drug reactions [20]. In summary, although the literature usually describes the total
concentration of the drug in plasma, information on the free/unbound fraction is of critical
importance in evaluating the antimicrobial activity of a drug [2].

3.2. Pharmacodynamics

The effect of PPB on PD of antibiotics can be assessed in various settings. For example,
studies assessing the impact of PPB on the efficacy of an antibiotic against a particular
pathogen might reveal variations in the corresponding MIC [23]. Although both bacterial
growth and killing are dynamic processes, the MIC is a sometimes-inconsistent threshold
value that only partially reflects the activity of an antibiotic [28,29]. In contrast, growth
estimation and antibiotic-enhanced time–kill analysis provides a better estimate of antimi-
crobial activity than MIC [29]. Therefore, time–kill curves are recommended as the most
reliable experimental method to evaluate the effects of PPB on antimicrobial activity [24,30].
Methodologically, bacterial growth media are spiked with human serum or protein sup-
plements to account for PPB in these experiments. The actual percentage of human serum
must be less than 50%, as serum alone may inhibit bacterial growth [23,25,26], but the
maximum serum concentration that can be used should be assessed for the particular
bacteria [24,31–34]. Table 1 provides an overview of the studies that assessed the effect of
plasma protein binding on antimicrobial activity.
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Table 1. Examples for studies that assessed the effect of plasma protein binding on antimicrobial activity.

Antibiotic Class Antibiotic
Plasma Protein

Binding % (Drug
Concentration)

Protein Preparation Medium
Techniques for

Protein
Quantification

Susceptibility
Test/s Pathogens References

Cephalosporin

Cefepime
Ceftazidime
Cefotaxime
Ceftriaxone

19%
21%
38%

84–96%
(70–300 µg/mL)

HA (4 g/dL) SMHB NA Time–kill curves,
MIC, MBEC

E. aerogenes
K. pneumoniae

S. aureus
[35–39]

Ceftriaxone 84–96%
(70–300 µg/mL) 20% Human serum BHI NA Time–kill curves S. aureus

P. aeruginosa [38,40]

Ceftriaxone
Ertapenem

HA 76.8 ± 11.0%;
BSA, 20.2 ± 8.3%;
HSA 56.9 ± 16.6%,
HA 73.8 ± 11.6%;
BSA 12.4 ± 4.8%;

HSA 17.8 ± 11.5%

BSA and HSA
(40 g/L) MHB, THB + 5% CO2

in vitro
microdialysis

MIC, time–kill
curve

E. coli
S. pneumoniae [41]

Cefditoren 88% 90% HS, 4 g/dL HA MHB NA Time–kill curve S. pneumoniae [42,43]

Cefotaxime 10–40%
(0.5–32 µg/mL)

90% Pooled human
CSF CAMHB NA MIC E. coli [38,44]

Ceftriaxone,
Cefoperazone,
Moxalactam,
Ceftizoxime

92.2%
89.7%
63.8%
29.4%

HA (0, 2.5, or 5%
solution),

heat-inactivated HA
(0, 25, 50, or 95%)

(95% Human
Serum)

MHB Equilibrium
dialysis MIC, MBEC

S. aureus
E. coli

P. aeruginosa
K. pneumoniae

[26]

Penicillin Ampicillin,
Oxacillin

20%
60–94%

40 g/L human
albumin MHB NA Time–kill curve S. aureus [24,45]

Carbapenem Ertapenem 85–95%
(50–300 µg/mL)

50% pooled human
plasma TSB. CAMHB

Surface Plasmon
Resonance (SPR)

assay
MIC S. aureus [46]
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Table 1. Cont.

Antibiotic Class Antibiotic
Plasma Protein

Binding % (Drug
Concentration)

Protein Preparation Medium
Techniques for

Protein
Quantification

Susceptibility
Test/s Pathogens References

Fluoroquinolones

Ciprofloxacin 20–40% (2 µg/mL) 90% pooled
human CSF CAMHB NA MIC E. coli [17,44]

Moxifloxacin,
Trovafloxacin

38%
(0.2–5 µg/mL)

77%
(0.2–5 µg/mL)

HS (20%, 70%,
100%), HA

(4%, 8%, 12%, 16%)
MHB Ultrafiltration MIC S. aureus

P. aeruginosa [14]

Ciprofloxacin,
Moxifloxacin

20–40% (2 µg/mL)
26–30%

(1–5 µg/mL)

rat polyvinyl
sponge model

BHI,
RPMI 1640 (for cells) NA Viable cell count P. aeruginosa

S. pneumoniae [14,17,47]

Moxifloxacin
Ciprofloxacin
Trovafloxacin

20–40% (2 µg/mL)
26–30%

(1–5 µg/mL)
77%

(0.2–5 µg/mL)

HA 10%, 30%, 50% MHB NA MIC
S. pneumoniae

S. aureus
E. coli

[13,14,17]

Diaminopyrimidine Iclaprim 93% 50% HP MHB NA MIC S. aureus [48]

Cyclic lipopeptide Daptomycin 91.7% 90% HS
4 g/dL HA MHB NA Time–kill curves S. pneumoniae

E. faecium [34,49]

Daptomycin 91.7% 50% HS MHB NA MIC, time–kill
curve

S. aureus
E. faecium [34,50]

Daptomycin 91.7% 4 g/dL HA CAMHB NA Time–kill curves MRSA [34,51]

Glycopeptide Vancomycin 36.9% 4 g/dL HA Cation-adjusted MHB NA Time–kill curves MRSA [51,52]

NA: Not Available; BHI: Brain Heart Infusion; MRSA: Methicillin-resistant Staphylococcus aureus; HA: Human albumin; BSA: Bovine Serum Albumin; HSA: Human Serum Albumin;
MHB: Mueller–Hinton Broth; THB: Todd Hewitt broth; MIC: Minimal Inhibitory Concentration; TSB: Tryptone Soy Broth; CAMHB: Cation-Adjusted Mueller–Hinton Broth; HPLC:
High-performance liquid chromatography; MBEC: Minimal Biofilm Eradication Concentration; RPMI: Roswell Park Memorial Institute (Growth Media); HP: Haptoglo.
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4. Methodologies for Determining PPB

Equilibrium dialysis, ultracentrifugation, microdialysis and ultrafiltration are the most
common methods for separating bound and unbound fractions of a drug [53,54]. Table 2
provides a description of these methods, including their advantages and disadvantages.

Equilibrium dialysis is considered the reference method [53–56], which consists of
two dialysis cells separated by a semipermeable dialysis membrane [57,58] (Figure 2).
Each compartment is filled with either buffer or plasma. Subsequently, unbound drugs
disseminate from the plasma samples into the protein-free buffer until equilibrium is
attained. The free/unbound fraction of the drug is then directly calculated from the buffer
solution [55].
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Another common method for quantifying the free concentration of a drug in plasma
is ultrafiltration [57,58]. An ultrafiltration (UF) system consists of two chambers that are
divided by a semi-permeable filter, which has different molecular weight capacities for
protein filtration. UF is based on the principle of separation of small volumes of protein-free
phase, by exerting a centrifugal force to a solution with both proteins and the substance
of interest that is present in the upper compartment of a special UF device [57,58]. After
separation by centrifugation, the free drug concentration is determined from the protein-
free ultrafiltrate located in the lower compartment of the UF device.

In vivo microdialysis allows estimation of unbound drug fractions in the interstitial
fluid of various tissues, and quantification of PPB in blood [59]. Microdialysis is based
on the principle of diffusion of molecules along their concentration gradient between
two compartments [60]. To determine PPB, a microdialysis probe with a semi-permeable
membrane at its tip is inserted into a blood vessel [58] (Figure 3). Afterwards, a dialysate
buffer is flushed through the probe and the unbound fraction of a drug in plasma diffuses
through the semi-permeable membrane. Larger molecules, including proteins such as
albumin, cannot pass through the membrane. The maximum size of proteins that can
diffuse depends on the molecular weight limit of the semipermeable membrane [61]. The
collected microdialysate samples can then be analyzed [58,62].
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Table 2. Comparison of methods for plasma protein binding (PPB).

Technique/Method Principle Advantages Drawbacks/Issues References

Ultrafiltration
Plasma water and unbound drug is forced
through a semipermeable filter, retaining
protein–drug complexes

• Technically simple to perform
• Requires a small amount of sample
• Available commercially via kits
• Quick
• Does not require the use of

unphysiological buffer
• Inexpensive
• Suitable for unstable drugs
• Most commonly used

• Ultrafiltrate volumes should be ≤40% of
the initial plasma sample because of
changes in protein concentration

• Leakage of membrane may happen
• Membrane adsorption of drugs
• Partly uncontrolled temperature

[57,58,63–66]

Equilibrium dialysis

Separated by a semipermeable membrane,
unbound drug diffuses from plasma into
protein-free buffer, until equilibrium is
reached

• Gold standard method
• Simple
• Reliable results
• Temperature controlled and

thermodynamically sound

• Requires the use of unphysiological
buffer

• Non-specific binding to dialysis device
and membrane

• Volume shifts and pH changes
• Membrane adsorption
• Requires time to reach equilibrium
• Drug stability concerns

[56,58,60,65–69]

Microdialysis

Dialysate buffer is driven through an
embedded probe, having a microdialysis
membrane. Unbound drug disperses from
blood into dialysate

• In vivo protein binding determination
• Volume shifts or dilution effects are

lacking
• May also be used to find free tissue

levels

• Probe implantation and fixation
• Altering drug concentration over a

period of time
• Membrane adsorption
• Needs equilibration in vivo
• For measurement of PPB of total

antibiotic concentration in vivo is
needed

[41,56,58,61,62]
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Table 2. Cont.

Technique/Method Principle Advantages Drawbacks/Issues References

Ultracentrifugation
Dissociation of protein and
low-molecular-weight components occurs
only by gravitation (centrifugation)

• Simple
• Lack of membrane adsorption, dilution,

volume shifts, drug–protein leakage
• Does not require use of unphysiological

values
• Buffer

• Long time span for sample preparation
(overnight)

• Concentration gradient from bottom to
top can result in false high binding

• Less suitable for high molecular weight
substances

• Sedimentation, back diffusion
• Expensive equipment

[55,56,65,67,70]

Gel filtration The free and not the total drug concentration
is the independent variable.

• Robust and high resolution technique
• Desalination

• Costly
• Time-consuming [71]

Chromatographic methods

Chromatographic methods include a range of
techniques, based on separation of substances
(including the bound and unbound fraction
of an antibiotic) on the basis of different
physical or chemical properties such as
molecular size, charge, affinity etc.

• Relatively low sample consumption
• Accurate methods
• Absence of membrane adsorption,

dilution, volume shifts, drug–protein
leakage

• Expensive and elaborate
• Poorly sensitive for drugs with low

affinity binding
[72]

Fluorescence spectroscopy

Higher energy photons are used to excite a
sample, which then emit lower energy
photons. The change in fluorescence at
changing ligand/protein concentrations is
used to calculate the concentration of
bound drug.

• Enables direct determination of bound
drug concentrations

• Poorly sensitive for drugs with
low-affinity binding

• Elaborate technique
[56]
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Ultracentrifugation is commonly used to estimate the free fraction of lipophilic com-
pounds, by dividing human plasma into three layers by ultracentrifugation, which are then
analyzed individually [73] (Figure 4).
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In gel filtration (originally called the “zonal” method), after passing through a dextran
gel column, the drug-protein solution is divided into two sections, one containing the free
drug and the other containing the protein and protein-bound drug [74]. However, this
technique may underestimate PPB because the bound drug separates from the drug-protein
complex during passage through the column [74].

Several chromatographic methods are available for the separation of different proteins,
including high-performance liquid chromatography (HPLC) and gel permeation chro-
matography (GPC). Chromatographic separation through an HSA-immobilized column
allows relative ranking by percent binding. Moreover, equilibrium gel filtration (EGF) with
liquid chromatography-tandem mass spectrometry detection has been suggested to be
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used earlier in the drug discovery process to measure the free concentrations of highly
bound drugs without the need for radiolabeled compounds [75,76]. EGF provides an extra
option for compounds that are unable to achieve equilibrium, that bind with high affinity
to saturable proteins in diluted plasma, or that are unstable in plasma [75,76]. EGF consists
of equilibrating a dextran column with a small molecule of interest and then introducing
to the column a buffer solution containing a macromolecule capable of binding to the
small molecule. Fluorescence-based spectroscopy is another method for determining the
binding of small molecules to human proteins. This technique relies on small fluores-
cent molecules with unique spectroscopic and binding properties. Fluorescence intensity
differences between the bound and unbound protein can then be detected assess PPB [77].

5. Assessment of Protein Binding of Antibiotics in the Serum and Plasma across Species

For preclinical findings to be translated into clinical applications, the differences in
physiological processes between animals and humans are important and must first be
understood [41,78,79]. The quality and accuracy of preclinical estimates depend on the
similarities in physiology, drug metabolism, distribution, and absorption between animals
and humans [80,81]. Though there have been great advancements in pharmacokinetics in
recent years, it still remains a challenge to predict all of the pharmacokinetic parameters of
a drug in humans from animal studies. Nonetheless, it is possible to make reasonably good
predictions under some well-defined conditions. For instance, the intrinsic absorption of
a certain drug through the wall of the gastrointestinal tract might be comparable across
species, as the nature of the biomembrane of epithelial cells is similar in mammals [82].
Moreover, the absorption process is an interaction between the drug and the biomembrane
that also plays its role. However, there are other factors, including pH-dependent solubility
and first-pass metabolism that affect absorption and can lead to differences in absorption
in different animal species. One example of relatively successful prediction is the renal
excretion of drugs in humans using the glomerular filtration rate ratio between humans and
animals. Similarly, if the drug is primarily excreted by the liver and the rate of excretion is
limited by blood flow in the liver, the clearance of the drug in humans can be predicted
by blood flow in the liver. Nevertheless, biochemical parameters, such as protein binding
and drug metabolism, are less predictable, and vary considerably among species [80–82].
Rodents are often selected for such studies because they have a short lifespan and therefore
a large number of animals can be bred quickly, which in turn allows multiple studies to be
conducted. [83]. Body weight and height are usually considered important co-variables for
the determination of key PK parameters. [84]. Therefore, small animals can be expected to
excrete drugs faster than humans when compared on a weight-normalized basis. Other
physiological parameters such as body temperature and serum albumin concentration are
comparable in different animals and independent of animal size [85].

Table 3 provides an interspecies comparison of protein binding in serum and plasma in
humans and in various animals. We performed a Wilcoxon matched-pairs signed rank test
between human and animal PPB data and found that there was a significant difference be-
tween antibiotic binding in humans and dogs or mice. In contrast, no significant difference
in binding was found between humans and rats, rabbits, or monkeys (Table 3). However,
in monkeys, only four pairs were included in the analysis, thus limiting the generalizability
of our findings. We further calculated the ratio of antibiotic PPB in humans and various
animals (Table 4). The greatest difference was observed in dogs (ratio human vs. dog:
1.96). In general, there is a reasonable positive correlation between the PPBs detected
for drug molecules in human plasma and those of rats, rabbits, and monkeys, although
slightly stronger binding to human plasma proteins was observed compared with those
of preclinical species (Figure 5). Therefore, for screening purposes, data collected in rats
may provide a suitable initial surrogate for human protein binding. We believe that PPB
should always be measured in species of interest for further drug development, such as for
studying pharmacokinetics in preclinical settings, for understanding pharmacodynamics
in disease models, or for making dose-human predictions.
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Table 3. Interspecies comparison of protein binding in serum and plasma. Wilcoxon matched-pairs signed rank test was performed between antibiotics percentage
unbound in human and other species. p-Value < 0.05 is considered as significant.

For Serum (% Bound)

Antibiotic Concentration (µg/mL) Human Dog Rat Mouse Rabbit Monkey References

Cefotetan # 91.0 39 30 [86]
Cefpirmide # 15 98.4 40 87.4 92.9 [87]
Ceftriaxone # 100 92.7 20 79.5 93.7 [39]
Cefpirome 30 5.8 6.8 15.8 11.6 10.3 [88]
Ceftazidime 30 11.9 9.5 17.6 11.9 17.6 [88]
Cefzopran 20 8.1 10.4 6.4 7.1 9.8 10.9 [89]
Cefclidin 20 8.5 8.5 10.4 9.8 7.3 8.1 [89]
Carumonam 20 28 11 36 20 21 24 [90]
Ristocetin 4–120 73.1 56.1 53.5 [91]
Oritavancin 82 82.4 85.3 [92]
Oritavancin # 87.5 80 [93]
Vancomycin 4–100 34.6 23.4 17.3 [91]
Mannosylaglycone 6–170 72.8 87.9 88.3 [91]
Ardacinaglycone 6–180 91.5 96.7 92.1 [91]
Ardacin A 6–190 97 97.2 94.6 [91]
Ardacin B 6–210 98.7 98.5 97.4 [91]
Ardacin C 6–210 99.6 99.5 99.1 [91]
Pseudoaglycone 6–190 99.4 99.1 99 [91]
Aztreonam 20 62 20 85 46 45 53 [90]
Wilcoxon matched-pairs signed rank test
Number of pairs with
human values 9 19 15 8 4

p-value *
(0.0195)

NS
(0.8059)

*
(0.0353)

NS
(0.3750)

NS
(0.5000)

# Plasma was used instead of serum. * p-value < 0.05.
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Table 4. Human/animal ratio of protein binding of different antibiotics in serum and plasma. Means difference analysis was performed between antibiotics
percentage bound ratio in human and other species. Mean, standard deviation and range of human/animal ratio is provided.

For Serum (% Binding Ratio)

Antibiotic Human/Dog Human/Rat Human/Mouse Human/Rabbit Human/Monkey

Cefotetan # 2.3 3.0
Cefpiramide # 2.5 1.2 1.1
Ceftriaxone # 4.6 1.2 1.0
Cefpirome 0.8 0.4 0.5 0.6
Ceftazidime 1.2 0.7 1.0 0.7
Cefzopran 0.8 1.3 1.1 0.8 0.7
Cefclidin 1.0 0.8 0.9 1.2 1.0
Carumonam 2.5 0.8 1.4 1.3 1.2
Ristocetin 1.3 1.4
Oritavancin 1.0 1.0
Oritavancin # 1.1
Vancomycin 1.5 2.0
Mannosylaglycone 0.8 0.8
Ardacinaglycone 0.9 1.0
Ardacin A 1.0 1.0
Ardacin B 1.0 1.0
Ardacin C 1.0 1.0
Pseudoaglycone 1.0 1.0
Aztreonam 3.1 0.7 1.3 1.3 1.2
Means difference analysis
Number of pairs with human values 9 19 15 8 4
Mean 1.96 1.09 1.09 1 1.02
Standard deviation 1.30 0.53 0.33 0.27 0.24
Range 0.8–4.6 0.4–3.0 0.5–2.0 0.6–1.3 0.7–1.2

# Plasma was used instead of serum.
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6. Conclusions

PPB has received little attention in the discovery and development of antimicrobial
agents in recent decades. Equilibrium dialysis and microdialysis are common methods
used for protein binding studies. Designing studies to investigate PPB from a PK or PD
perspective and generating adequate PPB data in the preclinical setting must be carefully
planned, especially when a new drug project enters the investigational phase.

The present review provides information on whether animal models are adequate pre-
dictors of human PPB by analyzing data from the literature. Rats, rabbits, and monkeys
exhibited similar PPB characteristics to humans, whereas significant differences were found in
dogs and mice compared with humans. Depending on the drug and drug delivery platform,
species-specific physiological differences may result in incorrect extrapolation of drug PK,
safety and efficacy. On the other hand, interspecies differences in protein binding as a result of
PK variations could indicate potential variations in drug effects when used in human patients.
Therefore, we advocate the standardization of experimental settings to study PPB and its
effect on PK/PD of novel antibiotics. In addition, we recognize the relevance of interspecies
differences in PPB but appreciate the potential of extrapolating from preclinical pharmacology
and safety studies in different species to estimate outcomes in humans.
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