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Abstract: Colorectal cancer (CRC) is one of the most common cancers requiring early pathologic
diagnosis using colonoscopy biopsy samples. Recently, artificial intelligence (AI) has made
significant progress and shown promising results in the field of medicine despite several limitations.
We performed a systematic review of AI use in CRC pathology image analysis to visualize the
state-of-the-art. Studies published between January 2000 and January 2020 were searched in major
online databases including MEDLINE (PubMed, Cochrane Library, and EMBASE). Query terms
included “colorectal neoplasm,” “histology,” and “artificial intelligence.” Of 9000 identified studies,
only 30 studies consisting of 40 models were selected for review. The algorithm features of the models
were gland segmentation (n = 25, 62%), tumor classification (n = 8, 20%), tumor microenvironment
characterization (n = 4, 10%), and prognosis prediction (n = 3, 8%). Only 20 gland segmentation
models met the criteria for quantitative analysis, and the model proposed by Ding et al. (2019)
performed the best. Studies with other features were in the elementary stage, although most showed
impressive results. Overall, the state-of-the-art is promising for CRC pathological analysis. However,
datasets in most studies had relatively limited scale and quality for clinical application of this
technique. Future studies with larger datasets and high-quality annotations are required for routine
practice-level validation.
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1. Introduction

Colorectal cancer (CRC) is one of the most common cancers and the second leading cause of
mortality worldwide. More than one million new CRC cases and 551,269 CRC-related deaths have
been reported in 2018 [1]. Although the incidence is still higher in Western countries [2], it is also
increasing in developing countries due to rapid adoption of the urban lifestyle. In China and India,
the incidence of CRC is projected to double by 2025 as compared to that in 2002 [3]. Early diagnosis is an
important step in reducing CRC mortality, and colonoscopy is one of the most common and powerful
screening methods [4]. However, the number of colonoscopy examinations is enormously increasing [4],
and microscopic examination is becoming more labor-intensive and time-consuming. In addition, the
pathological diagnosis of colonoscopy biopsy samples can be easily biased by individual pathologists’
experience and knowledge, leading to inter-observer and intra-observer variations [5]. For these
reasons, a gap exists between the pathological standards for the diagnosis of colon lesions in Western
countries (often referred to as the Vienna classification) [6] and Eastern countries (also known as the

Cancers 2020, 12, 1884; doi:10.3390/cancers12071884 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-8761-0837
https://orcid.org/0000-0001-8615-3064
http://dx.doi.org/10.3390/cancers12071884
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/7/1884?type=check_update&version=2


Cancers 2020, 12, 1884 2 of 19

Japanese classification) [7]. Western pathologists diagnose cancer based on the presence of invasion
through the muscularis mucosa into the submucosa, while Eastern pathologists do so based on nuclear
and architectural changes of the cells [8]. Therefore, there is a need for a more standardized or unified
method that can also reduce the confusion among specialists.

Recently, artificial intelligence (AI) has made significant progress and has shown promising
results in the medical field, such as in radiologic diagnosis [9], disease diagnosis through gross and
microscopic images [10], drug development [11], and precision oncology [12]. Previous evidence
showed that a convolutional neural network (CNN)-based model has shown excellent results in
tumor detection, classification, gland segmentation, and grading, especially for breast [13], brain [14],
lung [15], gastric [16], ovarian, and prostate [17,18] cancers. In addition, there have been various
attempts to apply AI in the pathologic image analysis of CRC. A recent study conducted by a Japanese
group showed relatively good accuracy of an e-pathologist software program when compared with
that of human pathologists in terms of classifying the tumor into four categories: adenoma, carcinoma,
no neoplasia, and unclassifiable [19]. More recently, a study conducted by a German group showed
that a deep learning-based model could classify the human tumor microenvironment and predict the
survival of CRC patients using histologic images [20]. Upon closer observation; however, each study
had many limitations such as use of annotated data with limitations, relatively small number of
training and validation datasets for generalization, and impaired study design for an appropriate level
of evidence. Another technical barrier in the AI development, especially for CRC, is the presence of
various artifacts in CRC samples, such as cauterization. Although the development of an AI system in
CRC is gaining the attention of scientists, and an increasing number of studies are being published,
no appropriate review has been published thus far.

Therefore, we performed a systematic review including qualitative and quantitative analyses of
the current application of deep learning in CRC pathology image analysis.

2. Results

2.1. Eligible Studies and Characteristics

A flow diagram of the literature selection process is presented in Figure 1. In total, 9000 records
were identified in the initial search (3815 in PubMed, 4953 in EMBASE, 202 in the Cochrane library) and
30 records were identified by cross-referencing. After excluding 1497 duplicates, a total of 7503 records
were screened by the type of reference. After 758 records of case reports and poster presentations were
excluded, 6745 records were screened by their titles. After 6541 records were excluded, 204 records
were screened by their abstracts. After 95 records were excluded, 109 records were screened by full-text
review. After excluding 79 records, only 30 records, covering 40 deep learning models, were deemed
eligible for an in-depth review and qualitative and quantitative analyses.
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Figure 1. Flow diagram of the study selection process.

2.2. Applications of Deep Learning in Colorectal Cancer Pathology Image Analysis

The literature according to the deep learning models applied in colorectal cancer are summarized
in Tables 1 and 2. All 40 included models were published in 30 journal articles between 2015 to 2020 and
conducted globally (23 models in Europe, four models in the USA, one model in Canada, one model
in Russia, and 11 models in Asian countries). The algorithm features of the models were gland
segmentation (n = 25, 62%), tumor classification (n = 8, 20%), tumor microenvironment characterization
(n = 4, 10%), and prognosis prediction (n = 3, 8%) (Figure 2A). The number of published models has
increased (Figure 2B).
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Table 1. The performances of the gland segmentation models using Gland Segmentation in Colon Histology Images (GlaS) challenge dataset (165 images Warwick-Qu
dataset and CRAG data set). The models that participated GlaS challenge are designated with * and the models that were published using GlaS dataset only are
designated with ‡. The performance of each model is evaluated based on the F1-score (accuracy of the detection of individual glands), Object Dice (agreement or
similarity between two sets of samples), and Object Hausdorff (boundary-based similarity between glands and their corresponding segmentation). Part A means the
off-site dataset and Part B means the on-site dataset. The best performance in the respective part appears bold in the table.

Model No. Author/Team Dataset Base Model
Performance Metrics

Year Country Ref.F1-Score Object Dice Object Hausdorff

Part A Part B Part A Part B Part A Part B

1 * CUMed Vision2 WQD DCAN 0.912 0.716 0.897 0.781 45.4 160.3 2015 Hong
Kong [21]

2 * ExB1 WQD Two path CNN 0.891 0.703 0.882 0.786 57.4 145.6 2015 Germany [22]
3 * ExB3 WQD Two path CNN 0.896 0.719 0.886 0.765 57.4 159.9 2015 Germany [22]
4 * Freiberg2 WQD U-Net 0.87 0.695 0.876 0.786 57.1 148.5 2015 Germany [22]

5 * CUMed Vision1 WQD FCN 0.868 0.769 0.867 0.8 74.6 153.6 2015 Hong
Kong [21]

6 * ExB2 WQD Two path CNN 0.892 0.686 0.884 0.754 54.8 187.4 2015 Germany [22]
7 * Freiburg1 WQD U-Net 0.834 0.605 0.875 0.783 57.2 146.6 2015 Germany [22]
8 * CVML WQD CNN 0.652 0.541 0.644 0.654 155.4 176.2 2015 UK [22]
9 * LIB WQD K-means/naïve Bayesian 0.777 0.306 0.781 0.617 112.7 190.4 2015 France [22]

10 * Vision4GlaS WQD Object-Net/Separator-Net 0.635 0.527 0.737 0.61 107.5 210.1 2015 Austria [22]
11 ‡ BenTaieb WQD FCN+Smoothness+Topology NA NA 0.80 ± 0.12 NA NA 2016 Canada [23]
12 ‡ Li 85 WQD CNN+HC-SVM NA NA 0.87 ± 0.08 NA NA 2016 UK [24]
13 ‡ Yang WQD FCN 0.921 0.855 0.904 0.858 44.7 97.0 2017 USA [25]

14 ‡ Kainz WQD Object-Net 0.670 0.570 0.70 0.620 137.4 216.4
2017 Austria [26]

Separator-Net 0.680 0.610 0.750 0.650 103.5 187.8
15 ‡ Zhang WQD DAN 0.916 0.855 0.903 0.838 45.3 105.0 2017 USA [27]
16 ‡ Xu WQD FCN/DCAN/RPN/CNN 0.893 0.843 0.908 0.833 44.1 116.8 2017 China [28]

17 ‡ Graham WQD
/16 CRAG WSIs MILD-Net 0.914 0.844 0.913 0.836 41.5 105.9 2018 UK [29]

18 ‡ Yan WQD Holistically-nested networks 0.924 0.844 0.902 0.840 49.9 106.1 2018 Hong
Kong [30]

19 ‡ Manivannan WQD FCN 0.892 0.801 0.887 0.853 51.2 87.0 2018 UK [31]
20 ‡ Tang WQD Segnet NA NA 0.882 0.836 106.6 102.6 2018 China [32]

21 ‡ Ding WQD/213 CRAG
images TCC-MSFCN 0.914 0.85 0.913 0.858 39.8 93.2 2019 China [33]

22 ‡ Raza WQD MIMO-Net 0.913 0.724 0.906 0.785 49.2 134.0 2019 UK [34]
23 ‡ Liu WQD Wavelet Scattering Network 0.874 0.71 0.875 0.791 56.6 146.6 2019 China [35]
24 ‡ Binder WQD U-Net NA NA 0.920 11.0 2019 France [36]

25 ‡ Khvostikov WQD/20 PATH-
DT-MSU images U-Net NA NA 0:880 NA NA 2019 Russia [37]

WQD, 165 images Warwick-Qu dataset; DCAN, deep contour-aware network; CNN, convolution neural network; FCN, fully convolutional networks; CRF-RNN, conditional random
fields- recurrent neural networks; HC-SVM, handcrafted features-support vector machine; DAN, deep adversarial network; RPN, region proposal network; MILD, minimal information
loss dilated network; CRAG, Colorectal Adenocarcinoma Gland dataset; TC-MSFCN, three-class classification multi-scale fully convolutional network.



Cancers 2020, 12, 1884 5 of 19

Table 2. Characteristics of the deep-learning models according to tumor classification, tumor microenvironment analysis, and prognosis prediction of colorectal
cancers using pathologic image analysis.

Model
No. Feature Task Dataset External Cross-Validation Base Model Performance Author/Team Year Country Ref.

1

Tumor Classification

6 classes (cancer subtypes):
NL/ADC/MC/SC/PC/CCTA 717 patches Not done AlexNet Accuracy—97.5% Xu 2017 China [38]

2
5 classes (polyp subtypes): 2074 patches 936 WSI Not done ResNet Accuracy—93.0% Korbar 2017 USA [39]

NL/HP/SSP/TSA/TA/TVA-VA,

3 3 classes: NL/AD/ADC 30 multispectral image
patches Not done CNN Accuracy—99.2% Haj-Hassan 2017 France [40]

4 2 classes: NL/Tumor 57 WSI (10,280 patches) Not done VGG
Accuracy—93.5%,

Yoon 2018 South Korea [41]Sensitivity—95.1%
Specificity—92.8%

5 3 classes: NL/AD/ADC 27 WSI (13,500 patches) Not done VGG16 Accuracy—96 % Ponzio 2018 Italy [42]

6 4 classes: NL/HP/AD/ADC 393 WSI
Not done CNN Accuracy—80% Sena 2019 Italy [43]

(12,565 patches)

7 3 classes: NL/AD/ADC 4036 WSI Not done CNN/RNN AUCs—0.96 (ADC)
Iizuka 2020 Japan [44]

0.99 (AD)

8. 2 classes: NL/Tumor

94 WSI,

Done using 378 DACHS
data

ResNet18 AUC > 0.99 Kather 2019 Germany [45]
370 TCGA-KR,
(60,894 patches)
378 TCGA-DX,
(93,408 patches)

9 Tumor
Microenvironment

Analysis

Classification, Segmentation
and Detection: EC/IC/FC/MC

21,135 patches Not done DCRN/R2U-Net

Classification

Alom 2018 USA [46]

F1-score—0.81
AUC—0.96

Accuracy—91.1%
Segmentation

Accuracy—92.1%
Detection

F1 score—0.831

10 Detection of immune cell
CD3+, CD8+ 28 WSI IHC Not done FCN/LSM/U-Net

FI score—0.80
Sensitivity—74.0%

Precision—86
Swiderska-Chadaj 2019 Netherland [47]

11 Detection and classification
EC/IC/FC/MC

853 patches &
142 TCGA images Not done CNN

Detection
Accuracy—65%
Classification

Accuracy—76 %

Shapcott 2019 UK [48]

12
Classification of 9 cell types

ADI, BAC, DEB, LYM, MUC,
SM, NL, SC and EC

86 WSI (100,000)
NCT&UMM Not done VGG19 Accuracy—94–99% Kather 2019 Germany [20]

13

Prognosis Prediction

5-year disease-specific
survival 420 TMA Not done LSTM AUC—0.69 Bychkov 2018 Finland [49]

14 Survival predictions
25 DACHS WSI

Not done VGG19 Accuracy—94–99% Kather 2019 Germany [20]862 TCGA WSI
409 DACHS WSI

15 MSI predictions

360 TCGA- DX
(93,408 patches)
378 TCGA- KR
(60,894 patches)

Done using 378 DACHS
data ResNet18

AUC
TCGA-DX—0.77
TCGA-KR—0.84

Kather 2019 Germany [45]

NL, normal mucosa; ADC, adenocarcinoma; MC, mucinous carcinoma; SC, serrated carcinoma; PC, papillary carcinoma; CCTA, cribriform comedo-type adenocarcinoma; HP, hyperplastic
polyp; SSP, sessile serrated polyp; TSA, traditional serrated adenoma; TA, tubular adenoma; TVA, tubulovillous adenoma; VA, villous adenoma; WSI, whole slide images; TCGA,
The Cancer Genome Atlas; DACHs, Darmkrebs Chancen der Verhütung durch Screening; ResNet, residual network architecture; VGG, visual geometry group; AD, adenoma; CNN,
convolution neural network; RNN, recurrent neural network; AUC, area under the curve; IHC, immunohistochemistry; TMA, tissue microarray; EC, epithelial cell; SC, stromal cells;
DCNN, deep convolution neural network; MCC, Matthew correlation coefficient; MC, miscellaneous; DCRN, densely connected recurrent convolutional network; R2U-Net, recurrent
residual U-Net; FCN, fully convolutional networks; IC, inflammatory cell; FC, fibroblast cell; ADI, adipose; BAC, background; DEB, debris; LYM, lymphocytes; MUC, mucus; SM, smooth
muscle; LSM, locality-sensitive method; LSTM, long short-term memory; MSI, microsatellite instability.
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Figure 2. The algorithm features of artificial intelligence in pathological image analysis of colorectal
cancers from 2015 to 2019 (A) and annual trends (B).

2.2.1. Gland Segmentation

In the gland segmentation category, 25 models were found, and all the models used 165 images of
the Warwick QU dataset from the Gland Segmentation in Colon Histology Images (GlaS) challenge in
2015 (Table 1) [21–37]. The GlaS challenge was a sub-event of the 18th International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI) held to solve the problem
of gland segmentation [50]. As a result, 110 teams participated in the challenge, and the performance
of the top 10 models from the top six teams were available for qualitative analysis. The performance
metrics were as follows: F1-score (accuracy of the detection of each gland, ranging from 1 to 100;
the higher, the better), object Dice (agreement between two sets of the object, ranging from 1 to 100;
the higher, the better), and object Hausdorff (borderline-based analogy between two sets of samples:
the closer to 1, the better). Overall, the teams showed F1-scores up to 0.91, object Dice scores up to
0.89, and object Hausdorff scores up to 45.4 in the offsite dataset (Part A) and similar results in the
onsite dataset (Part B) (Table 1) [21,22]. All the studies after the GlaS challenge also used the same
dataset and showed better performance: F1-scores up to 0.92, object Dice scores up to 0.91, and object
Hausdorff scores up to 39.8 for Part A as well as Part B (Table 1) [23–37].

In the quantitative analysis comparing GlaS and post-GlaS studies, post-GlaS studies showed
better accuracy in both Parts A and B (Table 3 and Figure 3). According to the rank-sum analysis of the
20 models, the model proposed by Ding et al. in 2019 showed the best general performance of all [33].
For individual parameters, other models proposed by Yan [30], Yang [25], and Zhang [27] et al. showed
the best F1-score. The models proposed by Yang [25] and Graham [29] et al. showed the best object
Dice, and the models proposed by Manivannan et al. [31] showed the best object Hausdorff (Table 3
and Figure 3).
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Table 3. The rank-sum analysis of the performance metrics of the gland segmentation studies using GlaS challenge dataset. The best performance in the respective
part appears bold in the table.

Model
No.

Author/Team
Performance Metrics

Rank-Sum Rank-Sum
Rank

Year Ref.F1-Score Object Dice Object Hausdorff

Part A Rank Part B Rank Part A Rank Part B Rank Part B Rank Part B Rank

19 ‡ Ding 0.914 4 0.850 3 0.913 1 0.858 1 39.8 1 93.2 2 12 1 2019 [33]
11 ‡ Yang 0.921 2 0.855 1 0.904 5 0.858 1 44.7 4 97.0 3 16 2 2017 [25]
15 ‡ Graham 0.914 4 0.844 4 0.913 1 0.836 6 41.5 2 105.9 5 22 3 2018 [29]
13 ‡ Zhang 0.916 3 0.855 1 0.903 6 0.838 5 45.3 5 105.0 4 24 4 2017 [27]
16 ‡ Yan 0.924 1 0.844 4 0.902 7 0.840 4 49.9 8 106.1 6 30 5 2018 [30]
14 ‡ Xu 0.893 9 0.843 6 0.908 3 0.833 7 44.1 3 116.8 7 35 6 2017 [28]
17 ‡ Manivannan 0.892 10 0.801 7 0.887 9 0.853 3 51.2 9 87.0 1 39 7 2018 [31]
20 ‡ Raza 0.913 6 0.724 9 0.906 4 0.785 12 49.2 7 134.0 8 46 8 2019 [34]
1 * CUMedVision2 0.912 7 0.716 11 0.897 8 0.781 14 45.4 6 160.3 15 61 9 2015 [21]

21 ‡ Liu 0.874 13 0.710 12 0.875 14 0.791 9 56.6 11 146.6 10 69 10 2019 [35]
2 * ExB1 0.891 12 0.703 13 0.882 12 0.786 10 57.4 15 145.6 9 71 11 2015 [22]
3 * ExB3 0.896 8 0.719 10 0.886 10 0.765 15 57.4 14 159.9 14 71 11 2015 [22]
4 * Freiberg2 0.870 14 0.695 14 0.876 13 0.786 10 57.1 12 148.5 12 75 13 2015 [22]
5 * CUMedVision1 0.868 15 0.769 8 0.867 16 0.800 8 74.6 16 153.6 13 76 14 2015 [21]
6 * ExB2 0.892 10 0.686 15 0.884 11 0.754 16 54.8 10 187.4 17 79 15 2015 [22]
7 * Freiburg1 0.834 16 0.605 17 0.875 14 0.783 13 57.2 13 146.6 10 83 16 2015 [22]

12 ‡ Kainz 0.680 18 0.610 16 0.750 18 0.650 18 103.5 17 187.8 18 105 17 2017 [26]
8 * CVML 0.652 19 0.541 18 0.644 20 0.654 17 155.4 20 176.2 16 110 18 2015 [22]
9 * LIB 0.777 17 0.306 20 0.781 17 0.617 19 112.7 19 190.4 19 111 19 2015 [22]

10 * Vision4GlaS 0.635 20 0.527 19 0.737 19 0.610 20 107.5 18 210.1 20 116 20 2015 [22]
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Figure 3. Comparison between (A) F1-score, (B) object Dice, (C) object Hausdorff of GlaS models,
and Post-GlaS models. Part A means data used as off-site and Part B data used as on-site and A and
B indicate the best model for Parts A and B, respectively. The models by Yan, Yang, and Zhang et al.
show the best F1-scores, the models by Yang, Ding, and Graham show the best object Dice, the models
by Ding and Manivannan et al. show the best object Hausdorff.

2.2.2. Tumor Classification

In the tumor classification category, there were eight models, most of which were designed to
classify the dataset into two to six specific categories, mostly according to tumorigenic stages such as
normal, benign hyperplasia, adenoma (also called intraepithelial neoplasia or precancerous lesion),
adenocarcinoma, etc., or histologic subtypes of colonic polyps or adenocarcinomas (Table 2) [38–45].
The size of the datasets varied greatly from 30 to 154,302 patches (27–4036 whole slide images (WSIs)).
Most studies did not describe in detail the annotation process such as the number of participating
specialists, which represent the quality of the dataset. Considering that at least 2000 datasets per
class are generally suggested for the classification models, the dataset size of most studies was
insufficient for a high level of evidence. Because each model has an individual focus and datasets
with different characteristics, a direct comparison between models was meaningless and impossible.
Thus, the absence of a standardized dataset or classification system was a major limitation of all the
studies. Although most studies showed good performance with generally high sensitivity (up to 95.1%),
specificity (up to 92.7%), area under the curve (AUC, up to 0.99), and accuracy (up to 99.2%), the evidence
level of each model seemed to be not high enough because of the aforementioned limitations.

2.2.3. Tumor Microenvironment Analysis

In tumor microenvironment analysis category, four models were included, each of which used
a different strategy to identify the CRC microenvironment [20,46–48]. Three models focused on the
classification of the cell types (into four to nine cell types, such as epithelial, inflammatory, fibroblast,
and others or adipose, background, debris, lymphocytes, mucus, smooth muscle, normal mucosa,
stroma, and cancer epithelium) [20,46,48], while another model focused on the detection of immune
cells (CD3+ and CD8+ cells) using the immunohistochemistry (IHC) [47]. The results of each study
presented varying outcomes using different kinds of performance metrics. Although it is not easy to
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simplify the performance of these studies, the recent one showed a surpassing Kappa value of 0.72 with
the U-Net model compared with the results given by the expert pathologists (Kappa: 0.640) [47].

2.2.4. Prognosis Prediction

Only three models have been developed for prognosis prediction [20,45,49]. Bychkov et al.
employed 420 tissue microarray (TMA) WSIs to predict five-year disease-specific survival of patients
and achieved an AUC of 0.69 [49]. Kather et al. used more than 1000 WSIs from three institutions to
predict the prognosis using histological slides and achieved up to 99% accuracy [20], and another model
by the same author trained the ResNet model to detect microsatellite instability (MSI) directly from
histological images and achieved AUC of 0.77 for The Cancer Genome Atlas (TCGA)–formalin-fixed
paraffin-embedded samples (DX), and 0.84 for TCGA-snap-frozen samples dataset (KR) [45].

3. Discussion

In this study, we found that most studies thus far are in the elementary stage with datasets of a
small scale with low information, although the results are quite promising with acceptable performance.
In our review, we identified several challenges in the appropriate adoption of AI for the pathological
diagnosis of CRC.

3.1. Challenges in Pathological Diagnosis of CRC

3.1.1. Small Tissue Artifacts

Pathological diagnosis of the colonoscopy-biopsied CRC tissue is a challenging task because of
the small size of the tissue sample and the squeezing and cauterization artifacts that occur during
sampling [51]. These artifacts within a small tissue sample can lead to the interpretational error in
benign versus malignant.

3.1.2. Regenerative Atypia

It is challenging to differentiate the premalignant process such as adenomatous polyps from
the changes within the reparative process. Colonic mucosa is one of the most highly regenerative
tissues in the human body owing to its frequent exposure to temporary infection or inflammation.
There are also several chronic inflammatory conditions such as inflammatory bowel disease including
Crohn’s disease and ulcerative colitis. In these clinical situations, regenerative activity is increased
for a long time, and nuclear and structural atypia is often found, which leads to misdiagnosis of
adenoma [51]. Making an accurate diagnosis can be very challenging even for expert pathologists in
small biopsy samples.

3.1.3. Inter-Observer Variation in Adenoma Grading and Subtype Classification

The classification system of premalignant neoplasms of CRC is still under debate among all
pathologists worldwide. Generally, the Vienna and Japanese classification systems are being widely
used by Western and Eastern pathologists, respectively [6,7]. However, there is a diagnostic difference
between the two systems. Most Western pathologists use tumor invasion as a diagnostic feature for
carcinoma, while Eastern pathologists rely on glandular and nuclear features of the tumor cells [6,7].
A previous study showed that the histological concordance between both classifications was 15%
(three out of 20 cases) [8]. In 2000, an international panel of expert pathologists proposed new
classification criteria to resolve these discrepancies and classify colorectal neoplasia into five types.
Category 1 and 2 tumors are negative for neoplasia/dysplasia. Category 3 includes low-grade
adenoma/dysplasia, Category 4 includes high-grade adenoma/dysplasia, and Category 5 involves
invasive lesions carrying a higher risk of metastases [52]. However, as the invasion beyond the
basement membrane is difficult to define, neither Western nor Japanese pathologists were able to
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differentiate high-grade adenoma and intramucosal carcinoma in a reliable manner in many cases [8,52].
Hence, there is a need for robust software that can increase the reliability of diagnosis.

3.1.4. Importance of Tumor Microenvironment in CRCs

The tumor microenvironment (TME) has become the key to understanding the tumorigenesis and
tumor progression of CRC. TME refers to the mutual interaction between tumor cells, immune cells,
blood vessels, extracellular matrix proteins, etc. [53]. It is well known that CRCs with tumor-infiltrating
lymphocytes (TILs) have better overall and disease-free survival and are closely related to MSI and
CpG island methylator phenotype (CIMP) [54–56]. Recently, these facts have been highlighted by the
emergence of immune checkpoint inhibitors such as PD-L1 (programed death-ligand 1) inhibitors.
Various ongoing trials found improved progression-free survival in patients with MSI-high CRC [57].

However, the quantitative characterization of TME is a very challenging task for the pathologist
to differentiate precisely due to heterogeneity of cells. Conventionally, the expert pathologist uses a
three-tier system, namely, mild, moderate, and severe, to measure the TME; however, there are still
inter-observer and intra-observer variations and reproducibility issues between pathologists [58,59].
Hence, there is an urgent need for automatic recognition software that can precisely quantify the TME.

3.1.5. Prognostic Prediction in CRCs

Currently, evaluation of the patient’s prognosis largely depends on the tumor-node-metastasis
(TNM) system of the American Joint Committee on Cancer (AJCC) and is the best predictor used
to guide therapy [60]. However, in stage II patients, for example, the sub-stage (IIA, IIB, and IIC)
depends on only the depth of tumor invasion (T stage, T3, T4a, T4b, respectively) but not on lymph
node metastasis (N stage, N0). Although the current standard treatment for stage II patients is
surgery without neoadjuvant or adjuvant therapies, some patients experience tumor recurrence
probably due to potential lymph node metastasis, and the current TNM staging system cannot identify
these patients [61,62]. This represents the need for innovative staging system such as computerized
techniques using AI.

Recently, one of the most popular fields in pathological diagnosis is AI that directly predicts patient
prognosis and response to treatment from histopathological slides to facilitate precision medicine [63].
Up until now, although certain histologic features such as tumor grade and subtype have been used
significant prognostic factors so far, direct linking of CRC images with survival outcomes remains
largely unexplored. [63].

3.2. Application of Deep Learning Models in CRC Pathological Diagnosis

3.2.1. Gland Segmentation

Most cancers in the human body arise from two kinds of cells: Epithelial cells, leading to
carcinomas; and stromal cells, leading to sarcomas. For this reason, differentiating epithelial tissue
(mostly glands) from stroma is a fundamental step in the process of the pathological diagnosis [64].
Approximately 90–95% of carcinomas may arise from glands such as salivary glands, breast, prostate,
upper and lower GI tracts, sweat glands, exocrine pancreas, and the biliary tract [64]. In these
gland-derived carcinomas, the so-called adenocarcinomas, the structure, shape, and size of the glands
are very important features for grading [64]. The GlaS challenge in 2015 was held to solve this problem.
In total, 110 teams participated in the challenge and developed an optimal segmentation model using
a dataset of 165 patch images with annotation from 16 CRC WSIs (Warwick QU dataset, Munich,
Germany, [22]. The dataset consists of a training part (37 benign and 48 malignant images), a test part
A (33 benign and 27 malignant images), and a test part B (four benign and 16 malignant images) [22].
As a result, the CUMedVision model developed by Chen et al. ranked first in the challenge [21,22].
In this study, a fully trained convolutional network-based deep contour-aware network (FCN-DCAN)
model was proposed that produces the probability map directly with a single forward propagation.
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One of the main advantages of their model is that it can be easily generalized to biopsy samples with
different types of histopathological grades, including malignant and nonmalignant cases. In addition,
their model can segment the gland objects and contours simultaneously instead of an independent
task [21].

After the GlaS challenge, most studies tried to enhance the design of the model, and some of the
studies used additional datasets for better performance. In our comparison, the model proposed by
Ding et al. in 2019 showed the best performance of all, thus far, according to the rank-sum analysis
of three parameters (Table 3). They added a colorectal adenocarcinoma gland (CRAG) dataset for
training and developed a three-class classification multi-scale fully convolutional network model
(TCC-MSFCN) (Figure 4) [33]. The model showed better performance owing to its design by combining
features such as dilated convolution, high-resolution branch, and residual structure. The foremost
advantage of this model is that the MSFCN model can also segment the glands with a variable dataset,
and TCC can precisely differentiate very closely spaced glands. In addition, they performed a series of
experiments with a variable dataset to check the robustness of their combined features [33].

Figure 4. Example of colon cancer segmentation. The flow chart of the three-class classification
multi-scale fully convolutional network model. The left side represents the training process and the
right side represents the inference. The glands are labeled by different colors at last. Figure 2 in
Ding et al. [33]. Reprinted with permission from the authors [33]. Copyright (2019), Neurocomputing
published by ELSEVIER.

3.2.2. Tumor Classification

Several deep learning models have also been developed to reduce the intra- or inter-observer
variation when classifying tumors into various subtypes. In a recent study conducted by a Dutch group
about intra- and inter-observer variations on the diagnosis of 66 slides of stage IV CRC, there was
moderate agreement among 12 pathologists (kappa = 0.50) and a substantial intra-observer agreement
among eight pathologists (kappa = 0.71), which represent the current subjectivity of the pathological
diagnosis process and the need for more reproducible interpretations [65].

Although all eight studies in this category showed very high-performance results, they should be
interpreted with caution, considering some limitations of these studies. In most studies, cropped or
patch images rather than WSIs were used for training (Figure 5). The cropped images from one WSI
include similar histological features because they are all from one CRC patient, even though thousands
of cropped images were used. In terms of increasing the generalization of the algorithm, millions
of patches from fewer than dozen WSIs cannot be compared with thousands of WSIs. In this sense,
only one study conducted by Lizuka et al. that used 4036 CRC WSIs, seems to be noteworthy [44].
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Figure 5. Example of histological classification of CRC. The classification workflow. First, the coordinates
of the region of interest are extracted from the original images. Using those images and the extracted
coordinates, images are cropped to 256 × 256 pixels. Images are the converted to numpy format for
efficiency, shuffled, and separated to training and validation sets at a ratio of 9:1. Finally, the training
set is fed to the modified VGG model for training; after each epoch, the training and validation sets’
prediction evaluated. Figure 2 in Yoon et al. [41]. Reprinted with permission from the authors [41].
Copyright (2018), Journal of Digital Imaging published by Springer Link.

In terms of the quality of annotation as well as the scale of training data, most studies did not report
enough information on the annotation process, such as how many pathologists were involved, how the
ground truth data for validation were prepared, and how the disagreement between pathologists
were resolved.

Regarding the validity, it is generally recommended to prepare the training data annotation with
many pathologists as possible to minimize inter-observer variation. In addition, it is also recommended
to perform external cross-validation using datasets from external institutions or publicly available
data such as The Cancer Genome Atlas (TCGA) or GTEx Histological Images [66]. In this context,
only Kather et al. study used external validation dataset from the Darmkrebs Chancen der Verhütung
durch Screening (DACHS) study to validate the performance of their model [45].

Another factor that precludes direct comparison of the model is the existence of a different
classification system for precancerous lesions. The classification system in each study was made
arbitrarily from two to six classes, which is also due to the difference in interpretational opinions
between the Japanese and Vienna systems.

Thus, any conclusions based on these records involve a significant level of uncertainty. More studies
with a higher number of datasets with more qualified annotations with appropriate validation are
required for future studies.
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3.2.3. Tumor Microenvironment Analysis

In most TME studies, a combination of classification and segmentation was used, sometimes
with the adoption of IHC slides. Shapott et al. designed a CNN model that classified epithelial,
inflammatory, fibroblast, and other cells (Figure 6). The WSIs were segmented into the background
(no tissue present) and foreground (different tissue present), and the images were cropped into
500 pixels in width for input, achieving an average of 65% detection accuracy and 76% classification
accuracy [48]. Interestingly, they also found a significant association between increased fibroblast
cells and the presence of venous invasion, metastasis, lymphatic invasion, and residual tumor [48].
In another study by Siderska-Chadaj et al. used 28 IHC WSIs to train the CNN-based models that
can automatically detect and differentiate T lymphocytes using CD3 and CD8 IHC. It showed good
accuracy with reasonable robustness [47].

Figure 6. Example of microenvironment analysis from CRC slides. (A) Histopathology image.
(B) Foreground mask. (C) Tiling, with sampled patches. (D) Sampled patch. (E) Cells identified by the
algorithm. (F) Histogram of cell frequencies. Figure 1 in Shapcott et al. [48], Reprinted with permission
from the authors [48]. Copyright (2019), the Frontiers in Bioengineering and Biotechnology published
by Frontier.

3.2.4. Prognosis Prediction

Prognosis prediction based on H&E images is still in its elementary stage with many limitations.
In both studies in this category, we found that the training data were relatively limited to obtain
sufficient generalization. For example, Bychkov et al. used 420 TMA WSIs (Figure 7). Although it
showed a better performance in the prediction of disease-specific survival with a higher AUC of
0.69 than human experts (0.57–0.58), the possibility of overfitting cannot be ruled out given the small
sample size [49]. In another study conducted by Kather et al., the model classified nine types of
tissue, namely, adipose, background, debris, lymphocytes, mucus, smooth muscle, normal mucosa,
stroma, and cancer epithelium. Using the five tissue classes that were found to be associated with poor
prognosis, and they developed a prognostic metric called “deep stroma score,” which is independently
associated with recurrence-free survival (p = 0.0004) and overall survival (p = 0.008) [20]. Furthermore,
in another study performed by the German group, 154,302 tiles were used that directly showed a direct
correlation of MSIness (Fraction of MSI-predicted patches) with interferon-γ signature and PD-L1
expression. Moreover, using DACHS cohort dataset showed the worse overall survival (p = 0.0207) in
high-MSIness group [45].
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Figure 7. Example of patient prognosis of CRC patients. Overview of the image analysis pipeline
and long short-term memory (LSTM) prognostic model. Images of tissue microarray (TMA) spots
are characterized by a pre-trained convolutional neural network (VGG-16) in a tile-wise manner.
The VGG-16 network produces a high-dimensional feature vector for each tile from an input image.
These features then serve as inputs for classifiers trained to predict five-year disease-specific survival
(DSS) (a). The long short-term memory (LSTM) network slides through the entire image of the tissue
microarray spot to jointly summarize observed image tiles and predict the patient risk score (b). Figure 1
in Bychkov et al. [49], copyright 2018 the author(s), reprinted from the Scientific Reports published
by Nature. This is an open access articles under the term of the Creative Commons attribution-Non
Commercial-NoDerivs License.

Although limited, there is a possibility that pathologic images using deep learning can predict the
therapeutic effects of chemotherapy or molecule-targeted therapy. More studies on this subject need to
be performed in the future.

3.3. Limitation of This Study

In this review, we compared GlaS and post-GlaS models using three parameters. However,
it should be interpreted carefully because there are several issues according to the metrics that has
been used in the comparison of model performance and the handling method of such international
challenges or competitions. Maier-Hein et al. mentioned, in their review paper about AI competitions,
that slight changes in these metrics can shift the rankings so drastically that the lowest-ranking entry
became the winner [67]. Consequently, they claimed that when releasing the results of each competition
entry, it is important to reveal the details of how the metrics were evaluated [67]. In addition, as the
classical performance metrics are comparative parameters that reflect one-dimensional performance
of the model, there has been a demand for development of novel parameters. The performance
of the deep-learning algorithm should be evaluated more comprehensively using the variety of
new parameters.
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4. Materials and Methods

4.1. Literature Search

This study was approved by the Institutional Review Board of the Catholic University of Korea,
College of Medicine (SC20ZISE0050). We searched major electronic databases for relevant articles
published in medical journals between January 2000, and January 2020, with abstracts written in English.
The databases included MEDLINE (PubMed), Cochrane Library, and EMBASE databases. The query
terms used were “colorectal neoplasm,” “gland segmentation,” “colonic neoplasms,” “pathology,”
“histology,” “artificial intelligence,” “deep learning,” “image processing,” “computer-assisted,”
“machine learning,” “colorectal histological deep learning.” Among the searched articles,
non-English-language articles and articles without available full texts were excluded. Further references
were obtained by cross-referencing the key articles. The records were retrieved and managed with
EndNote X9 (Bld 10136, Thomson Reuters, New York, NY, USA).

4.2. Study Selection, Reviewing, and Data Retrieval

The process of study selection and review is depicted in Figure 1. After the initial search, duplicate
records were removed from the results. Then, the titles and abstracts of the studies were screened by
two independent reviewers (N.T. and Y.C.). Case reports, reviews, letters, conference proceedings,
and posters were excluded. Original studies about deep learning in pathological image analysis were
included for full-text review. Additionally, the cited references in each study were manually searched
and reviewed to identify any additional relevant studies.

5. Conclusions

Overall, our study concluded that artificial intelligence showed promising results in terms of
accuracy for diagnosing CRC. However, the scale and quality of the training and validation datasets
of most of the studies were relatively limited to apply this technique in clinical practice. In addition,
external cross-validation, especially in tumor classification, is required. Therefore, future studies with
a larger number of datasets with high-quality annotations and external cross-validation are required
for routine practice-level validation. Now, we are one step behind the clinical application of AI in
pathology to replace the conventional microscopic diagnosis.
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