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When making decisions, humans are often distracted by irrelevant
information. Distraction has a different impact on perceptual,
cognitive, and value-guided choices, giving rise to well-described
behavioral phenomena such as the tilt illusion, conflict adaptation,
or economic decoy effects. However, a single, unified model that
can account for all these phenomena has yet to emerge. Here, we
offer one such account, based on adaptive gain control, and
additionally show that it successfully predicts a range of counter-
intuitive new behavioral phenomena on variants of a classic
cognitive paradigm, the Eriksen flanker task. We also report that
blood oxygen level-dependent signals in a dorsal network prom-
inently including the anterior cingulate cortex index a gain-
modulated decision variable predicted by the model. This work
unifies the study of distraction across perceptual, cognitive, and
economic domains.
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Decisions about sensory signals, cognitive propositions, or
economic prospects are often made in the context of com-

peting or distracting information. Consider the following everyday
situations: You are judging whether a painting hangs straight on
the wall, but the nearby pictures are hung askew; you are waiting
at a red stop signal, but the car in front decides to jump the light;
you are contemplating the purchase of a new watch, but it is
displayed next to a range of more elegant but unaffordable
models. In each of these situations, the best decisions will be made
by ignoring the distracting sensory signals (the competing picture
frames, vehicles, or watches) and focusing exclusively on the
choice-relevant information. This normative contention can be
formalized in a variety of ways, for example via the notion that
rational choices should be independent of irrelevant alternatives
(1, 2) or that sensory signals should be weighted lawfully by their
reliability and relevance to the choice at hand (3–6).
Nevertheless, empirical observations suggest that human deci-

sions are unduly influenced by distracting information. Consider a
generic problem in which a target stimulus Xi and distracters Xj

occur at fixed spatial locations i and j. In this general formulation,
decision values X may be perceptual features (such as the tilt of a
grating) or economic attributes (such as the quality of a consumer
product) that are to be evaluated or categorized. Humans show
systematic biases that reflect the influence of the distracters on
decisions about the target. For example, vision scientists have long
studied the “tilt illusion,” in which the reported orientation of Xi

(e.g., a central grating) is repulsed away from the mean tilt of Xj

(surrounding gratings with similar but nonidentical tilt; Fig. 1A)
(7). In cognitive psychology, the influence of distracter items is
usually studied with a view to understanding the attentional or
control mechanisms that allow information to be selected in the
face of conflict. For example, in the classic Eriksen flanker task,
observers classify a target stimulus (e.g., a central arrow) that is
flanked by distracters (e.g., arrows pointing in compatible or in-
compatible directions) (8, 9). It is ubiquitously observed that in-
compatible flankers incur a cost, and compatible flankers confer a
benefit, relative to a neutral condition, as measured in response
times (RTs) and accuracy (Fig. 1B). Finally, behavioral and neural

economists have charted the irrational influence that a decoy al-
ternative of value Z has on choices between two choice-relevant
prospects X and Y , where X > Y (10–13). A common finding is
that rational choices (i.e., for X > Y) initially decline as Z increases
in value but then increase sharply as Z comes to approximately
match the other two items in value (Fig. 1C); other stereotypical
“decoy” effects are observed when alternatives X are character-
ized by more than one attribute (discussed below).
In the fields of psychology, economics, and neuroscience, diverse

theoretical proposals have been offered to explain the cost that
distracters incur during decision making. These include models that
describe how control systems detect and resolve conflict among in-
puts (14, 15), accounts that emphasize inhibitory interactions among
competing sensory neurons or favor a normalization of stimulus
values by a local average or range (10, 16–18), and Bayesian accounts
that model spatial uncertainty among targets and distracters (19–21)
or that assume a nonuniform prior on the compatibility of decision
information (21). These accounts disagree about the computational
mechanisms involved, the neural processing stages at which the cost
of distraction arises, and the brain structures that are recruited to
protect decisions against irrelevant information. For example, di-
visive normalization mechanisms may occur in sensory neurons in
visual cortex (16), or among value representations in the orbito-
frontal cortex (22), whereas the control systems that detect and re-
solve conflict have been attributed to medial and lateral prefrontal
structures (14). As such, the field currently lacks a single, unified
theory that can account for the effect of distraction on human de-
cisions, or an integrated neural account of its implementation across
perceptual, cognitive, and economic domains.
The goal of the current paper is to offer such an account. We

begin with a simple computational model that is motivated by past
work and shows that contextual signals determine the gain of pro-
cessing of consistent (or “expected”) features during decision-making
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tasks (23). Our model, which is described here at the level of
neural population codes, proposes that contextual signals sharpen
the tuning curves of neurons with a compatible preference for
decision-relevant features, and is motivated by a large literature
emphasizing the need for adaptive gain control in the service of
efficient coding (24, 25). Using computational simulations, we first
show that the model can recreate qualitatively two classic phe-
nomena in very different domains: perceptual choice (the tilt il-
lusion) and economic choice (decoy effects). Next, we turn our
attention to a task that has been a mainstay of cognitive studies of
distraction: the Eriksen flanker task. We built variants of the task
in which the statistics of the flankers and the difference between
target and the decision bound can vary across conditions. Our

simulations show that the model predicts a range of striking,
counterintuitive behavioral findings, including “reverse” compati-
bility effects (where fully visible, compatible flankers actually
hinder, rather than help, behavioral performance). Over four be-
havioral experiments involving human participants, we validate
these predictions, using visual stimuli defined by both tilt and color.
Finally, we use functional brain imaging to show that the modula-
tory influence on decision signals predicted by the model correlates
with blood oxygen level-dependent (BOLD) signals in the dor-
sal anterior cingulate cortex (dACC) and interconnected struc-
tures, where neural signals have variously been implicated in the
context-sensitive encoding of action values (26), and the expec-
ted value of cognitive control (27). We show how our framework,
which is not wholly inconsistent with either account, can bring
together diverse views concerning the function of this controver-
sial brain region (28).

Results
Our adaptive gain model is based on a framework that was
previously developed to understand how humans performing
spatial and temporal averaging tasks adapt to the context pro-
vided by proximal decision information (23, 29). Inputs arrive at
a population of n decision neurons each characterized by a
Gaussian tuning curve centered on its preferred feature value θk.
Each neuron k responds to the target stimulus Xi with rate
Rk = f ðXijθk, σkÞ, where f ðX jθ, σÞ denotes the probability density
function of the normal distribution with mean θ and variance σ2.
The estimated output of the neural population is then linearly

decoded into a subjective percept or value estimate cXi by weighting
the population activity R by the corresponding feature values θ:

cXi =
Xn
k=1

Rk · θk. [1]

When the gain is uniformly spread across the feature space (i.e.,
the tuning widths σk for all neurons are equal) this approach
faithfully decodes each input to its original feature value. How-
ever, our model proposes that the context provided by the dis-
tracters modulates the sharpening of neuronal tuning (30), with a
tuning width envelope that matches the inverse distribution of

contextual features Xj with mean Xj =
P6
j= 1

Xj=d and standard de-

viation (SD) sXj, where d is the number of distractors:

σk = σmax − f
�
θkjXj, sXj + «

�
· n. [2]

In other words, neurons with a preferred orientation that
matches Xj have the sharpest tuning curves, and these tuning
curves are even sharper if the flanker variance (sXj) is low (see
Fig. 5A). In Eq. 2, σmax denotes the maximum tuning width in the
population, « is a constant parameter added to sXj to ensure that
the tuning widths are not zero, and n is a scaling parameter
equivalent to the number of decision neurons.
We first show how the model explains both tilt illusion in

perceptual choice tasks and decoy effects in economic choice
tasks. In Fig. 1A, we plot the tilt bias over different values of Xj ∈
{−45,−44. . .45} predicted by the model as a difference of sub-
jective and objective estimates of the target ðcXi −XiÞ for differ-
ent sXj ∈ f3, 7,11, 15g. The model predicts that subjective
estimates are repulsed away from the mean flanker value, as
described in numerous previous studies (7, 31, 32), and addi-
tionally that the strongest repulsion effect occurs when the
flankers are homogenous (i.e., they are drawn from a distribution
with low dispersion). This repulsion of the subjectively decoded
values from their objective counterparts occurs when the tar-
get feature is close to, but is not identical to, the mean of the
distracters (i.e., the location of sharpest tuning), because the
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Fig. 1. The effect of distraction across perceptual, cognitive, and economic
domains. (A, i) Participants were asked to discriminate the tilt (relative to
horizontal) of a central Gabor surrounded by tilted distracters. (A, ii) Par-
ticipants were biased to report the target as more clockwise when the
flankers were counterclockwise, and vice versa (the “tilt illusion”). Panels i
and ii republished with permission of Royal Society, from ref. 32; permission
conveyed through Copyright Clearance Center, Inc. (A, iii) Simulation of the
adaptive gain model replicates the qualitative tilt illusion pattern in ref. 32
and replicates the current human data both qualitatively and quantitatively
(SI Appendix, Fig. S7). It further predicts that the magnitude of the bias is
modulated by flanker variance; colored lines reflect flanker variabilities from
low (red) to high (blue). (B, i) In the Eriksen flanker task, participants re-
spond with a key press to a central letter while ignoring the flankers. (B, ii)
RTs are the fastest on CO trials, then the SI trials, and slowest on RI trials.
Panel ii republished with permission of MIT Press - Journals, from ref. 40;
permission conveyed through Copyright Clearance Center, Inc. See Methods
for details of how CO, RI, and SI trials were defined. (B, iii) The adaptive gain
model predicts the same pattern of reaction time across the three condi-
tions. (C, i) Participants chose the most preferred of three food items. (C, ii)
Increasing the value of the least-preferred item reduces the choice efficiency
(i.e., probability of choosing the highest-valued target) as the normalized
distractor value increases, shown by logistic slope from fitting logistic choice
functions on humans choice. Panel ii adapted with permission from ref. 10.
(C, iii) Using the adaptive gain model, we simulated the normalized sub-
jective difference between two options X and Y (blue and red line) as a
function of a third decoy Z (x axis). The subjective difference is first reduced
and the increased in a qualitatively similar fashion.
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variable tuning profile induces a skew in the population activity
over features θk (see SI Appendix, Fig. S1 for a more detailed
explanation).
To model economic decoy effects, we envisage a choice be-

tween two prospects of value X and Y (where X = 20 and Y = 10
in arbitrary units, such as dollars) that is made in the context of
distracters with a value Z. We plot the difference in their corre-
sponding subjective estimates X̂ − Ŷ as a function of Z, observing
a pattern with a striking qualitative resemblance to that reported
previously (10) (Fig. 1C). Again, the model’s ability to predict this
counterintuitive pattern comes from the repulsive effect induced
by differential tuning across feature space. The model predicts that
as the value of the decoy Z increases, repulsion is first strongest
toward Y (leading to a reduced preference for the objectively best
option X) but then, as the decoy approaches the two items in the
choice set, repulsion is maximal for X, reversing this effect. In
further simulations, we systematically varied both the distance
between X and Y, and Z, and we were able to capture the pattern
of multialternative choice data described in a different study
involving abstract shapes associated with different economic
values (11) (SI Appendix, Fig. S2).
These simulations consider the influence of distractors on op-

tions that vary on a single decision-relevant dimension (e.g., tilt).
However, decisions are often made about multiattribute stimuli,
such as when a foraging animal evaluates fruit based on its color
and size, or a consumer compares products with differing price
and quality. A rich literature has shown that preferences for two
otherwise equally preferred options can reverse in the presence of
a third decoy stimulus, even when the decoy is less attractive or
unavailable. For example, the choice between a powerful but more
expensive laptop computer Y and a less powerful but more eco-
nomical model X can be systematically biased toward X by the
presence of a third option Z that is either yet more powerful and
costly (compromise effect) (33), that is similar in power and price
to Y (similarity effect) (13), or that is less powerful but more ex-
pensive than X (attraction effect) (34).
To test whether our model can also account for these choice

biases, we computed subjective estimated values from the adaptive
gain model independently for two attributes P and Q (with the
gain field dictated by the decoy, Z) and summed them to provide a
composite value estimate for the two alternatives: X̂ = X̂P + X̂Q;
Ŷ = Ŷ P + ŶQ. We then plotted the relative preference X̂ − Ŷ as a
function of the position of Z in attribute space, yielding a sur-
face plot that captured the attraction, compromise, and simi-
larity effects (Fig. 2) in the manner described in various studies
(17, 35, 36). Moreover, the model predicts that more extreme
attraction and compromise decoys give rise to stronger effects, as
previously described in a multiattribute gambling task (17).
Furthermore, our model predicts stereotyped patterns of in-

tercorrelation among participants for the similarity, attraction, and
compromise effects, with those who display a strong attraction effect
also displaying a strong compromise effect but a weaker similarity
effect (37, 38). To create plausible variation in sensitivity to context,
we varied the tuning selectivities across 40 simulated participants and
computed the correlation among each of the three decoy effects
across the virtual cohort. As shown in Fig. 3, this analysis recreated
the previously described interdependence in attraction, compromise,
and similarity effects (37, 38). Finally, decoy effects have been shown
to weaken when participants are placed under time pressure (39); by
assuming that faster responses have lower signal-to-noise ratio at the
decision formation stage, we can also recreate this feature of the
data (Fig. 4 and SI Appendix, Fig. S3).

The Effect of Distractor Variance. Next, we used our model to sim-
ulate performance on a variant of the flanker task that involves
categorizing a central grating Xi tilted at −45° from vertical, in the
face of flanking gratings that are on average tilted in a compatible
(Xj =−45°) or incompatible (Xj =+45°) fashion. In this setting,
the model predicts slower RTs for incongurent trials, or for con-
gruent but physically dissimilar flankers, as ubiquitously observed

(40) (Fig. 1B). Because flanker effects for fully visible stimuli are
strongest for RTs, we plot the inverse model output 1=jcXij as a
proxy for RT (i.e., we assume a ballistic evidence accumulation
process with slope proportional to jcXij; see Eq. 1 and Methods).
Fig. 5C illustrates predictions from the adaptive gain model under
two orthogonally varying factors: compatibility and flanker vari-
ability. As can be seen, the model predicts a compatibility effect:
faster RTs for trials where the target and distracters were of
congruent sign. However, it also makes a new, testable prediction:
that as sXj (flanker variance) decreases, RTs should be reduced on
compatible trials but remain the same on incompatible trials (Fig.
5C). This occurs because on compatible trials (flankers at −45°),
more gain is allocated to the target feature when the variance of
the distribution of flanker orientations is lower. However, the gain
allocated to incongruent targets (flankers at +45°) is negligibly
different across different flanker variance levels since the neural
gain they received is similar at the tail of the gain distribution, and
so the model predicts that flanker variance should not affect
performance on incongruent trials (Fig. 5A). By contrast, classic
models propose that response conflict varies with the amount of
cross-talk interference among responses (14). These models pre-
dict that heightened flanker variance should have equal impact on
compatible and incompatible trials (see Methods for model details).

Repulsion Effects in a Conflict Task. We tested this prediction in
Exp. 1 by asking healthy human participants to judge, relative to
vertical, the tilt of a single target grating surrounded by six flanking
distracter gratings (Fig. 5B; see task details in SI Appendix, SI Ma-
terials and Methods). The orientation of the target gratingXi and the
mean of the flankers Xj were set to ±45° and the standard deviation
of the flankers sXj was varied at three levels: {0°, 15°, 30°} in Exp.
1a (n = 37; percent error = 5 ± 4.3 SD) and {5°, 10°, 15°} in Exp. 1b
(n = 36; percent error = 4.9 ± 3.7 SD). Specifically, the zero flanker
variance condition in Exp. 1a mimics the classic Eriksen flanker
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Fig. 2. The value difference between two equally preferred options (X and Y,
red and blue dots) as a function of a third decoy option, Z (x and y axes). The
axes correspond to the attribute values (e.g., inverse price [P] and quality [Q]).
X and Y fall on the indifference line (dashed line). The red dot signals option X
(where XP = 15,XQ = 10Þ, and the blue dot indicates option Y (where
YP = 10,YQ = 15Þ. The colored surface shows the model-predicted subjective
value difference X̂ − Ŷ that is, the extent to which X is preferred over Y (red
regions), and conversely the blue region in which the subjective value of X is
smaller than Y, and thus Y is preferred. We have superimposed example decoy
options (green dots) that produce the three context effects (compromise, C;
attraction, A; and similarity, S; subscript corresponds to a preference for either
option X or option Y). a.u., arbitrary units.
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task, where flankers are identically tilted. In both experiments, we
observed that flanker variance modulated RTs on compatible trials
(Exp. 1a: F1.93,69.45 = 10.11, P < 0.001; Exp. 1b: F2,67.91 = 9.66, P <
0.001) but not on incompatible trials (both P values ≥ 0.25).
This finding was qualified by an interaction between com-
patibility and flanker variance (Exp. 1a: F1.76,63.39 = 9.72, P <
0.001, Fig. 5D; Exp. 1b: F1.96,66.79 = 9.67, P < 0.001, Fig. 5E).
Because previous work has shown that the ratio of compatible to
incompatible flankers can modulate performance (41), we re-
peated this analysis limited to those trials where all flankers fell
on the compatible/incompatible side of the boundary, finding a
similar interaction for Exp. 1a (F1.72,61.9 = 10.61, P < 0.001) and
Exp. 1b (F1.85,62.97 = 9.21, P < 0.001). A full list of the ANOVA
statistics and effect size on RT and accuracy for all experiments
is reported in SI Appendix, Tables S2 and S3, respectively.
We fitted our adaptive gain model to the data and compared its

predictions to those of a model proposing that RT depends on
response conflict alone. The fits for the gain model (colored cir-
cles) are shown superimposed upon the human data in Fig. 5D and
E. We compared the models head-to-head by computing mean-
squared error (MSE) in RT across conditions on half of the data
(even trials), after estimating parameters from an independent
dataset (odd trials). Bayesian model selection showed that the
adaptive gain model fits the human data more closely than the
conflict model, with exceedance probabilities for the adaptive gain
model of 0.9 in Exp. 1a and 0.58 in Exp. 1b (SI Appendix, Fig. S6A).
We also compared a version of the gain model in which the con-
textual modulation was driven by both target and distracters; this
model yielded both qualitatively and quantitatively similar results
to the original gain model (P > 0.3 for both Exp. 1a and 1b),
meaning that it is possible that contextual modulation arises from
the entire array, rather than the flankers alone.

Next, we moved beyond the simple case in which Xi and Xj fell
equidistant to the category boundary, using instead a more complex
design where they could vary independently around vertical at
{±15°, ±30°, ±45°}, and sXj could once again vary at three levels {0°,
15°, 30°}. In this case, the model makes several predictions, some of
them highly counterintuitive. First, it predicts that there should be no
main effect of congruence on RTs. In other words, the predicted
inverse decision values 1=jX̂ ij (or equivalently, unscaled RTs) are
indistinguishable when the target (Xi) and flanker mean Xj are of
the same or different sign. Second, the model predicts the existence
of strong “reverse compatibility” effects under specific circum-
stances: There will be a disproportionate cost on congruent trials
when the target Xi is closer to the category boundary than the mean
of the flankers Xj, for example, when Xi = 15 and Xj = 30 or Xj = 45
(Fig. 6A, upper left corner of each plot), and this effect should di-
minish with increasing flanker variance (panels). Finally, although
the model indicates that RTs will be dominated by the distance
between Xi and the category boundary, it predicts that in the specific
case where Xi and Xj are both close to vertical this cost will be
strongly attenuated.
We tested these predictions using the flanker paradigm on two

new cohorts of participants, one of which (Exp. 2a, n = 28;
percent error = 3.76 ± 3.9 SD) performed the tilt categorization
task described above, except with the full 6 (target mean) × 6
(flanker mean) × 3 (flanker variance) design. Another (Exp. 2b,
n = 30; percent error = 8.47 ± 5.58 SD) performed a task with
the same design that involved judging the color of a central circle
(red vs. blue) surrounded by distracting flankers that varied
continuously in color from red to blue. Results from the two
experiments were qualitatively very similar (see SI Appendix,
Figs. S4 and S5 for separate data) and so after normalizing the

A B C D

E F G H

Fig. 3. Relative choice shares of the target for each pair decoy types. (A–D) Reprinted with permission from ref. 37. (E–H) Simulations from the adaptive gain
model. (E) An illustration of the simulated 2D attribute space with target and decoys. The target (red dot) is set to be {15,10}, and the competitor (gray dot) is
{10,15}. Both lie on the indifference line (dashed line). The three types of decoy and their values are plotted in three different colored circles (green: similarity
decoys, value = {8.5,16.5}; magenta: attraction decoy, value = {13.5,8.5}; cyan: compromise decoys, value = {20,5}). DTC refers to the distance between the
target and the competitor. (F–H) Pairwise correlations among the strength of effect for each decoy type across the simulated cohort. Each unique colored dot
corresponds to one simulated participant. The color corresponds to the tuning width σmax (red = low tuning width σmax, blue = high tuning width). The black
line on each panel corresponds to the best least-squares fit. F shows a positive correlation between the compromise effect and the attraction effect across the
population. G and H show a negative correlation between the similarity effect and the attraction or the compromise effect across the population. Across
panels, we can see that participants who display a strong attraction effect also display a strong compromise effect but a weaker similarity effect, whereas
those who display a weaker similarity effect display stronger compromise and attraction effects. This is consistent with the data displayed in B–D from ref. 37.
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feature values (tilt and color) to an equivalent scale in the range
[−180,180] we collapsed over them for display purposes. All
three model predictions were strongly present in the human RT
data (see Figs. 5B and 6 A–C for the fits of the conflict model).
First, splitting trials naively into compatible and incompatible on
this variant of the flanker task there was no overall significant
difference in RT, either in the combined cohort (P = 0.26)
or separately for each experiment (Exp. 2a: P = 0.79; Exp. 2b:

P = 0.17). Second, we see a strong cost on congruent trials when
the flanker mean is further from the boundary than the target
mean, as demonstrated by an Xi ×Xj interaction (Exp. 2a:
F3.56,92.54 = 17.38, P < 0.001; Exp. 2b: F3.64,105.65 = 7.67, P <
0.001), but not on incongruent trials (Exp. 2a: P = 0.26; Exp. 2b:
P = 0.23). This difference was qualified by a reliable three-way
jXij× jXjj× congruence interaction on human RTs (Exp. 2a:
F3.42,88.88 = 10.18, P < 0.001; Exp. 2b: F3.64,105.64 = 6.48, P <
0.001). The analyses described thus far pertain to RT data. In a
final analysis of Exp. 2 we examined choices, using a previously
described approach based on probit regression, to assess the
weight (or influence) that distracters wielded over choices, as a
function of whether individual flankers’ tilt was similar or dis-
similar to the target (42, 43). The adaptive gain model predicts a
greater impact of flankers that are moderately dissimilar to targets
compared with the case when they are highly dissimilar to the
target (SI Appendix, Fig. S7), capturing the human data as well as
replicating the reported influence of surround tilt on the percep-
tion of the central tilt from previous tilt illusion studies (32, 44).

Functional Brain Imaging. Established theories propose that a
brain network that prominently includes the dACC is involved in
the recruitment of control processes that allow the brain to
overcome distraction. Across a range of paradigms including the
Eriksen flanker task, the dACC responds with higher-amplitude
BOLD signals on incompatible than on compatible trials (40,
45), and this effect is accentuated when the previous trial was
compatible (“conflict adaptation”), as if the dACC is monitoring
for conflict and signaling its onset (46). However, the dACC is
also implicated in decision processes more generally. For ex-
ample, it signals the level of noise that corrupts an imperative
stimulus during perceptual discrimination (47), and its proximity
to a choice point or category boundary (48); it responds to the
relative economic value of an unchosen to a chosen option (49–
51), to the value of switching to a new task or context (52, 53),
and to the update signals that occur as decision values change
(54). The search for a unifying theory of the dACC has been one
of the most challenging and controversial themes in cognitive
neuroscience over recent years (28, 55–57).
To assess the role of the dACC and interconnected regions in

adaptive gain control, we conducted a new experiment in which
Xi, Xj, and sXj varied parametrically from trial to trial, rather than
in a conditionwise fashion. A new cohort of humans (Exp. 3;
n = 20) performed this task while we acquired BOLD signals from
across the brain using fMRI. Behavioral results of this experiment
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replicated those from Exp. 2 (SI Appendix, Fig. S8), and so we fo-
cused on neural analysis to test whether brain signals indexed de-
cision information in a way that was predicted by the adaptive gain
model. We began by confirming previous reports that the dACC
responds more vigorously when a target feature lies closer to a
category boundary, that is, in our experiment, when the target
orientation is closer to vertical (48). We first regressed jXij (i.e.,
proximity of the target to the category boundary) alone against
BOLD signals occurring at the time of choice across the entire
brain (GLM1). Consistent with previous observations, we observed
a negative effect of jXij in the dACC (peak: 2, 8, 54, t19 = 9.06,
pfdr < 0.001; pfdr denotes significance after correction for multiple
comparisons using false discovery rate; Methods), as well as the
anterior insula (AIC; peak: 34, 24, 2, t19 = 10.19, pfdr < 0.001) and
superior parietal lobe (SPL; peak: 22, −56, 46, t19 = 8.19, pfdr <
0.001; see Fig. 7A). Extracting regions of interest from these areas
in a leave-one-out fashion across participants (Methods), we then
plotted how the BOLD signal varied in quartiles of both Xi and Xj

(GLM2) and compared these signals to the predictions of (i) the
adaptive gain model, (ii) an equivalent model with no adaptive gain
(i.e., where all simulated cells had equivalent tuning width), and
(iii) a model in which BOLD signals were driven by conflict alone
(Fig. 7B). We found that the pattern of BOLD signals in all three

regions closely resembled that predicted by the adaptive gain
model, but not the other models (Fig. 7C). Specifically, although
BOLD responses were elevated when the Xi was close to zero
(dACC: F1,19 = 52.37, P < 0.001; AIC: F1,19 = 53.4, P < 0.001; SPL:
F1,19 = 48.94, P < 0.001), this effect was exaggerated on those trials
where Xj was far from zero but of compatible sign (i.e., greater
BOLD response in dACC, AIC, and SPL on congruent relative to
incongruent trials; dACC: t19 = 3.03, P = 0.0069; AIC: t19 = 2.82,
P = 0.011; SPL: t19 = 2.28, P = 0.034). No such modulation was
observed when Xi was far from zero, as predicted by the adaptive
gain model.
This suggests that a gain-modulated decision variable, rather than

a conflict signal per se, is driving the dACC response. However, to
quantify and compare the predictions of different models we used
Bayesian neural model comparison (SI Appendix, SI Materials and
Methods) (58). We fit the adaptive gain model and the rival conflict
models on the trial RTs. Model estimates jXij and conflict com-
puted in different ways (Methods) from the best-fitting parameters
are then used to estimate BOLD signals. We computed, within the
dACC, AIC and SPL, the posterior probability of the adaptive gain
model conditioned on the BOLD signal using random effects
Bayesian model selection (59) and compared the resulting estimates
to those obtained for rival models. Both the exceedance probabil-
ities and the expected frequencies strongly favored the adaptive
gain model over a decision model with no gain modulation, as well
as over a family of conflict models (exceedance probabilities for the
adaptive gain model in dACC: 0.992; AIC: 0.994; SPL: 0.996;
expected frequencies for the adaptive gain model compared with
chance level in dACC: t19 = 4.11, P < 0.001; AIC: t19 = 4.11, P <
0.001; SPL: t19 = 4.76, P < 0.001; Fig. 8A; see SI Appendix, SI
Materials and Methods for the definition of the compared models).
In other words, the dACC, along with AIC and SPL, codes for a

Low

Medium

High

Ta
rg

et
 o

rie
nt

at
io

n 620

500R
ea

ct
io

n 
tim

e 
(m

s)

low
m

ed

high

low
m

ed
high

Low flanker 
variability

cong Incong

High 
flanker variability

low
m

ed

high

low
m

ed
high

A

B

Medium 
flanker variability

Flanker mean orientation

low
m

ed

high

low
m

ed
high

Human

low

highco
ng

in
co

ng

low

high

low
medium
high

target

flanker

m
od

el
 R

T 
(m

s)

C

human RT (ms)

520

620

560
580
600

540

520

620

560
580

540

600

cong Incong cong Incong

cong Incong cong Incong cong Incong

Low

Medium

High

Ta
rg

et
 o

rie
nt

at
io

n

Low flanker 
variability

High 
flanker variability

Medium 
flanker variability

Model

620

500R
ea

ct
io

n 
tim

e 
(m

s)

low
m

ed

high

low
m

ed
high

low
m

ed

high

low
m

ed
high

Flanker mean orientation

low
m

ed

high

low
m

ed
high

Low flanker 
variability

High 
flanker variability

Medium 
flanker variability

human RT (ms)

520

620

560
580
600

540

520

620

560
580

540

600

human RT (ms)

520

620

560
580
600

540

520

620

560
580

540

600

Fig. 6. Model predictions and human data for Exps. 2a and 2b. (A) Surface
plots showing the mean RT pattern in humans under different conditions
(three levels of target orientation × three levels of flanker mean orientation ×
congruency × three levels of flanker variability). Warmer colors correspond to
longer RTs. There is an overall cost when the target is close to the category
boundary (top row of each surface plot). There was an additional cost when
these targets were flanked by congruent flankers that are further from the
boundary (top left corner of each subplot). The introduction of higher flanker
variability reduces these additional costs in those conditions (overall faster RTs
across surface plots). (B) Fitted mean RT pattern from the adaptive gain model.
(C) Mean (±SEM) RT in humans were cross-plotted against the fitted mean
(±SEM) model RT for each condition. Warm colors (red to yellow) correspond
to levels of mean orientation from congruent flankers. Cold colors (blue to
cyan) correspond to levels of mean orientation from incongruent flankers jXj j.
Different shapes correspond to three levels of target decision variable jXi j.

B
O

LD
pa

ra
m

et
er

es
tim

at
es

B
x = -2

dACC

AIC

y = 34

A

C

SPL

z = 58

Adaptive gain

0
0.1
0.2
0.3
0.4
0.5
0.6

1/
|  

 |X i

-High
+High

+Low
-Low

-High

+High

-Low
+Low

Target

i) ii) iii)

i) ii) iii)

0

-10

t-s
ta

ts
iti

cs

 p < 0.00001 
uncorrected

-High

+High

-Low
+Low

Target

No gain

0

0.2

0.3

0.4

0.1

1/
|  

 |X i

-High
+High

+Low
-Low

Conflict

0

40

80

120

C
on

fli
ct

-High
+High

+Low
-Low

0
2

3

4

5
SPL

-High
+High

+Low
-Low

-High
+High

+Low
-Low

AIC

-High
+High

+Low
-Low

0
2

3

4

5
dACC

0
2

3

4

5

-High
+High

+Low
-Low

Flanker mean(    )Xj Flanker mean(    )Xj Flanker mean(    )Xj

Flanker mean(    )Xj Flanker mean(    )Xj Flanker mean(    )Xj

Fig. 7. Effect of target orientation on BOLD signal. (A) Brain areas corre-
lating negatively with the absolute target decision variable, rendered onto a
template brain in sagittal (Left), coronal (Middle), and axial (Right) slices.
Images were generated with an uncorrected threshold of P < 0.0001. (B)
Parametric modulators Xi and Xj were each split into four quartiles (lines for
Xi, x axis and shaded area for Xj). Mean predictions (±SEM) from different
models: reciprocal gain-modulated decision variable 1=X̂i (Left). Reciprocal
no-gain modulated target decision variable 1=X̂i (Middle). Estimated conflict
was plotted for each quartile (Right). Colored lines correspond to four levels
of Xi. Shaded colored background (groupings on x axis) corresponds to four
levels of Xj. (C) Mean BOLD (±SEM) signal beta values for each level of Xi

and Xj from the quartile bins. (Left) dACC, (Middle) AIC, and (Right) SPL ROIs.

E8830 | www.pnas.org/cgi/doi/10.1073/pnas.1805224115 Li et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805224115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805224115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805224115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805224115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805224115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1805224115


decision signal modulated in precisely the fashion predicted by the
adaptive gain model.
Finally, we addressed a concern that dACC is simply exhibiting a

BOLD signal that correlates with the response production time on
each trial (60). Disentangling these factors is challenging, because
(as described above) the model does an excellent job of predicting
RTs. Nevertheless, when we included both model output 1=jX̂ ijand
RTs as competitive predictors in the model (GLM3), we still re-
covered a significant activation in the dACC (peak: 6, 20, 50, t19 =
4.47, pfdr = 0.046) and AIC (left peak: −30, 16, 10, t19 = 5.96, pfdr =
0.038; right peak: 34, 24, 6, t19 = 5.05, pfdr = 0.04; SI Appendix, Table
S4). In other words, the dACC BOLD signal correlates better with
the demand predicted by the adaptive gain model than it does with
time taken to produce a response on each trial.
How does our model explain previously reported findings, such as

the observation that the dACC responds to conflict (61), or to the
relative value of an unchosen vs. a chosen option during economic
choice (62)? We have already shown that in the simple version of the
flanker task (cf. Exp. 1a where sXj = 0), the model predicts a larger
output jX̂ ij on compatible relative to incompatible trials. The model
is thus in clear accord with a large literature indicating that dACC
BOLD increases when target and distracters are incongruent in a
simple version of the flanker task (63). We note that as described
here the adaptive gain model computes decision values indepen-
dently on each successive trial, and thus in its current form would not
predict conflict adaptation in the dACC. However, one could rea-
sonably assume that adaptive effects may spill over from one trial to
the next (i.e., that neural tuning width will be partly modulated by the
previous trial). Under this assumption, the adaptive gain model will
successfully predict that responses should be faster on two successive
incongruent or two successive congruent trials (64), just as it suc-
cessfully accounts for the observation that during categorization of a
multielement array RTs are faster if the target array is preceded by a
prime array with an equivalent level of feature variance (29).
However, we also note another facet of our results: that

BOLD signals in the dACC, AIC, and SPL regions of interest
(ROIs) correlate negatively with jXij but positively with jXjj

(GLM4; Fig. 8B; dACC: t19 = 2.27, P = 0.035, AIC: t19 = 3.03,
P = 0.003, SPL: t19 = 4.56, P = 0.007; this effect was also sig-
nificant at the whole-brain level in voxels within the AIC and SPL,
but not dACC; SI Appendix, Table S5). If we consider the target to
be a “chosen” option and the flankers as a competing, “unchosen”
option, the ensemble of findings reported here is reminiscent of
the well-described finding by which dACC signals scale positively
with the decision value associated with an unchosen option (i.e.,
the flankers) and negatively with the value of a chosen option (i.e.,
the target). Building on this intuition, we tested more directly the
coding of model-predicted value of a chosen and unchosen option
in a further simulation in which decision values for two stimuli
were drawn randomly and independently from two distributions,
and model output was converted to a choice via a softmax function
(Methods). This allowed us to correlate model output (i.e., pre-
dicted BOLD) with the value of the chosen and unchosen option,
revealing a negative correlation with the former and a positive
correlation with the latter, as previously reported (65) (Fig. 8C).
Our model thus unifies a number of disparate accounts that have
emphasized a role for the dACC in tasks involving categorizing
perceptual stimuli and choosing among economic prospects.

Discussion
Good choices are based solely on information that is relevant to the
choice at hand, and rational agents will successfully ignore distract-
ing signals when making decisions (1). However, across perceptual,
cognitive, and economic domains, human participants are observed
to deviate from this rational principle. A range of different theories
have been proposed to account for human susceptibility to distrac-
tion, but thus far no single model has emerged that can account for
phenomena as diverse as visual illusions, susceptibility to conflicting
contextual features, or economic decoy effects for single- and mul-
tiattribute stimuli. Here, we describe one such account. An adaptive
gain model has previously been shown to successfully account for
diverse contextual influences of relevant decision information in
perceptual decision making, including confirmatory biases in se-
quential sampling (23) and priming by second-order summary sta-
tistics in perceptual categorization (29). Here, we show that not only
can it account for classical effects of distraction across perceptual,
cognitive, and economic domains, including the tilt illusion and
decoy effects for both single- and multiattribute stimuli, it meets the
elusive challenge of jointly capturing the attraction, compromise,
and similarity effects, as well as their pattern of mutual dependence
across participants (37, 38). Moreover, our model successfully pre-
dicts a range of previously unreported, counterintuitive findings in a
well-studied cognitive paradigm, the Eriksen flanker task (8).
The effect of distraction is most often modeled under the as-

sumption that irrelevant features are imperfectly filtered during
decision making, driving residual activation that corrupts deci-
sions. When target and distracters prompt conflicting sensorimo-
tor responses, the resulting competition slows RTs and increases
error rates (14). A very successful neurocognitive theory proposes
that dedicated processing systems have evolved in the primate
medial prefrontal cortex that detect this conflict, and that are
responsible for mobilizing control mechanisms (associated with
the lateral prefrontal cortex) to help mitigate the resulting costs
(66). Here, we propose a differing view: one that emphasizes the
benefits of consistent context rather than the costs of inconsistent
context. In the adaptive gain model, contextual features offer
guidance as to where to best allocate gain across feature space,
ensuring that neurons that code for the most prevalent (or expected)
features have the sharpest tuning and thus provide the most sensi-
tive outputs. The adaptive gain model is thus motivated by the more
general view that the nervous system has evolved to code efficiently
for sensory inputs, reducing redundancy by dynamically adjusting
the tuning properties of decision-relevant neurons to maximize
sensitivity to expected features (24, 67). In the flanker task, thus, the
difference between compatible and incompatible trials arises at least
in part because of a contextual facilitation mechanism at the de-
cision level, akin to that described in sensory circuits (68), rather
than because of an active cost of response competition. This idea is
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not without precedent in theories of control. In fact, the notion that
a flexible response to stimulus conflict is dependent on adaptive
expectation mechanisms dates back to the original discovery of
conflict adaptation by Gratton et al. (64) more than 25 years ago.
We take the opportunity to highlight two major features of

our behavioral data that cannot be accounted for by standard
accounts that emphasize the cost of conflict alone. First, in Exps. 1a
and 1b, we found that a low-variance flanker array hastens RTs on
congruent trials, rather than prolonging RTs on incongruent trials.
This is consistent with an account that emphasizes the benefit of
consistent context rather than the cost of inconsistent context. Sec-
ond, inExps. 2a and 2b, we observed that the longestRTswere in fact
observed on compatible trials, not incompatible trials. We replicated
this finding across twodifferent classes of visual feature: tilt and color.
According to our model, this cost occurred when the gain field dic-
tated by the context repulsed the target subjectively closer to the
category boundary, rendering choicesmore uncertain.Although such
reverse compatibility effects have been reported with heavily masked
stimuli, where they can be explained by differing time courses of fa-
cilitatory vs. inhibitory processes (69), only rarely have such phe-
nomena been reported for fully visible targets and distracters such as
ours. Most interestingly, one such report occurred for a modified
version of the flanker task where the targets were letters that were
parametrically morphed between two possible identities, each cor-
responding to a possible flanker (70). This report describes reverse
compatibility effects when the target is most ambiguous, precisely
parallelling our findings here for trials with smallXi and largeXj, and
a shift in thepsychometric function that occurswith flanker identity in
precisely the fashion predicted by our adaptive gain model (23).
Our behavioral findings were echoed in the neural data

recorded from dACC, where BOLD signals were higher when
targets fell closer to the category boundary, but these signals
were positively modulated (yet higher) when the distracter’s
mean was congruent but further from the boundary. Without
further assumptions, a model based on conflict alone cannot
account for these findings. We do not wish to argue that stimulus
or response conflict does not ever incur an additional cost to
accuracy and RTs, or that such a cost is unable to drive the
dACC. Nevertheless, in the current study, we found that such an
account was not required to explain our data, and that a model
embodying this assumption alone fit our data more poorly.
Our findings present a challenge to some extant theories, but we

acknowledge that our model is currently incomplete. For example,
without further elaboration, our model cannot account for the
previously described below-chance responding on the flanker task
that is observed under strong speed pressure (71). Furthermore, a
large literature implicates the dACC in the mechanisms by which
we update the value of actions in dynamically changing environ-
ments (54, 72). Our experiments were conducted in stationary
settings, and we do not doubt that these regions may play additional
roles (potentially also related to gain control) when slower learning
about a changing context is required. We also note an important
shortcoming in our findings: We were unable to identify differing
roles for the dACC, AIC, and SPL, which seem to act as one in our
study. We think it is likely that our BOLD data are simply indexing
the output of a decision process that involves modulation by dis-
tracting context but are unable to make strong claims about the
interim processes by which the computations proposed by the
model occur. We suspect that exploring the role of adaptive gain
control in dynamically changing environments may shed more light
on the differing contributions made by these regions.

Methods
Subjects. For behavioral studies Exps. 1 and 2, human participants were
recruited via the online testing platform provided by Amazon Mechanical
Turk (Exp. 1a: n = 37; Exp.1b: n = 36; Exp. 2a: n = 28; Exp. 2b: n = 30). For Exp.
3, 20 healthy volunteers with normal or corrected-to-normal vision and no
history of neurological disorders were recruited to participate from the
University of Granada, Spain. All participants gave informed consent to par-
ticipate in the study and were compensated at a rate of $6 per hour for Exps.
1 and 2 and V10 per hour for the fMRI scanning session. All experiments were

approved and conducted in accordance with the University of Oxford Medical
Sciences Interdivisional Research Ethics Committee guidelines.

Design and Behavioral Analysis. For Exps. 1 and 2, the design orthogonalized

the manipulation of target feature value (Xi), mean of flankers (Xj), and
variability of flankers (sXj). We can further designate trials as “congruent”

when Xi has the same sign as Xj or “incongruent” when Xi has the opposite

sign as Xj. In Exp. 1, wethushavea3×2(flankervariability×congruency)within-

participant factorial design. In Exp. 2, we introduced three levels of jXj j (equiv-
alent to six levels of signedXj, three levels for each category), three levels of jXi j,
and three levels of sXj, resulting in 3 × 3 × 3 × 2 (jXi j × jXj j × sXj × congruency)

within-participant factorial design with 54 conditions. A full list of jXi j, jXj j, and
sXj levels is displayed in SI Appendix, Table S1. For Exps. 1 and 2, ANOVAs with
Greenhouse–Geisser correction for sphericity were carried out at group-level
analyses. A threshold of P < 0.05 was adopted for all behavioral analyses. Ef-
fect size− partial eta squared (η2p) was computed for all significant effects (SI

Appendix, Tables S2 and S3). We only analyzed RT from correct trials, and
additionallyexcludedtrialswhereRTwas faster thanthe1%percentileorslower
than the 99% percentile of the RT distribution. We used the same exclusion
criteria across experiments. These two exclusion criteria led to the following
mean percentage (SD) of trials exclusion across subjects for each experiment:
Exp. 1a, 6.85% (4.21); Exp. 1b, 6.73% (3.52); Exp. 2a, 5.62% (3.76); and Exp. 2b,
10% (5.44). We have also verified that all of the reported effects remained sig-
nificant when we replaced mean RT with median RT or log-transformed RT.

Computational Modeling.
Adaptive gain model. The computations that describe the population coding
version of the adaptive gain model are described in the main text. To fit
model outputs to human RT data (i.e., on a common scale in milliseconds), for
each parameterization we regressed inverse decision values against each
individual participant’s RTs:

RTgain = β0 + β1 · 1
�jX̂i j. [3]

This calculation of RT is equivalent to modeling the data with ballistic

(noiseless) diffusion process, with the two additional parameters β0 and β1

encoding the nondecision time and the drift rate, respectively (fixed across
conditions). We used a balllistic accumulation process for simplicity, but note
here that errors could be modeled by adding a noise term to the accumu-
lation process. Searching exhaustively across values of σmax and « from Eq. 2,
we identified the parameters that minimized MSE between the human and
model-predicted average RTs for each condition.
Conflict models. For the conflict model, we use a formulation described pre-
viously (14), whereby conflict C depends on the weighted product of com-
peting inputs for the two actions ACW and ACCW :

C =
�
ACW ·ACCW �

[4]

ACW =g
�
Xj

�
· ð1−wÞ+g

�
Xi� ·w

ACCW =h
�
Xj

�
· ð1−wÞ+h

�
Xi� ·w,

where gðXÞ and hðXÞ respectively denote positive and negative linear rec-
tification functions. In conflict model 1, activation for the two actions ACW

and ACCW are proportional to the tilt of the target and flanker mean. Al-
ternatively, these values can also be defined according to the tilt of the
target and each of the individual flankers Xj (conflict model 2):

Ci =
h
ACW

i
·ACCW

i

i
[5]

ACW =
XN
1

g
�
Xj� · ð1−wÞ

d
+g

�
Xi� ·w

ACCW =
XN
1

h
�
Xj� · ð1−wÞ

d
+h

�
Xi� ·w,

where N is the number of flankers that are either congruent or incongruent,
and d is the total number of flankers on a given trial. In other words, these
models made different assumptions about conflict: that it was computed at
the level of individual flankers (conflict model 2) or at the level of summary
statistics (conflict model 1).
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Finally, we compute RTs in a similar fashion as for the gain model:

RTconflict = β0 + β1 ·C. [6]

To reduce the risk of overfitting we used cross-fitting, estimating model
parameters on half the trials and computing MSE for the other half. These
MSE were then fed into Bayesian model selection to compute exceedance
probabilities (SI Appendix, SI Materials and Methods).

Simulations of Perceptual and Economic Decisions. When fitting to human data,
the adaptive gain model contained two free parameters: maximum tuning
width (σmax) and a constant parameter («). Simulations of the model aimed at
qualitatively recreating effects from the past literature (e.g., for Fig. 1) assumed
a fixed σmax (σmax = 10) and a fixed « (« = 5) unless noted otherwise. We have
also imposed a floor value for σk (Eq. 2). Any values that are below 0 will set as
0.1 so that the tuning width of any neurons will not be in negative values.
Tilt illusion. In this simulation, we plot the difference between the true target

angle (here, zero) and the gain modulated decision value (cXi) as a function of

flanker mean decision value Xj ∈ f− 45,−44, . . . ,+45°g and flanker SD
sXj ∈ f3,7,11,15g. For each variant of flanker mean decision values and

flanker SD, cXi is computed using Eqs. 1 and 2. We then plot cXi against levels
of flanker mean decision value and flanker SD in Fig. 1A.
Conflict effects.We computed a proxy of RT (1=djXi j) for the three conditions: CO
(Congruent), where the target shares the same response association with the
flankers; SI (Stimulus Incongruent), where the target is perceptually different
from the flankers but the response associations of the two are still the same;
and RI (Response Incongruent), where the target has a response association
different from the flankers (Fig. 1B). In the simulation, flanker SD sXj is set to
be 0 in both CO and RI conditions (i.e., we assumed flanker SD as «, or 5°). In

CO, Xi is equal to Xj (both are +45°). In RI, Xj has the opposite sign to Xi.
Finally, we simulated the SI condition by assuming sXj is higher than 0 (i.e.,

sXj = 5); individual flankers are variable but Xj remained the same as Xi. We
assumed a higher maximum tuning width (σmax = 15) in this simulation.
Decoy effect (single-attribute). We simulated the difference between the model
estimated decision values from the two targets (X = 20 and Y = 10) as a function
of a third distractor’s decision value, Z ∈ f− 45,−44, . . . ,+20g. «was assumed to
be 10 in this simulation. In SI Appendix, Fig. S2, we computed the model output

associated with the highest-valued choice-relevant alternative (X̂) and the next-

best alternative (Ŷ), assuming that the mode of the gain field determined by
the lowest-valued (i.e., irrelevant) alternative Z. We then plotted the normal-
ized subjective estimates difference between the best option and the next-best

option ðX̂ − ŶÞ=Ŷ, a quantity proportional to choice probability in Fig. 1C.
Decoy effects (multiattribute). We simulated the influence of a distracter (Z) on
two equally preferred items X and Y that are characterized by two attrib-
utes, such as (inverse) price [P] and quality [Q]. We assume that the axes P
and Q exhibit equal scaling and that that X and Y fall on the line of iso-
preference which lies perpendicular to the identity line. For illustration, we
use X = ½15,10� and Y = ½10,15�. We implemented the adaptive gain pop-
ulation coding model as follows:

σk = σmax − fðθk jZP , «Þ · τ. [7]

Like in the single-attribute case, we assume that the inverse Gaussian tuning dis-
tribution is centered at the decoy attribute value (ZP), with an SD «= 30, and
maximum tuningwidth σmax = 10 and an extra free parameter: tuningwidth range
τ=440. Each neuron responds to the value of the attributes XP and YP, resulting
two hills of activity across the population of simulated neurons. The activity is

decoded to subjective estimates for each of the two option values on attribute P (X̂P

and ŶP) as described in Eq. 1 in the main text. The same procedure is repeated for
attribute Q. Finally, the final value estimates for options X and Y are obtained by

summation across attributes: X̂ = X̂P + X̂Q; Ŷ = ŶP + ŶQ. Fig. 2 shows the relative

subjective value difference (X̂ − Ŷ) as a function of the the objective value of each
attribute of a decoy Z, to produce a canonical 2D influence plot (heat map).
Intercorrelation between decoy types. We created a cohort of 40 simulated
participants defined by differing levels of tuning selectivities (controlled by
σmax; ranging from 8 to 16 with 40 linearly spaced values). Subjects with a
high σmax would have overall more broadly tuned tuning curves than subjects
with a low σmax (i.e., they are overall less susceptible to the effect of the
context provided by the decoy). We then simulated three choice tasks (of
100 trials) each with a decoy type in the position shown for A, C, and S in Fig.
3E (i.e., decoys that have been shown to give rise to the attraction, compro-
mise, and similarity effects in favor of the target). The exact values of these

decoys were chosen in the same way as reported by Berkowitsch et al. (37) (Fig.
3A). We used the same two options, target (X) and competitor (Y), that are
equally preferred when they are presented independently. Finally, the sub-
jective estimated value difference between the target and the competitor is
computed. To introduce intertrial variability in the simulations, we assumed that

the value difference (X̂ − Ŷ) is corrupted by a noise term σn that is randomly
sampled from a zero-mean Gaussian distribution with an SD of 0.08. The choice
of a given trial is simply based on the sign of the noisy value difference between

X̂ and Ŷ. Averaging across trials allows us to compute the probability of choosing
the target. We repeated the same procedure 100 times to obtain a more ac-
curate estimation of the choice pattern. The choice probabilities from each decoy
task were plotted against each other to visualize the correlation and anti-
correlation of decoy effects across subjects (Fig. 3 F–H).
The effect of noise at decision-formation stage on decoy effects. In Fig. 4, we simulated
the attraction effect with the following options and parameters: X = {15,10}; Y =
{10,15}; Z = {13,5}; σmax = 20; «= 10; and τ= 400. After obtaining decoded sub-

jective estimates X̂, Ŷ, and Ẑ, we then add noise to these subjective estimates by
sampling from zero-mean Gaussian distribution with differing SDs (σn; four
linearly spaced values between 3–7). The simulated choice on a given trial was
based on the option with the highest noisy subjective estimates among op-
tions X, Y, and Z. Choice probability is computed by the proportion of trials
one selected for each option. We repeated the process 100 times to obtain
accurate estimates of the choice probability. We carried out the same analysis
with a compromise decoy = {20,5}. For this analysis, we used a slightly different
set of parameters: σmax = 40, τ = 140, and σn ∈ [0.08. . .0.3]. These parameters
allow us to recreate most faithfully the compromise effect choice pattern
under time pressure shown in the Pettibone study (39), but similar effects were
obtained for simulations with different parameters within a reasonable range.
The effect of noise on similarity decoys under inferential and perceptual tasks
like in Trueblood et al. (73) is reported in SI Appendix, Fig. S3.
Value of chosen vs. unchosen option. We simulated the model output as a function
of the value of a theoretical chosen and unchosen optionwith an « = 10. On each
trial, decision values for two stimuli (X1 and X2) were drawn independently
from two zero-mean Gaussian distribution with an SD of 10. On every trial, we
allowed simultaneous evaluation of each stimulus in the context of the other
(i.e., we passed each stimulus through the model as a target with the alternative
as a distracter). We then assumed that participants chose according to the rel-
ative subjective (i.e., model output) value of the maximum and minimum
resulting values, using a value of 5 for the slope of the choice function:

D= X̂max − X̂min

CP =
1

1+ e
−D
5

. [8]

This allowed us to plot the relationship between X and model output D
separately for the chosen and unchosen options.

fMRI Data Analyses. We analyzed our data using statistical parametric mapping
(SPM12) with the general linear model (GLM) framework and in-house scripts
running inMATLAB. Forall analyses,weensured that sequential orthogonalization
of predictors in SPMwas disabled. All GLMs also included regressors encoding the
estimated movement parameters from preprocessing as a nuisance covariate. We
modeled trials by convolving regressors coding the onsets and durations of events
with the canonical hemodynamic response function and regressed them against
the BOLD signal. Error trials, and those for which RT fell within the most extreme
percentiles (<1%or>99%), weremodeled separately as a nuisance regressor in all
GLMs (trial exclusion: 6.68% ± 3.44 SD). We first constructed GLM1 with a single
predictor encoding the parametric target decision values jXi j of the stimulus,
time-locked to the onset of the stimulus. We identified voxels that correlated
negatively with this regressor to define ROIs in the dACC, AIC, and SPL. Activations
in these regions survived false discovery rate (fdr) correction for multiple com-
parisons at pfdr < 0.05. To avoid double dipping, each region was identified in a
leave-one-out fashion, with each participant in turn being omitted from a group-
level analysis, which was used to define an ROI with a threshold of uncorrected
P < 0.0001, from which beta values were extracted from the left-out participant.
For GLM2, we discretize each parametric modulator (i) target decision values Xi

and (ii) flanker mean feature value Xj into four quartiles bins and included a total
of 4 × 4 = 16 regressors (corresponding to each quartile bins of feature values) in
the GLM. BOLD betas from each subject were again extracted using each ROI
mask defined by the leave-one-out analysis. In GLM3, we included empirically

observed RT as a competing regressor to 1=jX̂i j (a full list of active voxels for 1=jX̂i j
are displayed in SI Appendix, Table S4). In GLM4, we included the following
predictors as parametric modulators of the stimulus at the time of the decision
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(i) target decision values jXi j, (ii) flanker mean feature value jXj j, (iii) flanker
precision (i.e., inverse flanker variability 1=sXj), (iv) absolute distance between

target and flanker mean orientations jXi −Xj j, (v) the interaction of the distance

between target and flanker mean with target decision values jXi −Xj j× jXi j, and
(vi) the interaction of the distance between target and flanker mean, target

decision values, and flanker precision (jXi −Xj j× jXj j× 1=sXj). Full details of active
voxels associated with these regressors are displayed in SI Appendix, Table S5.

Subsequent statistical tests on the betas extracted from each ROI were conducted
using a two-tailed one-sample t test at a significance threshold of P < 0.05.
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