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Abstract: Type 2 DM (T2D) results from the interaction of the genetic and environmental risk factors.
Vascular endothelial growth factor (VEGF), angiotensin I-converting enzyme (ACE), and MicroR-
NAs (MiRNAs) are involved in important physiological processes. Gene variations in VEGF, ACE
and MiRNA genes are associated with diseases. In this study we investigated the associations
of the VEGF-2578 C/A (rs699947), VEGF-2549 insertion/deletion (I/D), and ACE I/D rs4646994
and Mir128a (rs11888095) gene variations with T2D using the amplification refractory mutation
system PCR (ARMS-PCR) and mutation specific PCR (MSP). We screened 122 T2D cases and
126 healthy controls (HCs) for the rs699947, and 133 T2D cases and 133 HCs for the VEGF I/D
polymorphism. For the ACE I/D we screened 152 cases and 150 HCs, and we screened 129 cases
and 112 HCs for the Mir128a (rs11888095). The results showed that the CA genotype of the VEGF
rs699947 and D allele of the VEGF I/D polymorphisms were associated with T2D with OR =2.01,
p-value = 0.011, and OR = 2.42, p-value = 0.010, respectively. The result indicated the D allele of
the ACE ID was protective against T2D with OR = 0.10, p-value = 0.0001, whereas the TC geno-
type and the T allele of the Mir128a (rs11888095) were associated with increased risk to T2D with
OR = 3.16, p-value = 0.0001, and OR = 1.68, p-value = 0.01, respectively. We conclude that the VEGF
(rs699947), VEGF I/D and Mir128a (rs11888095) are potential risk loci for T2D, and that the D allele
of the ACE ID polymorphism may be protective against T2D. These results help in identification
and stratification for the individuals that at risk for T2D. However, future well-designed studies in
different populations and with larger sample sizes are required. Moreover, studies to examine the
effects of these polymorphisms on VEGF and ACE proteins are recommended.
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1. Introduction

Chronic diseases have often serious impact on the patients, their families and societies.
Choosing an appropriate clinical investigation methodology is always essential to decide
on proper treatment for patients [1,2]. Diabetes mellitus was one of the leading global
causes of death in 2017 [3]. According to the WHO, Kingdom Saudi Arabia (KSA) ranks
second in terms of DM prevalence and it has been estimated that more than 20% of Saudi
population are diabetic [4]. This rate may be one of the highest in the world [4]. DM
has very serious complications and consequences, such as diabetic retinopathy, diabetic
nephropathy, diabetic neuropathy, cardiovascular diseases and amputation. DM is a
metabolic disorder characterized by hyperglycemia. The insufficient insulin secretion
by the pancreatic beta cells leads to the development of type 1 DM (T1DM) [5]. Type 2
diabetes (T2DM) results from the combination of insulin resistance initiated in major tissues,
excessive hepatic production of glucose and pancreatic beta cells’ dysfunction [6]. T2DM
represents more than 90% of all cases of DM [7]. T2D is induced by complex interactions of
genetic and environmental risk factors [8]. Genome wide association studies (GWAS) have
uncovered the association of certain loci with metabolic diseases including T2D [9–15].
Environmental risk factors of T2D include obesity, physical inactivity and unhealthy
diet [7]. The vascular endothelial growth factor (VEGF) is a growth factor expressed in
endothelial cells and is involved in angiogenesis [16]. The VEGF promoter gene variations
(–2578C/A and −1154G/A) have been associated with metabolic syndrome in the Korean
population [17]. Moreover, the VEGF rs10738760 (A/G) SNP was associated with metabolic
syndrome in Iranian and Lebanese populations [18,19]. Angiotensin I-converting enzyme
(ACE) is a nonspecific peptidase with multiple peptide substrates [20]. The ACE converts
the angiotensin-I into angiotensin-II [20]. This conversion leads to the activation of the
angiotensin-I peptide hormone into the vasoconstrictor angiotensin-II [21]. ACE is involved
in important physiologic processes such as blood pressure, development and function of
the kidney, reproduction, and the formation of blood cellular components [20]. The long-
term inhibition of the ACE has been suggested as one of the preventive measures against
T2D [22]. Furthermore, the ACE gene variations were associated with the progression of
carotid artery disease in Slovenian T2D patients [23]. MicroRNAs are short noncoding
RNA molecules that are involved in the regulation of gene expression [24,25]. It has been
reported that there are elevated circulatory levels of miR-128 in patients with T2D and
depression [26]. Moreover, the miR-128a rs11888095 was reported to be associated with
diabetic neuropathy in the Italian population. In the present study we examined the
association of VEGF rs699947 C/A (-2578), VEGF-2549 insertion/deletion (I/D), ACE I/D
rs4646994 and Mir128a (rs11888095) gene variations with T2D in subjects from KSA.

2. Material Methods
2.1. Study Population, Inclusion and Exclusion Criteria

This project was approved by the Research and Studies Department, Directorate
of Health Affairs, Taif, approval No. 229, and by the Research Ethics Committee of the
Armed Forces hospitals, Northwestern Region approval No. R & RE C2016-115. The
population comprised T2D patients vising the hospitals for routine checkup. The study
included patients with clinically confirmed cases of T2D. The study included only citizens
of Saudi Arabia, both males and females. All subjects gave informed consent. A standard
questionnaire was used to document the socio-demographical characteristics such as age,
sex and lifestyle.

The study excluded patients with T1D and patients with any previous history of any
chronic diseases. The healthy controls (HCs) ranged from 20 to 80 years of age, and were
visiting the hospital for a routine checkup. The controls were enrolled from the general
population of the same geographical region. A routine medical check-up was conducted
(CBC, KFT, LFT, etc.) and the history of illness, if detected, was recorded by a health
practitioner. Those who appeared apparently healthy without any history of any significant
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disease, or other chronic diseases, were considered normal. Figure 1 summarizes the
procedure of study from samples collection to the statistical analyses.
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Figure 1. Summary of the study explaining the procedure from sample collection until statistical
analyses. Abbreviations. HCs: healthy controls. ARMS-PCR: amplification mutation system PCR.
MSP: mutation specific PCR.

2.2. Sample Collection and Genomic DNA Extraction

All patient specimens were timed around the routine drawing of blood that was
the part of a routine workout, and hence did not require additional phlebotomy. About
3 mL of peripheral blood was collected by venipuncture in EDTA tubes from T2D patients
and from HCs. DNA was extracted using a DNeasy Blood Kit (Cat No. 69506) Qiagen
(Hilden, Germany) as per the manufacturer’s instructions, then the DNA was dissolved
in nuclease-free water and stored at 4 ◦C until use. The extracted DNA was dissolved in
nuclease-free H2O and stored at 4 ◦C until use. The quality of the extracted DNA was
checked by running the sample in 0.8% agarose gel. The quantity of the extracted DNA
was determined by NanoDrop™ (Thermo Scientific, Waltham, MA, USA).

2.3. Genotyping of VEGF rs699947C/A and miR-128a rs11888095 C/T by Amplification
Refractory Mutation System PCR (ARMS-PCR)

VEGF promoter region rs699947 C/A and mirR-128 rs11888095 C > T genotyping was
conducted by the ARMS-PCR [27,28]. The primers were designed using Primer3 software
(Table 1). The ARMS-PCR was performed in a reaction volume of 25 µL containing template
DNA (50 ng), Fo-0.25 µL, Ro-0.25 µL, FI-0.25 µL and RI-0.25 µL of 25 pmol of each primer,
and 10 µL from GoTaq Green PCR Master Mix (2X) (Promega, Madison, WI, USA). The
final volume of 25 µL was adjusted by adding nuclease-free ddH2O. Then, 2 µL of DNA
was added from each subject.

Table 1. Genotyping primers of gene polymorphisms.

Primers for VEGF-rs699947 (−2578) C/A Gene Polymorphism Band Band Size A.Tm

VEGF Fo 5-CCTTTTCCTCATAAGGGCCTTAG-3 Control band 353 bp 58 ◦C

VEGF Ro 5-AGGAAGCAGCTTGGAAAAATTC-3

VEGF FI A 5-TAGGCCAGACCCTGGCAA-3 A-allele 149bp

VEGF RI C 5-GTCTGATTATCCACCCAGATCG-3 C-allele 243bp
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Table 1. Cont.

Primers for VEGF-rs699947 (−2578) C/A Gene Polymorphism Band Band Size A.Tm

ARMS primers for miR128a rs11888095 C/T

miR128 Fo 5-AGTATGGAATTTTTACTGTGTTGTCTGT-3 Control band 441 bp 55 ◦C

miR128 Ro 5-GCCAATTATTGCAAAATATTAAATGTATATGG-3

miR128 FI 5-ATGTATGCTTTGAATACTGTGAAGGAT-3 T-allele 202 bp

miR128 RI 5-ATACTATACCACACTCCTTATATGCATTG-3 C-allele 295 bp

Primers for VEGF -2549 insertion/deletion (I/D) gene polymorphism

VEGF F 5′-GCTGAGAGTGGGGCTGACTAGGTA-3′ D-allele 211 bp 58.8 ◦C

VEGF R 5′-GTTTCTGACCTGGCTATTTCCAGG-3′ I-allele 229 bp

Primer sequence of ACE I/D rs4646994

ACE F 5′- GTGGAGACCACTCCCATCCTTTCT -3′ D 190bp 58 ◦C

ACE R 5′- GATGTGGCCATCAACTTCGTCACGAT -3′ I 490bp

2.3.1. ARMS-PCR Programming

The PCR conditions optimized for VEGF (rs699947C/A) and miR128 rs11888095 C/T
were with an initial denaturation at 95 ◦C for 10 min followed by 40 cycles of denaturation at
95 ◦C for 35 s; annealing Tm was 58 ◦C for VEGF rs699947 and 55 ◦C for miR128a rs11888095
for 40 s, extension at 72 ◦C for 45 s, and a final extension step at 72 ◦C for 10 min.

2.3.2. Gel Electrophoresis for ARMS-PCR Products

The VEGF rs699947 (−2578 C/A) amplification products were separated by elec-
trophoresis. Primers Fo and Ro flank the exon of the VEGF-2578 C/A gene, resulting in a
band of 353 bp to act as a control for DNA quality and quantity. Primers FI and Ro amplify
a wild-type allele (C allele), generating a band of 229 bp, and primers Fo and RI generate a
band of 149 bp from the mutant allele (A allele) Figure 2.
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Figure 2. Genotyping of the VEGF rs699947 C/A using ARMS-PCR in T2D subjects.

The mir128 rs11888095 C/T amplification products were separated by electrophoresis.
Primers Fo and Ro of mir128 rs11888095 C/T resulted in a band of 458 bp to act as a control
for DNA quality and quantity. Primers Fo and Ro amplify a wild-type allele (T allele),
generating a band of 202 bp, and primers Fo and RI generate a band of 295 bp from the
mutant allele (A allele) Figure 3.
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P11, P12, P13, P14; Homozygous TT—P4.

2.4. Genotyping of VEGF I/D and ACE I/D rs4646994 by Mutation Specific PCR (MSP)

VEGF I/D and ACE I/D rs4646994 polymorphisms were genotyped using the MSP.
with primers used by Amle et al. [29] for VEGF D/I. The primers were designed using
the Primer3 software (Table 1). The PCR was undertaken in a reaction volume of 25 µL
containing template DNA (50 ng), F-0. 25µL and R-0. 25 µL of 25 pmol of each primer,
and 10 µL from GoTaq® Green Master Mix (cat no. M7122) (Promega, Madison, WI,
USA). The final volume of 25 µL was adjusted by adding nuclease-free double distilled
water (ddH2O).

2.4.1. MSP Programming

The PCR conditions used were initial denaturation at 95 ◦C for 10 min followed by
40 cycles of 95 ◦C for 35 s, annealing Tm for ACE I/D (58 ◦C) for 40 s and for VEGF I/D
(58.80 ◦C) for 1 min, 72 ◦C for 45 s followed by the final extension at 72 ◦C for 10 min.

2.4.2. Gel Electrophoresis for MSP Products

The MSP of the product of the VEGF-2549 I/D products were separated on 1.5%
agarose. There were two bands of 211 bp for the D allele and 229 bp for the I allele
(Figure 4). The MSP product of ACE-I/D was separated on 1.5% agarose gel. There were
3 bands. The II genotype yielded a 490 bp fragment, the DD genotype yielded a 190 bp
fragment, and ID yielded both 490 and 190 bp fragments (Figure 5).
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2.5. Statistical Analysis

Group differences were compared using Student’s two-sample t-test or one-way
analysis of variance (ANOVA) for continuous variables and chi-squared test for categorical
variables. Deviations from the Hardy–Weinberg disequilibrium (HWD) were calculated
by the chi-square (χ2) goodness-of-fit test. The differences in the VEGF rs699947 C/A,
VEGF-2549 I/D, miR128 rs11888095 C/T and ACE I/D rs4646994 genotype frequencies
between cases and controls were evaluated using the chi-square test. Associations between
alleles and genotypes and the incidence of T2D were estimated with the odds ratios (ORs),
and the risk ratios (RRs). We calculated the risk differences (RDs) with 95% confidence
intervals (CIs). A p-value < 0.05 suggested a significant difference. Statistical analyses were
performed using Graph Pad Prism 6.0 or SPSS 16.

3. Results
3.1. Genotypes Distribution of the Gene Polymorphisms

Our results showed that the VEGF rs699947 C/A genotype distribution was signifi-
cantly different between the cases (34.4, 57.4 and 8.2%) and the healthy controls (46, 38.1
and 15.9%) with a p-value = 0.007 (Table 2). The results also indicated that the distribution
of the VEGF I/D polymorphism was significantly different between the cases (15, 53.4
and 31.6), and the controls (22.6, 57.9 and 19.5) with a p-value = 0.049 (Table 3). More-
over, results indicated that there was significant difference in the genotype distribution
of the ACE I/D between the cases (57.2, 36.2 and 6.6%) and controls (12, 40 and 48%)
with p-value = 0.049 (Table 4). The genotype distribution of the mir128 rs11888095 C/T was
also significantly different between cases (27, 53 and 20%) and the controls (55, 34 and 11%)
with a p-value = 0.0001 (Table 5).

Table 2. The distribution of VEGF rs699947 C/A genotypes in T2D cases and controls.

Subjects n CC % CA % AA % Df X2 C A p-Value

Cases 122 42 34.4 70 57.4 10 8.2 2 9.93 0.63 0.37 0.007
Controls 126 58 46 48 38.1 20 15.9 0.60 0.40

Table 3. The distribution of VEGF-2549 I/D polymorphism genotypes in T2D cases and controls.

Subjects n I % ID % D % Df X2 I D p-Value

Cases 133 20 15 71 53.4 42 31.6 2 6 0.42 0.58 0.049
Controls 133 30 22.6 77 57.9 26 19.5 0.52 0.48
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Table 4. Genotype distribution of ACE I/D rs4646994 between T2D cases and controls.

Subjects n II % ID % DD % I D Df X2 p-Value

Cases 152 87 (57.23%) 55 (36.2%) 10 (6.57%) 0.75 0.25 2 92.43 <0.0001
Controls 150 18 (12%) 60 (40%) 72 (48%) 0.32 0.68

Table 5. Genotype distribution mir128 rs11888095 C/T genotypes in T2D cases and controls.

Subjects n CC CT TT C T Df X2 p-Value

Cases 129 35 (27.13%) 68 (52.71%) 26 (20.16) 0.54 0.46 2 20.06 0.0001
Controls 112 62 (55.35%) 38 (33.92%) 12 (10.70%) 0.73 0.27

3.2. The Association of the VEGF rs699947 C/A SNP with T2D

The results indicated that VEGF rs699947 C/A SNP was associated with T2D, the
CA genotype was associated with T2D with OR (95% CI) = 2.01 (1.17–3.45), RR = 1.42
(1.08–1.87), p-value = 0.011 (Table 6). Our results showed that there was a significant
difference (p-value < 0.05) in the VEGF rs699947 C/A genotype distribution between male
and female cases, and between cases >25 years and cases >40 years (Table 7). The results
also showed that there were significant differences (p-values < 0.05) between different
genotypes of the VEGF rs699947 in the patients with a normal lipid profile and cases with
an abnormal lipid profile (Table 7).

Table 6. Association of VEGF rs699947 C/A SNP with T2D.

Genotypes Healthy Controls T2D Cases OR (95% CI) Risk Ratio (RR) p-Value

(n = 126) % (n = 122) %

Codominant

VEGF–(C) 58 46 42 34.4 1 (ref.) 1 (ref.)

VEGF-(CA) 48 38.1 70 57.4 2.01 (1.17–3.45) 1.42 (1.08–1.87) 0.011 *

VEGF-(A) 20 15.9 10 8.2 0.69 (0.29–1.62) 0.87 (0.64–1.17) 0.363

Dominant

VEGF (C) 58 46 42 34.4 1 (ref.) 1 (ref.)

VEGF-(CA + A) 68 54 80 65.6 1.62 (0.97–2.71) 1.26 (0.99–1.60) 0.05

Recessive

VEGF-(C + CA) 106 84 112 91.8 1 (ref.) 1 (ref.)

VEGF–(A) 20 16 10 8.2 0.47 (0.211–1.05) 0.72 (0.54–0.97) 0.06

Allele

VEGF-(C) 164 154 1 (ref.) 1 (ref.)

VEGF-(A) 88 90 1.08 (0.75–1.57) 1.04 (0.86–1.25) 0.64

* Statistically significant difference.

Table 7. Association of VEGF rs699947 C/A genotypes with T2D patients’ characteristics.

Clinical
Feature CC 42 CA 70 AA 10 X2 DF p-Value

Gender

Male 82 18 (14.75%) 58 (47.54%) 6 (4.91%) 19.32 2 0.0001 *

Female 40 24 (19.67%) 12 (9.83%) 4 (3.27%)
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Table 7. Cont.

Clinical
Feature CC 42 CA 70 AA 10 X2 DF p-Value

Age

>40 91 36 (29.50%) 50 (40.98%) 5 (4.09%) 6.3 2 0.042 *

>25 31 6 (4.8%) 20 (9.6%) 5 (1.9%)

HbA1c%

>6 102 36 (29.50%) 60 (49.18%) 6 (4.91%) 4.43 2 0.100

<6 20 6 (4.91%) 10 (8.19%) 4 (3.27%)

TG mg/dl

<200 49 25 (51%) 20 (40.81%) 4 (8.16%) 10.16 2 0.005 *

>200 73 17 (23.28%) 50 (68.49%) 6 (8.21%)

TC mg/dl

<200 64 12 (18.75%) 45 (70.31%) 7 (10.93%) 14.12 2 0.006 *

>200 58 30 (51.72%) 25 (43.10%) 3 (5.17%)

LDL-C
mg/dl

<100 66 32 (57.57%) 30 (45.45%) 4 (6.06%) 12.6 2 0.0018 *

>100 56 10 (10.85%) 40 (71.42%) 6 (10.71%)

HDL-C
mg/dl

<55 49 9 (18.36%) 34 (69.38%) 6 (12.24%) 8.32 2 0.015 *

>55 73 31 (42.46%) 38 (52%) 4 (5.47%)

VITD
ng/mL

<30 16 6 (5.8%) 10 (9.6%) 0 (0%) 1.343 4 0.854

>30 14 5 (4.8%) 8 (7.7%) 1 (1%)

The association of VEGF rs699947 C/A genotypes with T2D patients characteristics. The gender, age, HbA1c%, cholesterol mg/dl, LDL-C
mg/dl and HDL-C mg/dl are based on data for 122 cases. For the vitamin D ng/mL (VITD), data was collected for 30 cases. * Statistically
significant difference.

3.3. The Association of VEGF-2549 I/D Polymorphism with T2D

Results indicated that the D allele of the VEGF I/D at the −2549 position was associ-
ated with T2D with OR (95% CI) = 1.43 (1.02–2.03), RR = 1.01 (0.83–1.21), p-value = 0.037
(Table 8). The results also showed that there were significant differences (p-values < 0.05) be-
tween different genotypes of the VEGF-2549 I/D polymorphism in patients with a normal
lipid profile and patients with an abnormal lipid profile (Table 9).

Table 8. Association of VEGF-2549 I/D polymorphism with T2D.

Genotypes Healthy Controls T2D Cases OR (95% CI) Risk Ratio (RR) p-Value

(n = 133) % (n = 133) %

Codominant

VEGF–(I) 30 22.55 20 15.03 1 (ref.) 1 (ref.)

VEGF-(ID) 77 57.89 71 53.38 1.38 (0.72–2.65) 1.15 (0.87–1.51) 0.32

VEGF-(D) 26 19.54 42 31.57 2.42 (1.14–5.11) 1.56 (1.07–2.28) 0.010 *

Dominant
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Table 8. Cont.

Genotypes Healthy Controls T2D Cases OR (95% CI) Risk Ratio (RR) p-Value

VEGF (I) 30 22.55 20 15.03 1 (ref.) 1 (ref.)

VEGF-(ID + D) 103 77.44 113 84.96 1.64 (0.88–3.07) 1.25 (0.96–1.64) 0.090

Recessive

VEGF-(I + ID) 107 80.45 91 68.42 1 (ref.) 1 (ref.)

VEGF–(D) 26 19.54 42 31.57 1.89 (1.08–3.33) 1.37 (0. 98–1.91) 0.025 *

Allele

VEGF-(I) 133 100 111 83.45 1 (ref.) 1 (ref.)

VEGF-(D) 129 97 155 116.54 1.43 (1.02–2.03) 1.01 (0.83–1.21) 0.037 *

* Statistically significant difference.

Table 9. Association of VEGF-2549 I/D genotypes with T2D patients’ characteristics.

Clinical Feature n D % I % ID % X2 DF p-Value

Gender

Female 40 7 (6.5%) 9 (8.4%) 24 (22.4%) 1.498 2 0.473

Male 67 14 (13.1%) 9 (8.4%) 44 (41.1%)

Age

>25 16 4 (3.7%) 1 (0.9%) 11 (10.3%) 1.607 2 0.448

>40 91 17 (15.9%) 17 (15.9%) 57 (53.3%)

HbA1c%

<6 1 0 (0.0%) 0 (0.0%) 1 (0.9%) 0.579 2 0.749

>6 96 21 (19.6%) 18 (16.8%) 67 (62.6%)

TC mg/dl

<200 65 12 (11.2%) 7 (6.5%) 46 (43.0%) 11.411 4 0.022 *

>200 17 6 (35.29%) 2 (11.76%) 9 (52.94%)

TG mg/dl

<200 65 12 (18.46%) 7 (10.76%) 46 (70.76%) 11.0 2 0.004 *

>200 31 12 (38.70%) 8 (16.12%) 11 (35.48%)

LDL-C mg/dl

<100 34 4 (3.7%) 2 (1.9%) 26 (24.3%) 11.364 4 0.023 *

>100 51 14 (13.1%) 8 (7.5%) 29 (27.1%)

HDL-C mg/dl

<55 26 17 (15.9%) 9 (8.4%) 45 (42.1%) 13.106 4 0.011 *

>55 12 1 (0.9%) 0 (0.0%) 11 (10.3%)

VIT D ng/ml

<30 22 3 (2.8%) 2 (1.9%) 17 (15.9%) 2.777 4 0.596

>30 15 3 (2.8%) 2 (1.9%) 10 (9.3%)

* Statistically significant difference. Association of VEGF-2549 I/D Genotypes with T2D Patient’s Characteristics.

The gender and age are based on data for 107 cases. HbA1c% is based on data for
97 cases, cholesterol mg/dl—82 cases, LDL-C mg/dl—85 cases, HDL-C mg/dl—38 cases,
and vitamin D ng/mL (VIT.D)—37 cases.
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3.4. Association of ACE I/D rs4646994 Polymorphism with T2D Patients

Results showed that the ACE I/D polymorphism was associated with T2D (Table 10).
The ACE–ID genotype was associated with T2D with OR = 0.18 (0.101–0.354), RR = 0.32
(0.208–0.518), p-value = 0.0001 (Table 10). The ACE–DD genotype was also associated with
T2D with OR = 0.128 (0.0125–0.0661), RR = 0.19(0.1272–0.2996), p-value = 0.0001 (Table 10).
The D allele was associated with T2D with OR = 0.10 (0.12–0.2), RR = 0.40 (0.3–0.5),
p-value = 0.0001 (Table 10). Our results indicated that there were a significant different in
ACE I/D genotype distribution between cases aged >25 years and cases aged <25 years
(Table 11). The results showed that there was a significant difference (p-value = 0.02) in the
ACE I/D genotype distribution between cases with normal and cases with elevated HbA1c
(Table 11). Moreover, results showed that there were significant differences (p-values < 0.05)
in the ACE I/D genotype distribution in cases with normal and abnormal lipid profiles
(Table 11).

Table 10. Association of ACE I/D polymorphism with T2D.

Genotypes Healthy Controls T2D Cases OR (95% CI) Risk Ratio (RR) p-Value

(n = 150) (n = 152)

Co-dominant

ACE–II 18 87 1 (ref.) 1 (ref.)

ACE–ID 60 55 0.18 (0.1–0.35) 0.32 (0.208–0.518) 0.0001 *

ACE–DD 72 10 0.128 (0.01–0.1) 0.19
(0.1272–0.2996) <0.0001 *

Dominant

ACE–II 18 87 1 (ref.) 1 (ref.)

ACE–(DI+DD) 132 65 0.10 (0.06–0.18) 0.25
(0.1661–0.3940) <0.0001 *

Recessive

ACE–(II+DI) 78 142 1 (ref.) 1 (ref.)

ACE–DD 72 10 0.076 (0.04–0.15) 0.40 (0.3–0.49) <0.0001 *

Allele

ACE–I 96 229 1 (ref.) 1 (ref.)

ACE–D 204 75 0.10 (0.1–0.2) 0.40 (0.33–0.48) 0.0001 *

Over dominant

ACE–II+DD 90 97 1 (ref.) 1 (ref.)

ACE–ID 60 55 0.85 (0.5–1.4) 0.92 (0.73–1.16) 0.4910

* Statistically significant difference.

Table 11. Association of ACE I/D polymorphism genotype with patients’ characteristics.

Clinical Feature n n = 152 II DI DD X2 DF p-Value

Gender

Male 44 25 17 02 0.49 2 0.78

Female 108 62 38 08

Age

>25 96 41 46 09 22.62 2 0.0001 *

<25 56 46 09 01
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Table 11. Cont.

Clinical Feature n n = 152 II DI DD X2 DF p-Value

HBA1c%

>6 103 52 45 06 7.79 2 0.020 *

<6 49 35 10 04

TG mg/dl

<200 80 46 25 09 6.74 2 0.0344 *

>200 72 41 30 01

TC mg/dl

<200 99 50 43 06 6.49 2 0.039 *

>200 53 37 12 4

LDL-C mg/dl

<100 82 37 30 01 7.19 2 0.022 *

>100 70 50 25 09

HDL-C mg/dl

<55 104 58 42 04 5.47 2 0.64

>55 48 29 13 06

* Statistically significant difference.

3.5. Association of miR128 rs11888095 C/T SNP with T2D Patients

Results showed that the CT genotype of the miR128 rs11888095 was associated with
T2D with OR = 3.16 (1.8–5.6), RR = 1.78 (1.3–2.4), p-value = 0.0001 (Table 12). The results
also indicated that the T allele was associated with T2D with OR = 1.68 (1.13–2.5), RR = 1.36
(1.0695–1.7400), p-value = 0.0105 (Table 12). Our results showed that there was a significant
difference (p-value = 0.031) in the miR128 rs11888095 genotype distribution between male
and female cases (Table 13). Moreover, the results showed that there was a significant
difference (p-value = 0.021) in cases aged <25 years and cases aged >25 years (Table 13).
Moreover, results showed that there a significant difference (p-value = 0.0001) in cases with
normal and cases with elevated HbA1c (Table 13). Furthermore, results showed that there
was a significant difference (p-values < 0.05) in the genotype distribution of cases with
normal and cases with elevated lipid profiles (Table 13).

Table 12. Association of miR128 rs11888095 C/T with T2D.

Genotypes Healthy
Controls T2D Cases OR (95% CI) Risk Ratio (RR) p-Value

(n) (n)

Codominant

miR128 –(C) 62 35 Ref Ref

miR128-(CT) 38 68 3.16(1.8–5.6) 1.78(1.3–2.4) 0.0001 *

miR128-(T) 12 26 3.83(1.7–8.5) 2.0 (1.2–3.3) 0.0010 *

Dominant

miR128-(C) 62 35 Ref Ref

miR128-(CT + T) 50 94 3.3(1.9–5.7) 1.84(1.4063–2.4097) <0.0001 *

Recessive

miR128-(C + CT) 100 103 Ref Ref

miR128–(T) 12 26 3.3(1.9–5.7) 1.55(0.96–2.5) <0.0001 *
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Table 12. Cont.

Genotypes Healthy
Controls T2D Cases OR (95% CI) Risk Ratio (RR) p-Value

Allele

miR128-(C) 112 129 Ref Ref

miR128-(T) 62 120 1.68(1.13–2.5) 1.36 (1.1–1.7) 0.0105 *

* Statistically significant difference.

Table 13. Association of miR128 rs11888095 C/T genotypes with T2D patients’ characteristics.

Clinical Feature n CC CT TT X2 DF p-Value

Gender 129 35 68 26

Male 40 7 28 05 6.95 2 0.031 *

Female 89 28 40 21

Age

>25 109 26 59 25 7.53 2 0.021 *

<25 20 10 09 01

HBA1c%

>6 82 12 49 21 18 2 0.0001 *

<6 47 23 19 05

TG mg/dl

<200 82 14 48 20 11.84 2 0.0027 *

>200 47 21 20 6

TC mg/dl

<200 85 28 40 17 0.52 2 0.776

>200 44 17 18 9

LDL-C mg/dl

<100 56 08 34 14 8.37 2 0.0152 *

>100 73 27 34 12

HDL-C mg/dl

<55 98 25 54 19 0.96 2 0.6188

>55 31 10 14 07

* Statistically significant difference.

4. Discussion

T2D is developed by a mixture of insulin resistance and impaired secretion of in-
sulin [6]. The VEGF stimulates the cell proliferation, migration and vasopermeability
in many tissues [30]. It has been reported that there is association between the VEGF
expression and metabolic syndrome [31]. Metabolic syndrome is defined as insulin resis-
tance associated with obesity, hypertension and dyslipidemia [31]. It has been suggested
that increased levels of VEGF are associated with increased blood sugar [31]. Our results
showed that there was a significant difference (p-value = 0.007) in the genotype distribution
of VEGF rs699947 C/A between the cases and the controls (Table 2). The CA genotype was
also associated with T2D (Table 6).

Results showed that there was a significant difference (p-values < 0.05) in the VEGF
rs699947 genotype distribution between cases with normal and cases with abnormal lipid
profiles (Table 7). This result is consistent with studies that reported the association of
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VEGF rs699947 with the risk of cardiovascular disease [32,33]. The results also showed
that males with the rs699947 CA genotype and A allele are more susceptible to T2D
than females (p-values < 0.05, Table 7). This result is consistent with studies reporting
higher prevalence of T2D among males than females [34,35]. Our results also indicated
that elder individuals (age > 40) with the CA genotype are more prone to T2D than
younger individuals (<40 years old, p-values < 0.05, Table 6). This is also in agreement
with a previous study that reported that T2D is more prevalent in older individuals in all
populations [36]. We did not observe significant differences in the VEGF rs699947 genotype
distribution in the cases with normal or elevated HBA1c (p-values > 0.05, Table 7). This is
probably because of the relatively small sample size used in this study. This may be one of
the limitations of this study.

The VEGF gene I/D polymorphism is an 18 bp fragment found at the −2549 position
of the promoter region [29]. The results showed that there is a significant difference
(p-value < 0.05) in the genotype distribution of VEGF I/D polymorphism between the
cases and healthy controls (Table 3). The results indicated that the D allele of the VEGF I/D
was associated with T2D (Table 8). Moreover, results indicated that there was a significant
difference (p-values < 0.05) between genotypes of the VEGF I/D polymorphism in the
patients with normal and patients with abnormal lipid profiles (Table 9). Gene variations in
the VEGF gene promoter such as I/D polymorphism were reported to increase expression
of the VEGF [30,37]. Therefore, these results may be in agreement with the result of Zafar
et al., who reported that the increased expression of the VEGF gene has been associated with
metabolic syndromes, such as hypertriglyceridemia [31]. Several previous studies have
implicated the associations of diabetes complications with gene variations at the VEGF [38].
For instance, the VEGF gene at position−7 C/T was reported to be associated with diabetic
neuropathy in a population of British Caucasians [39]. In addition, the−634 G/C SNP in the
5′UTR of the VEGF gene was associated with risk diabetic retinopathy (DR) in the Japanese
population [40]. Furthermore, Buraczynska et al. showed that the VEGF I/D polymorphism
was associated with risk of DR in the Polish population [37]. Churchill et al. reported
the association of the VEGF promoter SNPs rs735286 and rs2146323 with the severity of
DR in the British population [41], whereas Han et al. reported the association of VEGF
gene SNPs rs3025039 and rs833061 with DR in the Chinese population [42]. Furthermore,
the –2578 C/A, rs699947, was associated with diabetic foot ulcers in Iranian and Chinese
Han populations [43,44]. All these studies may be in agreement with our results as they
report the association of VEGF gene variations with diabetes complications, and our results
showed that the VEGF gene variations rs699947 and VEGF I/D polymorphisms were
associated with the risk of T2D (Tables 6 and 8). Furthermore, it has been reported that
the gene variations in the VEGF promoter (e.g., VEGF rs699947 and VEGF I/D) result in
enhanced expression of the VEGF gene [30,37]. The increased expression of the VEGF gene
was associated with insulin resistance [31], and that the neutralization of the VEGF gene
resulted in improvement in insulin sensitivity in the liver and in fat tissues [45]. These
studies may be in agreement with our results, which showed that VEGF rs699947 and
VEGF I/D are associated with T2D risk.

Our results indicated that there was a significant difference in the ACE I/D poly-
morphism genotype distribution between cases and controls (p-value < 0.05, Table 4).
The ACE I/D polymorphism was associated with T2D (Table 10). The results indicated
that the ACE ID genotype and the ACE D allele were associated with decreased risk of
T2D (Table 10). This result may be partially consistent with the results of Al-Serri et al.
(2015) [46], who reported that the I allele of the ACE I/D polymorphism is associated with
T2D in the Kuwaiti population. However, our result is in disagreement with the study of
Al-Rubeaan et al. (2013) [47]. This disagreement may be due to different sample sizes or
different populations. The results indicated that there was a significant difference in the
ACE I/D polymorphism genotype distribution between males and females (Table 11). The
results also showed that there were significant differences in the ACE I/D polymorphism
genotype distribution between cases with elevated and cases with normal HbA1c, and
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between cases with normal and cases with abnormal lipid profiles (Table 11). These results
are perhaps in agreement with studies reporting the association of ACE I/D polymorphism
with dyslipidemia [48,49]. A previous study also proposed the ACE as a target for the
protection of pancreatic beta cells from dysfunction causing T2D [50].

Results indicated the miR128 rs11888095 may be associated with development of T2D
(Tables 5 and 12). The CT genotype and T allele of the miR128 rs11888095 were associated
with risk of T2D (Table 12). This result is consistent with a study reporting that miR128
regulates genes (e.g., Insr, Irs1 and Pik3r1) critical for insulin signaling [51]. Our result is
in partial agreement with a study indicating that the T allele of the miR128 rs11888095 is
associated with diabetic polyneuropathy [52,53]. The results showed that females carrying
the CT genotype and T allele of the miR128 rs11888095 are more susceptible to T2D than
males carrying the CT genotype and T allele (Table 13). Furthermore, individuals with
the CT genotype and T allele aged >25 years are more susceptible to T2D (Table 13). In
addition, results showed that the CT genotype and T allele were more frequently present
in cases with elevated HbA1c (>6%) than in cases with normal HbA1c (<6%) (Table 13).
This result is expected because miR128 rs11888095 may be associated with T2D (Table 12).
Moreover, it was indicated that miR128 rs11888095 may be associated with an elevated
lipid profile (Table 13); this is quite consistent with a study reporting that mir128 regulates
the gene involved in lipid metabolism [54]. Limitations of this study include the small
sample size, and that it is a cross-sectional study, i.e., the samples may have been collected
from cases after the blood chemistry was already maintained. Future longitudinal studies
with larger sample sizes and in different populations are required. Because T2D can be
delayed or prevented by diet modification, weight management, regular exercise and other
factors [55,56], results of the present study can be used (after confirmation in future studies)
in genetic testing and personalized advice to identify and stratify the individuals that at
are risk of developing T2D.

5. Conclusions

We investigated the association of the VEGF promoter gene variations (VEGF rs699947,
VEGF I/D), ACE I/D (rs4646994) and miR128 (rs11888095) with T2D in the Saudi population.
The results showed that the CA genotype of the VEGF rs699947, the D allele of the VEGF
I/D, and the TC genotype and T allele of the Mir128a (rs11888095) were associated with
an increased risk of T2D. Moreover, the results indicated the D allele of the ACE I/D was
protective against T2D. Further well-designed studies with larger sample sizes in different
populations are required. Moreover, proteomics investigations [57–59] to examine the
effects of SNPs on VEGF and ACE function are recommended.
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