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Eukaryotic genomes contain many nongenic elements that function in gene regulation, chromosome organization, recom-

bination, repair, or replication, and mutation of those elements can affect genome function and cause disease. Although

numerous epigenomic studies provide high coverage of gene regulatory regions, those data are not usually exposed in tra-

ditional genome annotation and can be difficult to access and interpret without field-specific expertise. The National Center

for Biotechnology Information (NCBI) therefore provides RefSeq Functional Elements (RefSeqFEs), which represent exper-

imentally validated human and mouse nongenic elements derived from the literature. The curated data set is comprised of

richly annotated sequence records, descriptive records in the NCBI Gene database, reference genome feature annotation,

and activity-based interactions between nongenic regions, target genes, and each other. The data set provides succinct func-

tional details and transparent experimental evidence, leverages data frommultiple experimental sources, is readily accessible

and adaptable, and uses a flexible data model. The data have multiple uses for basic functional discovery, bioinformatics

studies, genetic variant interpretation; as known positive controls for epigenomic data evaluation; and as reference stan-

dards for functional interactions. Comparisons to other gene regulatory data sets show that the RefSeqFE data set includes

a wider range of feature types representing more areas of biology, but it is comparatively smaller and subject to data selec-

tion biases. RefSeqFEs thus provide an alternative and complementary resource for experimentally assayed functional ele-

ments, with future data set growth expected.

[Supplemental material is available for this article.]

Eukaryotic genomes contain many types of functional elements,
including conventional protein-coding and noncoding genes;
gene regulatory elements; architectural elements; and elements as-
sociated with DNA replication, recombination, and repair. Among
those, conventional genes have received the most attention for
representation in major genome annotation resources, for exam-
ple, RefSeq (O’Leary et al. 2016), GENCODE (Frankish et al.
2021), and others. Gene products, which include alternatively
spliced transcripts and proteins, are abundantly represented in ge-
nome annotation databases with a heavy focus on protein-coding
regions, which occupy <1.5% of the mammalian genome.
Moreover, genes are major focal points for the curation of dis-
ease-associated genetic variation for which there is an emphasis
on anchoring variation and linking human disease to specific
genes (Wang et al. 2010; Vihinen et al. 2016; Xin et al. 2016;
Rivera-Munoz et al. 2018; Amberger et al. 2019; Landrum et al.
2020). Aside from the obvious need to identify gene products ow-
ing to their importance in biology, such a gene-centric focus is not
surprising given that genes and gene-associated variation are gen-
erally more amenable for discovery and experimentation than
nongenic functional elements, and they tend to offer more tangi-
ble avenues for therapeutic treatment of human disease.

The genome includesmany nongenic elements that function
in diverse biological processes, including gene regulation, chro-
mosome organization, recombination, or replication. Genome
function can be adversely affected by mutation of those elements
and result in disease (Lupiáñez et al. 2016; Chatterjee and Ahituv
2017; Perenthaler et al. 2019; Nesta et al. 2021), supported by ge-
nome-wide association studies (GWASs) showing that >90% of
disease-associated variation occurs outside of coding regions
(Ward and Kellis 2012; Gusev et al. 2014; Albert and Kruglyak
2015; Visscher et al. 2017; Gallagher and Chen-Plotkin 2018;
Boix et al. 2021). Although much progress has been made in char-
acterizing nongenic functional elements in specialist research
fields, that information is not always adequately disseminated to
other research fields, most notably to bioclinical research that re-
lies on genome annotation for personal genomics or disease-asso-
ciated variant interpretation (Perenthaler et al. 2019). Gene
regulatory elements are the most abundantly studied among the
nongenic element types, and their epigenetic signatures are indi-
cated in several large-scale resources, including the Encyclopedia
of DNA Elements (The ENCODE Project Consortium 2012), NIH
Roadmap Epigenomics (Roadmap Epigenomics Consortium
et al. 2015), International Human Epigenome Consortium (Stun-
nenberg et al. 2016), Ensembl Regulation (Zerbino et al. 2016),
and EpiMap (Boix et al. 2021) projects, among others (Garda
et al. 2021). However, those data are not usually exposed in
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traditional genome annotation, can be difficult to interpret, and
have not been reconciled with region-specific experimental data
in the literature. Thus, complexities in epigenomic data and its
consumption disadvantages for nonfield-specific experts indicate
a need for more highly visible and easily accessible annotation of
the noncoding genome. Furthermore, because genome function
can only be truly elucidated by taking the entire genome into ac-
count, the current gene-centric focus of traditional genome anno-
tation and variant curation points to a general need for better
definitions of nongenic functional regions and an ethos to
move beyond the genes.

To address this, NCBI created RefSeq Functional Elements
(RefSeqFEs), a literature-derived data set that provides reference
genome annotation of experimentally validated and well-charac-
terized nongenic regions in human and mouse. The data set also
links functional regions to target genes and to each other when
there is activity-based support for functional interactions. Here,
we describe the creation of this freely available and readily acces-
sible data set, its multiple components, access options, and uses.
We also compare RefSeqFEs to other gene regulatory resources,
and we report current data set statistics with feature and genomic
distribution analyses, which provide insights into current data set
content and offer suggestions for future needs.

Results

Data set scope and design

To distinguish the nongenic data set from RefSeq conventional
genes, which include protein-coding genes, noncoding genes,
pseudogenes, and gene segments, we defined RefSeqFEs (https://
www.ncbi.nlm.nih.gov/refseq/functionalelements) (Supplemen-
tal Table S1) as any genomic element with experimentally validat-
ed function and that is not otherwise considered a conventional
gene. For element types we included gene regulatory elements
(e.g., enhancers, protein-binding sites), known structural elements
(e.g., boundary elements, chromatin conformation-associated
regions), and other elements of functional importance (e.g., well-
defined recombination hotspots or replication origins). Although
any experimentally validated nongenic element would remain in
scope, including elements from high-throughput experimental
studies, we prioritized genomic regions that are implicated in hu-
man disease or are otherwise of significant interest to the research
community. Because we did not aim to replicate the numerous
gene regulatory resources that already exist based on well-pro-
cessed epigenomic or other multi-omics data (Garda et al. 2021),
and because reprocessing of available omics-derived data was not
feasible for us at this time, we decided that RefSeqFEs, at least in
the earlier stages of the project, would be focused on smaller-scale
experimental data from the literature. Thus, it would be an alterna-
tive but complementary literature-derived resource with an em-
phasis on functional activity. That approach provides flexibility
for representing a wide range of feature types in different areas of
biology, fills a void to help reconcile other data resources with tra-
ditional experimental data in the literature, and allows for robust
functional metadata provision such as direct links to publications.
Consequently, the current data set, which is focused on human
andmouse, excludes elements from large-scale epigenomic studies
and elements that exist solely based on disease-associated varia-
tion. It also excludes elements that have indefinite extents or are
very large (tens of kilobases or greater lengths), such as telomeres,
centromeres, topologically associating domains (TADs), and their

broad boundaries, where those are less tractable for genome
annotation.

For producing the data, we used the existing platforms and
workflows already in place for the RefSeq transcript project to take
full advantage ofNCBI services, such asNCBI search engines, graph-
ical displays and tools, full indexing and versioning of sequence re-
cords, and the ability to update records and genome annotation,
including on new genome assemblies. Because all RefSeqs are incor-
porated in NCBI’s Nucleotide database (Benson et al. 2018),
RefSeqFE sequences and feature annotations adhere to data stan-
dards defined by the International Nucleotide Sequence Database
Collaboration (INSDC) (Karsch-Mizrachi et al. 2018) with robust
use of those standards and ontologies, including recently intro-
duced controlled vocabularies for “regulatory_class” and “recombi-
nation_class” features (Supplemental Table S2A,B), and feature
qualifiers for metadata displays. Terms from the Sequence
Ontology (SO) (Eilbeck et al. 2005) were additionally used to pro-
vide further specificity for features lacking a specific INSDC feature
or class, and SO terms were also used to define genome-anchored
features in GFF3- and bigBed-formatted download files.

The data set was structured to include the following compo-
nents: (1) sequence records with curated underlying feature anno-
tation, represented by genomic RefSeq accessions in NCBI’s
Nucleotide database; (2) locus-level curated records to integrate
metadata, graphical displays, and sequences for the underlying re-
gion, represented as biological regions in NCBI’s Gene database
(Brown et al. 2015); (3) NCBI genome annotation on the human
andmouse reference genome assemblies, represented as annotated
features with concise and formatted metadata for download and
display; and (4) interaction data to link biological regions to target
genes and each other, represented as pairwise interactions.

An overview of the RefSeqFE workflow is shown in Figure 1.
Briefly, curation was based on experimental data from the litera-
ture, with bulk extraction from external databases for large-scale
validated data sets, and with supplemental data from researchers
if necessary. RefSeq andGene database records were curated simul-
taneously, and those records were used as input for genome anno-
tation by NCBI’s Eukaryotic Genome Annotation Pipeline (Pruitt
et al. 2014; McGarvey et al. 2015; Supplemental Table S1, annota-
tion pipeline links). Resulting FTP download files and graphical
displays were produced for individual RefSeq sequences, Gene da-
tabase records, and genome-annotated features. Those data were
further integrated and linked to NCBI-annotated genes and each
other to produce additional FTP download files and displays, in-
cluding a track hub. The following sections expand upon this
workflow and provide more details on the components that
make up the data set, followed by analyses of the data set and its
contents.

Sequence records

Genomic RefSeq sequence records with “NG_” accession prefixes
were created to represent the range of one or more experimentally
validated nongenic features.We grouped features that were closely
located and functionally related in single RefSeqs, such asmultiple
adjacent or overlapping regulatory elements. The range of those
grouped features was used to define a parental biological region
(Supplemental Table S2B), as represented in Gene database records
described below. Todistinguish these nongenic RefSeqs fromother
genomic “NG_” accessions represented by RefSeq, all RefSeqFE ac-
cessions are associated with NCBI BioProject (https://www.ncbi
.nlm.nih.gov/bioproject/) accession PRJNA343958 (Barrett et al.
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2012) and include the keyword RefSeqFE, as indicated in GenBank
flat files (Fig. 2A).

Both manual curation and automated or semiautomated
methods were used to create the RefSeqs. Functional elements
were selected for curation initially based on manually scanning
the literature for review articles on element types in scope (e.g.,
gene regulatory elements, recombination regions, or replication
origins), then identifying specific well-characterized elements de-
scribed therein and following links to citations. Additional in-
scope elementswere identified from targeted searches for elements
associated with genes of high biomedical interest (e.g., ACE2,
BRCA1, CFTR, HBB and other frequently accessed genes in the
NCBI Gene database), from searches for publications that use
bulk screening techniques, from specific experimental validation
term searches in PubMed or PubMed Central, and through out-
reach efforts and user requests. The current data set has some inev-
itable biases for experimentally validated elements that are easily
findable (e.g., have been discussed in reviews or are associated
with a biomedically important gene), for readily apparent
evidence that is well-described and presented in main text of
open access publications with a PubMed ID, and for data that
are straightforward to curate directly from the publication.
Additional details of the data selection and curation process are
provided in Supplemental Material. All data were derived from ev-
idence in the literature, either based on individual locus studies or
on experimentally validated subsets from larger-scale studies.
Examples of high-throughput evidence types used include but

are not limited to clustered regularly interspaced short palindrom-
ic repeats interference (CRISPRi) assays (e.g., Fulco et al. 2019;
Gasperini et al. 2019); massively parallel reporter assays (MPRAs)
(e.g., Kheradpour et al. 2013; Ernst et al. 2016); and reporter or
transgenic assays from the VISTA project (Visel et al. 2007),
FANTOM5 project (Andersson et al. 2014), and other bulk-
screened data sets (e.g., Wang et al. 2006; Roh et al. 2007;
Petrykowska et al. 2008; Narlikar et al. 2010). Those represent a
sampling of the available evidence in scope for curation, for which
new data sets and many more focused region data are continually
being identified and will be added to the RefSeqFE data set over
time.

We used a wide range of functional features to represent var-
ious element types, as indicated in the feature table on our web
page (https://www.ncbi.nlm.nih.gov/refseq/functionalelements/
#Feature_table) and in Supplemental Table S2A,B. A parental bio-
logical region feature was annotated on all RefSeqs in addition to
one or more underlying functional features. To standardize the
curation process, we used the feature definitions provided by
INSDC or SO and established policies for the annotation of each
feature type (Supplemental Table S2B, columns E and F). In the
vast majority of cases, the annotated feature range was defined
by the exact fragment tested in an experimental assay, with a mi-
nority of features being based on ranges asserted by investigators or
by sequence analysis tools (for policies per feature type, see
Supplemental Table S2B, column F). Overlapping feature annota-
tion was allowed, for which each feature with a distinct range or
type was treated as a unique entity and annotated separately,
thus enabling the end user to see each feature as it was assayed
in the linked publication(s). Feature type annotation was strictly
based on the activity or characteristics primarily shown by the ex-
perimental evidence; for example, a protein-binding assay and
separate evidence that the bound protein functions in a regulatory
activity would be represented by separate but overlapping protein-
binding and regulatory features, such as the humanbeta-globin lo-
cus control region hypersensitive site 5 (HBB-LCR 5′HS5) CTCF
binding site and overlapping enhancer-blocking element features
shown in Figure 2B. Adhering to such guidelines enabled straight-
forward and consistent annotation decisions among curators.
Experimental evidence was displayed in INSDC “/experiment”
qualifiers on flat files (Fig. 2B, blue tabs), including an evidence
type derived from the Evidence & Conclusion Ontology (ECO)
(Giglio et al. 2019), followed by relevant publication evidence in-
dicated by PubMed IDs. Other feature qualifiers included “/note”
and “/function” for additional descriptive and functional informa-
tion (e.g., cell type activity details), “/db_xref” to link to the asso-
ciated Gene database record, and feature type–specific INSDC
qualifiers. An example of GenBank flat file feature annotation
with qualifier and ontology formatting is shown in Figure 2B.

Gene database records

Whereas the RefSeq records provide stand-alone annotated se-
quences with feature-specific metadata stored in various INSDC
qualifiers, the Gene database serves as the central location for stor-
ing various types of metadata at the locus level while also integrat-
ing sequence, genome annotation, and graphical display data.
Types of locus-level metadata include nomenclature, the locus
type designation, a summary based on a synopsis of information
from the literature, related publications, orthology information,
and other standard Gene database fields, as described previously
for conventional genes (Brown et al. 2015).

Published data 
from PubMed

Data from public 
databases, e.g. 

VISTA enhancers

Supplemental 
data from 

collaborators

RefSeq cura�on of known 
func�onal elements

Func�onal Element 
record in NCBI’s Gene 

database

Func�onal Element 
sequence in NCBI’s 

Nucleo�de database

Link to target genes 
and each other

Export to genome 
browsers, track hub, FTP

Export to FTP Use in NCBI’s genome 
annota�on pipeline

Figure 1. Workflow for RefSeqFE data set production. Full cylinders rep-
resent databases, the half-cylinder represents the indicated data source,
and rectangles represent actions. Relevant links to additional information
and data access are provided in Supplemental Table S1.
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A

B

Figure 2. Example of a biological region RefSeqFE flat file. Segments of RefSeq accession NG_052895.1 representing the hemoglobin subunit beta locus
control region (HBB-LCR) are shown. (A) Top section of the flat file with a link to BioProject accession PRJNA343958 and the “RefSeqFE” keyword outlined in
red. (B) Segment of the feature annotation section. Features are displayed for the 5′HS5 DNase I hypersensitive site (Tuan et al. 1985; Dhar et al. 1990; Wai
et al. 2003), a transcriptional cis-regulatory region (Long et al. 1998), a CTCF binding site (Farrell et al. 2002; Bulger et al. 2003; Chan et al. 2008), and an
enhancer-blocking element (Farrell et al. 2002). Features include “/experiment” qualifiers with experimental evidence from the literature as indicated by
ECO strings and IDs and links to publications (blue tabs), “/note” qualifiers with descriptive information (gray tabs), “/function” qualifiers describing the
function of each feature where applicable (green tabs), and a “/bound_moiety” qualifier for the protein-binding site (red tab). All features include a
“/db_xref” qualifier (black tabs) linking to the biological region record in the Gene database (GeneID:109580095), and an INSDC class qualifier when rel-
evant (orange tabs).
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To support the RefSeqFE project we created Gene database re-
cords identified by a new “biological region” Gene type
(Supplemental Fig. S1, red tab). We also added a new “Feature
type(s)” field to indicate the types of underlying features annotat-
ed on the associated RefSeq (Supplemental Fig. S1, green tab).
Because the provision of official nomenclature by the HUGO
Gene Nomenclature Committee (HGNC) (Bruford et al. 2020) or
Mouse Genome Informatics (MGI) (Zhu et al. 2015) is generally
out of scope for nongenic regions, official nomenclature was
included for only a few biological regions that had preexisting of-
ficial nomenclature. Otherwise, all names, symbols, and descrip-
tions were based on curator derivation from the literature, with
default symbols containing a “LOC” prefix appended with the in-
teger GeneID assigned to the locus.

Genome annotation

All RefSeqFE features (Supplemental Table S3B,C) were annotated
by NCBI’s Eukaryotic Genome Annotation Pipeline together
with NCBI’s conventional gene-related features, initially in inter-
im human and mouse annotation releases (ARs) starting in 2017
up to the current ARs on the human GRCh38.p13 and mouse
GRCm39 reference genome assemblies. Following genome anno-
tation, genomic coordinates for annotated biological regions
were propagated to relevant Gene records, both in text and graph-
ical formats. Graphical displays of our genome annotation (Fig. 3)
are described in “Accessing RefSeq Functional Elements data.”
Genome-anchored feature annotation was provided in both
GFF3 (Moore et al. 2010) and bigBed (Kent et al. 2010) formats

A

B

Regulatory interactions

Recombination partners

Biological regions

Features

Genome Data Viewer graphical view

RefSeqFE Hub graphical view

Figure 3. Graphical displays of RefSeqFE data. (A) NCBI Genome Data Viewer display of genome-annotated features at the human opsin locus control
region (OPSIN-LCR, GeneID:107604627, also shown in Supplemental Fig. S1). Underlying features are aggregated and displayed in the “Biological regions,
aggregate” track (outlined in red). Depending on user track set options or the entry point to GDV, the trackmay need to be turned on via the configuration
interface, as detailed on our web page (Supplemental Table S1, graphical displays link). Features are color coded according to class or type. Coordinates are
based on positions on the genome sequence. An example of a mouseover-activated pop-up box is shown (overlaid gray box). These boxes contain de-
scriptive and functional information (orange tab) (Nathans et al. 1989; Wang et al. 1992), including experimental evidence and links to publications,
as well as a “Links & Tools” area (blue tab) linking to the related Gene database record and to sequences and BLAST analyses. (B) RefSeqFE Hub view of
parental biological regions, underlying features, and gene regulatory and recombination partner interactions in the UCSC Genome Browser.
Regulatory interactions are shown between the hemoglobin subunit alpha locus control region (HBA-LCR, GeneID:106144573) and the downstream
HBZ, HBA2, HBA2, and HBQ1 genes (blue curved lines), whereas the recombination partners track visualizes recombination (green curved line) between
two hemoglobin subunit alpha recombination regions (LOC106804612 and LOC106804613). Parental biological regions are denoted by black rectangles
in the biological regions track, and the features track uses color coding as described for A. Further item-specific metadata, display options, and links to
related data and tools can be found within item- and track-specific details pages. Depending on the density of interactions in a region, appropriate
zoom levels or configuration modes may need to be adjusted, or specific hub settings such as multiregion view can be used for viewing interactions be-
tween distally located regions.
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for FTP download (Supplemental Table S1, genome annotation
data paths), with further details in “Accessing RefSeq Functional
Elements data.”

Interaction data

An important aspect of our nongenic annotations is how these re-
gions interplay with each other and with target genes. Therefore,
during data curation we internally tracked regulatory element-to-
target gene interactions and recombination partner pairings
when there was sufficient experimental support in the literature.
For regulatory interactions, our linkages were based on either
direct experimental evidence for modulation of target gene pro-
moter activity by methods such as reporter gene assays or trans-
genesis, or by genetic perturbation assays showing regulatory
effects on target gene expression. We excluded linkages based
on reporter assays that used heterologous promoters and those
based on gene proximity predictions, which may only be accurate
less than half of the time (Fulco et al. 2019). Thus, only a fifth of
the biological regions are linked to target loci, but these linkages
have been experimentally assayed and can be used as reference
standards for activity-validated interactions. We also tracked reg-
ulatory interactions for biological regions that regulate each oth-
er, such as distal enhancer activation of a curated promoter region
(e.g., the CFTR −44 kb enhancer and the CFTR promoter,
LOC111674478 and LOC111674463, respectively), or when
regulatory elements from distinct biological regions have known
cooperative activity (e.g., the CFTR −44 kb and +36.6 kb enhanc-
ers, LOC111674478 and LOC111674479, respectively). Our
recombination partner pairings were based on either experimen-
tal evidence for nonallelic homologous recombination (e.g.,
LOC106804612 and LOC106804613 representing hemoglobin
subunit alpha recombination regions) (Fig. 3B) or on direct assays
showing translocations or other reproducible recombination
events on both sides of a breakpoint (e.g., the LOC107980440
and LOC107963955 major breakpoint regions involved in BCR-
ABL translocations). Both the gene regulatory and recombination
interactions were tracked at the parental biological region level,
where they are relevant to at least one but not necessarily all un-
derlying features within the biological region.

Following reference genome annotation, we determined ge-
nomic coordinates for relevant biological regions and target genes
and then assembled the pairwise interactions in bigInteract format
(Haeussler et al. 2019), also including a custom column listing sup-
porting publications. These data are available for download on our
FTP site (https://ftp.ncbi.nlm.nih.gov/refseq/FunctionalElements/
trackhub/data/) (Supplemental Table S1) and can also be visualized
in regulatory interaction and recombination tracks in our track
hub (Fig. 3B) described below.

Accessing RefSeq Functional Elements data

We provided a variety of data access options for different levels of
our data, including for individual RefSeq and Gene database re-
cords, and for further processed genome annotation and interac-
tion data. We used findable, accessible, interoperable, reusable
(FAIR) data principles (Wilkinson et al. 2016) to incorporate com-
patibility acrossmultiple NCBI and non-NCBI tools and platforms.
Our access options are summarized in Supplemental Table S1,
where various links are provided for data downloads, sample que-
ries, and relevant help documentation. Options are available to ac-
cess RefSeqFEs via NCBI’s Gene database; Nucleotide database;
BLAST searching; the BioProject database; NCBI graphical displays;

the RefSeqFE Hub (see below); and the NCBI RefSeq, Gene, and
Genomes FTP sites. In addition, we periodically announce news
about the data set in the NCBI Insights blog (https://ncbiinsights
.ncbi.nlm.nih.gov/tag/refseq-functional-elements/) and other
NCBI social media.

To visualize the nongenic biological regions and features,
multiple graphical displays were provided for stand-alone RefSeqs
and their genome-annotated contexts (Fig. 3). Each stand-alone
RefSeqFE record can be viewed in graphical format (Supplemental
Fig. S2) via a “Graphics” link at the top of each flat file (Rangwala
et al. 2021). Genome-annotated features are color coded accord-
ing to feature class and displayed in a “Biological regions, aggre-
gate” track for the indicated NCBI AR (Fig. 3A). The track can be
viewed in NCBI graphical view embeds (e.g., in Gene records)
and in NCBI’s Genome Data Viewer (GDV) (www.ncbi.nlm.nih
.gov/genome/gdv/) (Rangwala et al. 2021), enabling the features
to be viewed in the context of other data tracks such as variation
data, user-uploaded data, remotely connected files, or track hubs.

To expand the range of genome browsers RefSeqFE annota-
tions can be viewed in, and to graphically display the interaction
data, we also created a RefSeqFE track hub (Fig. 3B; Supplemental
Material). It is in UCSC track hub format (Raney et al. 2014) and
serves as a gateway for data visualization, extraction, download,
and interoperability. It is hosted from the RefSeq FTP site (con-
nection URL: https://ftp.ncbi.nlm.nih.gov/refseq/FunctionalEle
ments/trackhub/hub.txt), registered in the Track Hub Registry
(Aken et al. 2017), and is a Public Hub in the UCSC Genome
Browser. It provides parental biological region and underlying fea-
ture tracks with custom metadata in bigBed format and separate
tracks for regulatory and recombination interactions in bigInteract
format. Additional details on the RefSeqFE Hub and NCBI graphi-
cal displays are described in SupplementalMaterial and on ourweb
page.

Although some of our access options are applicable for data
querying and use at the biological region level, the ability to query
and extract genome-annotated features is likely to be of higher in-
terest.We therefore provided features for the entire set of NCBI-an-
notated features (including conventional genes) in GFF3 format
with RefSeqFE features indicated in “source” column 2, and for
stand-alone RefSeqFE features in bigBed format, as described for
the RefSeqFEHub. Links to all our downloadable data can be found
in Supplemental Table S1 and on our web page, where we also pro-
vide feature and metadata extraction examples (https://www.ncbi
.nlm.nih.gov/refseq/functionalelements/#Feat_extraction).

Current data set statistics and content

To qualitatively and quantitatively assess the RefSeqFE data set, we
performedmultiple analyses to assess the depth of curationused to
produce the data set, to determine the distribution of features and
their genomic locations relative to conventional genes, to assess
the relevance of the data set to clinically relevant genes, and to
compare the data set to other available gene regulatory data sets.

To determine the depth of curation used to produce the data
set, we quantified the number of publications used for feature ev-
idence and assessed the number of features derived from each pub-
lication (Supplemental Table S2C). In total, we used 2219 distinct
publications as evidence for human AR 109.20201120 and mouse
AR 109 features combined. A broad set of publications were used as
evidence for just a few features (e.g., 85% of publicationswere used
for 1–4 features alone), whereas a small set of publications for
large-scale studies contributed more than 50 features each and
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were used as evidence for almost half of
the features in the data set, indicating
that the data set contains a good balance
between large-scale and focused study
evidence. We additionally assessed the
biological regions with respect to single
or multiple feature presence and accord-
ing to study type derivation (Supplemen-
tal Table S2D). Approximately 21%–23%
of biological regions contained multiple
features, whereas 70%–73% of biological
regions contained a single feature de-
rived from a large-scale study. In sum-
mary, these analyses indicate that the
data set is deeply curated from diverse
publications with a mix of large-scale
and focused studies, and they attest to
the high volume of laborious literature
review used to create the data set.

To assess the wide range of func-
tional features represented in the data
set (Supplemental Table S2A,B), we
determined genome coverage and fea-
ture distributions following human AR
109.20201120 (GRCh38.p13 assembly)
and mouse AR 109 (GRCm39 assembly).
In total, and not including parental bio-
logical region features, we annotated
9862 features representing 4450 distinct
biological regions across 6.1 Mb in hu-
man and 2271 features representing 889
distinct biological regions across 2.2 Mb
in mouse (Fig. 4E). The number of anno-
tations per feature type and other feature
statistics are shown in Supplemental Ta-
ble S2A. To further summarize feature
distributions, we grouped features into
four main types: By INSDC regulatory
class, recombination class (represented
for human only), protein-binding sites,
and miscellaneous others, as charted in
Figure 4A,C and indicated in Supplemen-
tal Table S2A. In bothhuman andmouse,
63%–65% of features were regulatory
class. Enhancers were by far the most
common among regulatory class fea-
tures, which may reflect a preference for performing enhancer as-
says in the literature, likely because their epigenetic signatures
make them easier to identify. Protein-binding sites were the sec-
ond-most common feature type in the data set, accounting for
14% of human and 30% of mouse features, indicating that pro-
tein-binding assays are also popular in the literature, likely because
of the molecular-level functional insights they provide. We noted
an underrepresentation of silencer features (only 1%–5%of regula-
tory class features) in the data set, butwe expect to increase silencer
representation in the near future based on evidence from recent
bulk screens (e.g., Huang et al. 2019; Doni Jayavelu et al. 2020;
Pang and Snyder 2020).

We determined feature length distributions and other length-
related statistics for all features combined, per feature class, and for
individual feature types (Fig. 4B,D; Supplemental Figs. S3, S4;
Supplemental Table S2A). The average length for all features was

781 bp for human and 1125 bp for mouse, with recombination
class features being generally the longest at 2590 bp, and pro-
tein-binding sites being generally the shortest at 29–35 bp (Fig.
4B,D). Feature length variability was also apparent between indi-
vidual feature types within each feature class (Supplemental Figs.
S3, S4; Supplemental Table S2A); for example, locus control re-
gions were longer than other regulatory class features.

To assess the genomic distribution of RefSeqFE features rela-
tive to conventional genes and gene subregions, RefSeqFE features
were first overlapped with annotated gene ranges, which include
introns. We found that more than half (53%–54%) of the features
were gene range-overlapping in bothhuman andmouse (Fig. 5A,B;
Supplemental Table S3A). We further assessed the gene-overlap-
ping features relative to gene subparts (exons, introns, CDS, and
UTR) and the intergenic features relative to gene 5′-proximal
(2 kb upstream of transcript starts) or gene 5′-distal regions

Other types
14%

Protein
binding site

14%

Recombina�on 
class
9%

Regulatory 
class
63%

Other types
5%

Protein 
binding site

30%

Regulatory 
class
65%

109

6901472

6200

926

1357

1379

Annota�on Release/Assembly 109.20201120/GRCh38.p13 109/GRCm39

Feature count 9862 2271

Locus count 4450 889

Genome coverage 6.1 Mb 2.2 Mb

A

C

E

Fe
at

ur
e l

en
gt

h

B

D

Human Mouse

Fe
at

ur
e l

en
gt

h
Figure 4. RefSeqFE feature distributions. (A) Categorized feature counts from human AR
109.20201120 on the GRCh38.p13 genome assembly with grouping by feature class. The pale blue la-
bels indicate the feature counts per category; categories and a full breakdown of feature types and counts
are available in Supplemental Table S2A. (B) Box plot showing feature length distributions for all human
features (light gray) and individual feature classes, with coloring as in A. Some outliers (maximum length
141,940) are not displayed because the y-axis was scaled to better visualize the distributions of shorter
features. Length distributions per feature type are provided in Supplemental Figure S3 with customized
scaling for each class: n=9862, 1357, 1379, 926, and 6200 sample points. Additional statistics including
minimums, maximums, averages, and standard deviations from the mean are provided in Supplemental
Table S2A. (C) Categorized feature counts from mouse AR 109 on the GRCm39 genome assembly as
shown for human in A. (D) Box plot showing feature length distributions for all mouse features (light
gray) and individual feature classes, as described for human in B: n=2271, 109, 690, and 1472 sample
points. Additional details are provided in Supplemental Figure S4 and Supplemental Table S2A. (E)
Summary table with overall counts of annotated features, biological region loci, and genome coverage
for the indicated AR.
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(Fig. 5A,B; Supplemental Table S3). For gene overlaps, 37% of all
features overlapped introns, and 16% overlapped exons in both
human and mouse. The majority of exon-overlapping features
were UTR-overlapping (12% and 15% of the human and mouse
data sets, respectively), whereas 4% of human and 1% of mouse
features were CDS-overlapping, indicating that protein-coding re-
gions may have noncoding biological functions too, a point that
may impact genetic variant interpretation as described previously
(Hirsch and Birnbaum 2015; Ahituv 2016). Of the intergenic fea-
tures, approximately two-thirds were gene-distal, corresponding
to 33%of all humanand 27%of allmouse features. For all genomic
locations, feature overlap completeness was generally high (>75%

of features showed >80% overlap with rel-
evant genomic subregions overall) (Fig.
5C,D; Supplemental Table S3A), especially
with larger genomic segments (whole
gene ranges, introns, intergenic regions)
or for shorter feature classes (Supplemen-
tal Fig. S5), but shorter genomic segments
(exons, CDS, UTR) tended to show more
partial RefSeqFE feature overlaps.

Among the genes that overlapped
RefSeqFE features, 64%–69% were
protein-coding, 28%–34% were long
noncoding RNA (lncRNA) genes, and
2%–4%were other biotypes (Fig. 5E; Sup-
plemental Table S3B,C). In total
RefSeqFE features overlapped 2455 and
565 distinct human andmouse genes, re-
spectively. We also determined that 45%
of the human overlapping genes were in
at least one clinically relevant gene data
set (Supplemental Table S3B, column 6,
square bracket indications), where 833
genes were represented in the RefSeq-
Gene (RSG) data set (Pruitt et al. 2014),
197 in the Locus Reference Genomic
(LRG) data set (Dalgleish et al. 2010),
and 835 were genes used for pathogenic
(or likely pathogenic) variant submis-
sions to the ClinVar database (Landrum
et al. 2020). Cumulatively, RefSeqFE fea-
tures overlapped 13% of clinically rele-
vant genes from those gene data sets
combined, and further gene overlaps
are expected upon future data set growth.
This indicates that alternative biological
roles may be relevant when interpreting
genetic variation in genes of clinical
interest. We additionally quantified clin-
ically relevant genes represented as target
genes in RefSeqFE human regulatory in-
teractions (Supplemental Table S4). Of
667 distinct target genes, 388 (58%)
were represented in at least one of the
RSG, LRG, and ClinVar gene lists. This
likely reflects a high focus on clinically
relevant genes in the literature and/or
our prioritizationof clinical genes for reg-
ulatory annotation provision.

To further assess RefSeqFEs, we
compared the data set to other gene reg-

ulatory resources. Notwithstanding the availability of numerous
gene regulatory resources (Garda et al. 2021), we selected just a
sampling of those for comparison, namely, ENCODE candidate
cis-regulatory elements (cCREs) (The ENCODE Project Consortium
et al. 2020), Ensembl Regulation (Zerbino et al. 2016), FANTOM5
enhancers (Andersson et al. 2014), VISTA enhancers (Visel et al.
2007), and dbSUPER super-enhancers (Khan and Zhang 2016).
Compared to literature-derived RefSeqFEs, the other resources
had different data derivation (Fig. 6A; Supplemental Table S5A), in-
cluding from epigenomic signatures (ENCODE cCREs, Ensembl,
and dbSUPER), CAGE data (FANTOM5 enhancers), and transgenic
assays (VISTA enhancers). Those resources represented only one or
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Figure 5. Locations of RefSeqFE features relative to genes. (A) Locations of features from human AR
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overlaps in Supplemental Table S3A. (B) Locations of features from mouse AR 109 as shown for human
in A. (C) Violin plot showing completeness of human RefSeqFE feature overlaps (overlap length/RefSeqFE
feature length) at eachgene-relative location (blue- and gray-tone coloring as in A) and cumulative results
for all locations (blue-gray distribution at left): n=25,029, 5468, 2084, 4373, 743, 1735, 5235, 1906,
and 3485 sample points. Supporting statistics (Fisher P-values, Jaccard statistics, degree of overlap min-
imums, maximums, averages, and standard deviations) are provided in Supplemental Table S3A. (D)
Violin plot showing completeness of mouse feature overlaps at each gene-relative location as described
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tistics are provided in Supplemental Table S3A. (E) Biotype statistics for genes that are overlapped by
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Figure 6. Comparison of RefSeqFEs to other gene regulatory data sets. (A) Overview showing data derivation, feature type representation, and current
sizes of each data set on the human GRCh38.p13 and mouse GRCm39 reference assemblies. Additional information for each data set is provided in
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Bar graph showingmouse AR 109 RefSeqFE feature intersections with the indicated data sets, as described for human in B. Supporting details are provided
in Supplemental Tables S3C and S5C,E. (E) Box plot showing feature length distributions for the indicatedmouse data sets, as described for human in C: n=
2271, 343,747, 364,670, 49,802, and 1291 sample points. Supporting details are provided in Supplemental Table S5A and Supplemental Figure S6.
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a few feature types (Fig. 6A; Supplemental Table S5A) compared to
the more than 40 feature types covering more areas of biology in
the RefSeqFE resource (Supplemental Table S2A,B). RefSeqFE fea-
ture lengths were generally on par with those from the other
data sets (Fig. 6C,E; Supplemental Fig. S6A,C,D; Supplemental Ta-
ble S5A) except for dbSUPER features, which were longer overall
(Supplemental Fig. S6A). However, data set size and genome cover-
age comparisons (Fig. 6A; Supplemental Fig. S6B; Supplemental
Table S5A) show that the current RefSeqFE data set is considerably
smaller than the comparative data sets except for VISTA enhanc-
ers, thereby indicating the major limitation of the data set, as ex-
pected based on its literature-derived nature.

To determine feature-level similarity, we intersected RefSeqFE
features with features in the other data sets, either individually
with each data set or with features from the comparative data
sets combined (Fig. 6B,D; Supplemental Table S5B–F). When all
RefSeqFE features were compared to all features in the other re-
sources, ∼80% of RefSeqFE features overlapped a feature(s) in at
least one of the other data sets, with higher overlap percentages be-
ing apparent with the larger resources. As expected based on the
considerably smaller RefSeqFE data set size, with the exception
of themore similarly sizedVISTA data set, these overlaps represent-
ed very low percentages of features in the comparative data sets
(Supplemental Table S5B,C, columns E–G), indicating that much
more content can be gleaned from those large-scale data sets. Nev-
ertheless, a fifth of RefSeqFE features did not show any overlap
with the comparative data sets (Fig. 6B,D; Supplemental Table
S5B,C,F), and a further 8%–25% of pairwise overlaps were poor
(≤10% of the RefSeqFE feature was overlapped) (Supplemental Ta-
ble S5D,E, column L), indicating that the data set contains novel
content not represented in the other resources. The nonoverlap-
ping features were distributed across all feature classes (30% regu-
latory, 19% recombination, 22% protein binding, and 29% other
types in human and mouse combined) (Supplemental Table
S5F). A higher proportion of RefSeqFE regulatory or enhancer fea-
tures overlapped features in the other data sets (Fig. 6B,D).Wenot-
ed better overlap with ENCODE cCRE enhancers than Ensembl
enhancers, likely because ENCODE data were used to identify
screening candidates in most of the large-scale studies used as ev-
idence for RefSeqFE enhancers.ManyRefSeqFE enhancers correlat-
ed with promoter flanking regions, CTCF binding sites, and
promoters that are abundantly represented in the Ensembl data
set (pairwise feature overlaps in Supplemental Table S5D,E), and
indeed nonequivalent feature type overlaps existed with all the
comparative data sets, likely because of differences in cell type ac-
tivity, the versatility of gene regulatory elements, or data set deri-
vation and completeness differences. The enhancer-only
comparisons also indicated high similarities with VISTA positive
enhancers (Fig. 6B,D; Jaccard statistics in Supplemental Table
S5B,C), as expected given that VISTA positive enhancers are incor-
porated in the RefSeqFE data set and are amajor source of RefSeqFE
enhancers in mouse.

In summary, comparisons to other gene regulatory resources
indicate that RefSeqFEs represent an alternative but smaller re-
source based on more traditional experimental evidence from
the literature. The data set offers a greater variety of nuanced fea-
ture types covering additional areas of biology, the features gener-
ally overlap well with features in comparative resources, and the
data set includes content not found in the other resources.
Importantly, the currently smaller andmore selective RefSeqFE re-
source should be considered complementary to other gene regula-
tory resources.

Discussion

We described here a new literature-derived data set that provides
annotation of experimentally assayed nongenic functional ele-
ments in human and mouse, that uses a robust data model with
rich but succinct metadata, and with accessibility options for a
wide range of researchers. The data set includes nongenic elements
with diverse biological functions, ranging from gene regulatory el-
ements, replication origins, genomic instability, and recombina-
tion regions, to gene regulatory and recombination partner
interactions. To our knowledge, this combination of functional el-
ement annotation is not available in other comparative nongenic
data resources. The data set is unique from a biocuration perspec-
tive, because we maximized use of INSDC feature types and quali-
fiers to format descriptive and functional information from
hundreds of publications, with all formatting being accessible
and extractable from both stand-alone RefSeqs and genome anno-
tation. Our provision of RefSeq accessions for stand-alone use en-
ables sequence findability through various NCBI avenues,
including from the Nucleotide and Gene databases and by BLAST
analysis. These are more consumable for focused genomic region
studies without needing genome-scale extraction, for example,
for sequence determination for subsequent experimental assays,
or for usingwith small-scale sequence analysis tools in the absence
of high-performance computation.

Our integrative approach with respect to literature-derived
data combines diverse experimental data types with a unified
metadata structure, and it eliminates user need for exhaustive
searching of the literature or the need to remap data types between
different genome assembly versions. Integrating different evi-
dence types can also result in stronger evidence and better inform
on function than individual evidence types alone. Although the
literature-derived data set is not inclusive of all available data
sources and additional support can be gained from evidence in
larger complementary resources, we have already observed
strengthened functional support in some biological regions based
on multiple evidence types. Examples include LOC110121455,
LOC112997545, and LOC111501765, for which we were able to
determine the element type based on reporter assay evidence
and link to target genes based on CRISPRi evidence. Further such
evidence type combinations are likely to yield more functional in-
sights as the data set grows.

The data set has multiple uses, ranging from basic functional
discovery, to genetic variant interpretation, to use as experimen-
tally validated reference standards in multiple bioinformatic and
epigenomic studies. Furthermore, the activity-supported interac-
tions can be used as reference standards for gene regulatory or re-
combination interactions (also see discussion on their intended
use). Our multiple data accessibility options allow data usage
through visual inspection on genome browsers (e.g., for region-
specific comparisons to other data sets of interest) or through com-
putational methods based on feature, sequence, or metadata
extraction, where we have incorporated compatibility with multi-
ple tools and platforms. For basic research, the detailed experimen-
tal metadata can inform a researcher on experimental approaches
for further in-depth characterization of features of interest. Both
the feature annotations and target gene linking may be particular-
ly useful for assigning function to clinically relevant genetic vari-
ants, and the experimentally validated features can be used as
positive controls for assessing calls in various bioinformatic and
epigenomic studies. We have already noted some applications of
the data set in diverse studies, including use of the RefSeqs as a
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source of locus control regions in a bioinformatics study (Sharma
et al. 2019), use of the feature annotation for determining a
DNase I hypersensitive site (HS) location and sequence in a fo-
cused research study (Uchida et al. 2019), and use of themouse en-
hancer and promoter features to validate ChIP-seq calls in an
epigenomic study (Roller et al. 2021). RefSeqFEs have recently be-
come one of the gene regulatory data sources for the GeneHancer
resource (Fishilevich et al. 2017). The biological region records
have also been used in other resources such as the GeneCards da-
tabase (Stelzer et al. 2016), and some variation resources link to the
biological regions when there is variant overlap, including the
Medical Genomics Japan Variant Database (MGeND) (Kamada
et al. 2019) and ClinVar Miner (Henrie et al. 2018). NCBI’s
dbSNP database (Sherry et al. 2001) includes placements relative
to RefSeqFE “NG_” accessions for some SNP entries (e.g.,
rs11036238), whereas NCBI’s ClinVar resource includes biological
regions in the “Gene(s)” tab for some variant records (e.g.,
Variation ID:96742). Some biological regions are also reported
loci for ClinVar submissions (e.g., LOC111365204). Reciprocally,
a link to overlapping ClinVar variants can be found in the
“Variation” section for most human biological regions in the
Gene database (Supplemental Table S1, biological regions with
ClinVar variants link).

The RefSeqFE interactionsmay appear akin to interactions ob-
served in 3D genomics studies, such as 3D-FISH or chromosome
conformation capture-based assays (3C, Hi-C, and similar deriva-
tives) (Kempfer and Pombo 2020). However, RefSeqFE interactions
primarily provide basic element-to-target information as opposed
to informing on higher-order genome structure, and they are not
intended to be comprehensive. They are derived either from
genetic manipulation evidence for element-to-target activity or
from genomic rearrangement characterization, as opposed to
3D genomics studies that assess physical contacts that are usually
mapped at high density. Nevertheless, high-density 3D data can
be difficult to interpret and visualize, usually requiring different
visualization displays, data formats, and specialized analysis
tools; thus, some users requiring basic element-to-target informa-
tion may find the relatively simple RefSeqFE interactions easier to
use, with the main limitation being the low numbers of interac-
tions in the current data set, notwithstanding future expected
growth. As is the case for the RefSeqFE feature data, the interac-
tions provide complementary data based on an alternative data
model.

Although the RefSeqFE data set has accessibility, visibility,
and other advantages, it should be noted that this is a growing
data set where many regulatory elements from the literature still
need to be curated, ormany functional elements still need to be ex-
perimentally validated. This results in obvious disadvantages with
respect to genome coverage; consequently, the current data set is
less useful for researchers seeking comprehensive genome-wide
data, for whichwe encourage the use of larger-scale complementa-
ry data sets. The current RefSeqFE data set ismore useful for seeking
region-specific functional information (when present) or as an ex-
perimentally assayed subset for comparative evaluation of larger-
scale data. Other limitations include the data selection biases indi-
cated earlier, including selectivity for data that are easier to curate
or automate, and our focus on regions that have been assayed in
the literature. The literature itself may have limitations that affect
data representation, such as absent, incomplete, or inaccurate de-
tails in publishedmethods.We expect all the aforementioned lim-
itations to decrease over time as the data set grows. Other
limitations include caveats for some experimental evidence types

used in the data set (Catarino and Stark 2018; Perenthaler et al.
2019). For instance, in vitro experimental approaches may not al-
ways mimic in vivo conditions, including lack of an endogenous
chromatin environment, use of heterologous promoters and ab-
sence of adjacent accessory sequences in reporter gene assays,
lack of a chromatin context in direct protein-binding assays, or ec-
topic genomic integrations resulting in altered chromatin land-
scapes in transgenic assays. Nevertheless, our representation of
features based on those evidence types catalogs them on the ge-
nome, alerts researchers about their existence, and could poten-
tially prompt further in-depth characterization by other
approaches. We also note that the majority of RefSeqFE features
based on those evidence types were originally identified as screen-
ing candidates from epigenomic or other indicative data in sup-
porting publications or overlapping features based on alternative
evidence types may be present, which boosts confidence in
them.Althoughwe aim to convey asmuch functional information
about each nongenic element as possible, we recommend that us-
ers critically assess experimental evidence and its context.

Future plans for RefSeqFEs include data set growth and qual-
itative improvements based on research community needs. We
aim for significant growth over the next several years and are par-
ticularly interested in engaging with researchers who have data
suitable for inclusion in the RefSeqFE data set. Incorporation of im-
proved and evolving high-throughput functional assays will con-
tribute to data set growth, including multiplex assays given their
high-confidence nature, for example, epigenetic or 3D genomics
information combined with activity assays such as the ChIP-
STARR-seqmethod (Barakat et al. 2018).We plan to increase repre-
sentation of currently underrepresented feature types and to diver-
sify the sources of high-throughput evidence in the data set. We
will also explore ways to incorporate high-value subsets of large-
scale multi-omics data, for which we welcome research communi-
ty input. We will continue to review our access options and make
improvements where necessary, for example, backfilling and im-
proving cell/tissue-type activity data, which is currently only ac-
cessible as free text in feature qualifiers, by converting it to an
extractable format. We will provide additional details on our web
page and periodically announce any data set improvements in
the NCBI Insights blog. All community feedback is welcome either
directly by e-mail, by using the “Feedback” button on the RefSeqFE
web page or through the RefSeq user mail interface (https://www
.ncbi.nlm.nih.gov/projects/RefSeq/update.cgi).

As the data set continues to grow, we hope that our literature-
derived annotations will provide further insights into how genes
are regulated andhow the genome functions, with a goal to inform
onmechanisms of human disease. Now that we are in the exciting
era of genomics in the 2020s, our data set fulfills a timely need in
moving traditional genome annotation beyond the genes and in
disseminating nongenic functional annotation to mainstream re-
search in a more accessible format.

Methods

RefSeq Functional Elements data set creation

An overview of the data set and criteria used for data representa-
tion are described in the Results, on our web page (https://www
.ncbi.nlm.nih.gov/refseq/functionalelements/) and in Figure 1.
Procedures to provide sequence records, Gene database records, ge-
nome annotation, interaction data, and graphical displays are de-
scribed in relevant sections of the Results and on our web page.
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Further specific details on each are available in Supplemental
Material.

Data analyses

Data analyses were based on “RefSeqFE” source features extracted
from GFF3 files for human AR 109.20201120 and mouse AR 109
(FTP download paths in Supplemental Table S1). Full-length
gene, gene subpart (“exon,” “CDS”), and 2 kb 5′-proximal fea-
tures were also extracted from the same GFF3 files. Publication
metrics were based on extraction of supporting PubMed IDs
from bigBed feature files for the same ARs. Clinically relevant
gene list sources are provided in Supplemental Table S1 and in
Supplemental Material. Comparative data sets were obtained
and processed as described in Supplemental Material. Standard
UNIX command line methods were used together with the
BEDTools software package (Quinlan 2014) to extract and count
features; to determine genome coverage and feature length statis-
tics; to deduce intron, UTR, and intergenic feature subsets; to
determine publication-to-feature and biological region-to-feature
metrics; to convert to BED format; to perform feature intersec-
tions; and to obtain statistics for overlapping genes, clinically rel-
evant genes, comparative data sets, and regulatory target genes.
Further specific details on each are available in Supplemental
Material.
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