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Background. Digestive system tumors (DSTs) have high morbidity and mortality worldwide. This study explored the potential
value of ubiquitin-conjugating enzyme E2 I (UBE2I) in pan-digestive system tumors (pan-DSTs). Methods. Differential expression,
tumor stages, and survival outcomes of UBE2I in pan-DSTs were determined using the GEPIA database. The TIMER database was
used to confirm the correlation of UBE2I expression with pan-DSTs and immune infiltrates. Differential analyses of UBE2I
promoter methylation and protein levels were performed using the UALCAN database. The underlying mechanisms of UBE2I
involvement in pan-DSTs were visualized using interaction networks. The diagnostic value of UBE2I in pan-DSTs was identified
using the Oncomine database. Results. UBE2I was differentially and highly expressed in cholangiocarcinoma (CHOL), pancreatic
adenocarcinoma (PAAD), colon adenocarcinoma (COAD), rectal adenocarcinoma (READ), liver hepatocellular carcinoma
(LIHC), and stomach adenocarcinoma (STAD). According to survival analysis, upregulated UBE2I was associated with adverse
overall and disease-free survival in PAAD and favorable overall survival in READ. UBE2I expression was partially linked to the
purity of immune infiltration in COAD, LIHC, PAAD, READ, and STAD, as indicated by the immune infiltration analysis.
Promoter methylation analysis showed differential and high methylation of UBE2I in PAAD as well as stratified analysis by gender,
nodal metastasis, and race. Protein expression analysis in colon cancer revealed that UBE2I had differential and high expression in
tumors as well as stratified analysis by gender, tumor histology, race, and tumor stage. Mechanism explorations demonstrated that
in COAD and PAAD, UBE2I was involved in spliceosomal snRNP complex, Notch signaling pathway, etc. Diagnostic analysis
indicated that UBE2I had consistent diagnostic value for COAD and PAAD. Conclusions. Upregulated UBE2I may be a diagnostic
and surveillance predictive signature for PAAD and COAD. The potential significance of immune infiltrates and promoter
methylation in PAAD and COAD needs further exploration.

1. Introduction

The term digestive system tumor (DST) describes a group of
tumors that affect diverse digestive system tissues, involving
esophagus, stomach, liver, pancreas, colon, and rectum [1].
The majority of these neoplasms are carcinomas (>90%) [2].
DST remains a leading cause of tumor-related mortality,
causing approximately three million deaths worldwide each
year [3, 4]. In recent years, the number of DST cases has signif-
icantly increased, highlighting the urgent requirement for more

effective treatment strategies [5]. Despite significant advances
in molecular medicine in disease prevention, diagnosis, and
treatment, the prognosis of DSTs remains poor due to their
increasing prevalence, diagnosis at advanced stages, tumor
recurrence, and drug resistance [6]. Identification of novel
molecular targets for DSTs may therefore provide insights into
the development of effective therapeutic drugs.

SUMOylation is a reversible protein posttranslational
modification process in which small ubiquitin-like modifier
(SUMO) proteins are covalently bound to target proteins’
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Figure 1: Differentialexpression and disease progression plots of UBE2I in pan-DSTs. (a) Differential expression patterns of UBE2I in pan-
DSTs from TCGA. (b) Differential expression patterns of UBE2I in pan-DSTs. (c–i) Disease progression plots between UBE2I expression
and tumor stage in CHOL, COAD, ESCA, LIHC, PAAD, READ, and STAD.
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Figure 2: Continued.
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lysine residues [7]. The SUMO system modulates a wide
range of cellular processes, including cell division, chromatin
segregation, transcription, signal transduction, protein sta-
bility, and translocation [7]. Ubiquitin conjugating enzyme
E2 I (UBE2I) is a crucial component of this system, aug-
menting the ubiquitination and proteasomal flux of target
proteins [7]. SUMOylation is an important posttranslational
modification that fine-tunes almost all cellular functions and
pathological processes, playing an important role in human
tumorigenesis [8]. The SUMO pathway can induce cell pro-
liferation, antiapoptosis, and metastatic potential by regulat-
ing proteins involved in carcinogenesis [9–13].

siRNA-mediated suppression of UBE2I is reported to
inhibit LC3-II, an autophagy marker protein, and conversely
promote the expression of SQSTM1/p62, which translocates
ubiquitinated proteins to the proteasome and the auto-
phagosome precursor—phagophore [7]. Furthermore,
increased SUMOylation exerts a cardioprotective effect and
decreases morbidity in proteotoxic cardiac disease [7].
UBE2I was significantly downregulated in patients with
chromosome 9 open reading frame 72 and neurological pro-
granulin mutations as well as sporadic frontotemporal
dementia and age-matched controls [14]. Knockdown of
UBE2I, also known as UBC9, impairs Notch 1-activated
breast epithelial cell proliferation, indicating the potential
value of UBE2I in targeted treatment of Notch-driven breast
cancer [15]. In addition, differentially expressed UBE2I was
observed in all four (clear cell, endometrioid, mucinous,
and serous) subtypes of epithelial ovarian cancer [16].
Another study by Poleshko et al. [17] demonstrated that
enzymes of the SUMO pathway are critical for the mainte-
nance of epigenetic silencing. Furthermore, UBE2I upregula-
tion was reported to be linked to disease development in a
mouse model of necrotizing enterocolitis [18]. However,
limited knowledge is available regarding the expression pat-
terns and functions of UBE2I in digestive disorders, in par-
ticular, DSTs. Accordingly, the motivation and novelty of

the study is to investigate the potential roles played by
UBE2I and its underlying mechanism in pan-DSTs.

2. Materials and Methods

2.1. UBE2I Expression Patterns in Different Types of Cancers
and Normal Tissue Specimens. UBE2I mRNA levels in pan-
cancerous and normal tissue specimens from the UALCAN
database (http://ualcan.path.uab.edu/) [19], a comprehen-
sive, user-friendly, and interactive web resource for cancer
omics data analyses, were examined. Then, the Gene Expres-
sion Profiling Interactive Analysis (GEPIA; URL: http://
gepia2.cancer-pku.cn/#index) [20], a newly developed server
for RNA sequencing expression data analyses of 9736 carci-
noma tissues and 8587 normal counterparts from the TCGA
and GTEx projects, was utilized to determine differential
expression patterns of UBE2I in pan-DSTs using standard
processing pipelines. Correlations of UBE2I expression pat-
terns with tumor stages in pan-DSTs from the GEPIA data-
base were further explored.

2.2. Survival and Immune Infiltrate Analyses in Pan-DSTs.
Survival analyses, including overall survival (OS) and
disease-free survival (DFS), of pan-DSTs from the GEPIA
database were conducted. UBE2I expression in pan-DST
samples was subdivided into either low or high group based
on the median value. Next, we analyzed immune infiltrates
in pan-DSTs in terms of gene expression, survival outcomes,
and somatic copy number alterations (SCNAs) using the
Tumor Immune Estimation Resource (TIMER; URL:
https://cistrome.shinyapps.io/timer/) database [21, 22]. Spe-
cifically, the gene module mainly focused on the correlation
of UBE2I expression with the abundance of immune infil-
trates (B, CD4+ T, and CD8+ T cells, as well as neutrophils
(NP), macrophages (MP) and dendritic cells (DC)), the
survival module primarily discussed the correlation of
survival outcomes with UBE2I expression and immune
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Figure 2: Overall and disease-free survival plots in relation to UBE2I expression in pan-DSTs. (a–g) Overall survival plots based on UBE2I
expression in CHOL, COAD, ESCA, LIHC, PAAD, READ, and STAD. (h–n) Disease-free survival plots based on UBE2I expression in
CHOL, COAD, ESCA, LIHC, PAAD, READ, and STAD.
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infiltrate abundance, and the SCNA module mainly investi-
gated the correlation of somatic CNA with immune infiltrate
abundance.

2.3. Promoter Methylation and Protein Expression Analyses
in Pan-DSTs. Differential promoter methylation of UBE2I
was evaluated by types as well as stratified analyses addition-
ally conducted by gender, race and nodal metastasis in pan-
DSTs. Subsequently, protein levels of UBE2I were analyzed
by types and stratification of colon cancer by gender, race,
tumor stage, and tumor histology (information on other
pan-DSTs was not available from the database).

2.4. Interaction Networks Involving UBE2I in Pan-DSTs. The
potential mechanisms underlying the prognostic significance
of UBE2I in pan-DSTs were further explored. Related genes
coexpressed with UBE2I in these tumors were identified
from the cBioPortal database (URL: https://www.cbioportal
.org/), and the top 100 were used for interaction network
construction [23, 24]. Interaction networks of pathways
(bioprocesses, cellular composition, molecular functions,
immune processes, KEGG pathways, reactome pathways,
and diseases, etc.) were generated with ClueGO plugin of
Cytoscape software v3.7.2 [25, 26]. Gene-gene interaction
(GGI) as well as protein-protein interaction (PPI) networks
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Figure 3: Correlation analysis of UBE2I expression with immune infiltrates. (a–g) Correlations of UBE2I with immune infiltrates (purity, B
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6 Oxidative Medicine and Cellular Longevity

https://www.cbioportal.org/
https://www.cbioportal.org/


were constructed to explore potential interactions at gene
and protein levels using geneMANIA (URL: http://
genemania.org/) [27] and STRING (URL: https://string-db
.org/) [28] databases, respectively.

2.5. Diagnostic Significance of UBE21 in Survival of DSTs.
The diagnostic significance of UBE2I was determined based
on the expression of UBE2I in pan-DSTs obtained from the
Oncomine database (URL: https://www.oncomine.org/
resource/main.html). Specifically, diagnostic significance
was evaluated via receiver operating characteristic (ROC)
curves constructed using both tumor and nontumor data.
The criteria for the identification of potential diagnostic bio-
markers were as follows: (1) those showing differential
expression in tumor and nontumors and (2) those with an
area under curve ðAUCÞ ≥ 0:700 and a P ≤ 0:050. The Can-
cer Genome Atlas (TCGA) datasets, including COAD and
PAAD, Alon colon cancer [29], and Logsdon pancreas [30]
datasets, were used for evaluating the diagnostic value of
UBE2I.

2.6. Statistical Analysis. One-way ANOVA was applied for
gene expression analysis of UBE2I in different tumor stages.
Analyses of differential expression patterns of UBE2I
between carcinoma specimens and normal counterparts, as
well as promoter methylation between groups, including dif-

ferences between tumor and normal, male and female, dif-
ferent races, node metastasis and tumor grade categories,
were performed via the Mann–Whitney U test. Survival
analysis and the correlation of UBE2I expression with
immune infiltrates were made via the log-rank test and the
Spearman’s correlation coefficients, respectively. The Cox
proportional hazard ratio (HR) with a 95% confidence inter-
val (95% CI) was calculated from the survival plots. P ≤ 0:05
indicated the presence of statistical significance.

3. Results

3.1. Differential UBE2I mRNA Expression in Pan-DSTs.
From the TCGA database, we obtained data of 7 different
types of digestive system cancers, namely, cholangiocarci-
noma (CHOL), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC),
pancreatic adenocarcinoma (PAAD), rectal adenocarcinoma
(READ), and stomach adenocarcinoma (STAD). Evaluation
of UBE2I mRNA expression across TCGA cancers revealed
upregulated UBE2I in carcinomas, versus normal counter-
parts, in most cases (Figure 1(a)). Except ESCA, differen-
tially expressed UBE2I was observed across all other pan-
DST types (all P ≤ 0:05, Figure 1(b)). Evaluation of expres-
sion by pan-DST staging showed that UBE2I was differen-
tially expressed in the diver stage in LIHC and STAD
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(P < 0:0001, 0.030; Figures 1(f) and 1(i)) but not in other
DST types (all P > 0:05, Figures 1(c)–1(e), 1(g), and 1(h)).
Specifically, UBE2I expression was increased in stages I-III
while decreased in stage IV in LIHC; however, the converse
expression pattern was observed in STAD.

3.2. Survival Analysis of UBE2I in Pan-DSTs. Survival analy-
ses, including OS and DFS, were carried out to determine the
role of UBE2I expression in the prognosis of pan-DSTs. We
observed favorable prognostic significance of UBE2I for OS
in COAD and PAAD (log-rank [11] P = 0:049, HR ðhighÞ
= 0:620; LR P = 0:003, HR ðhighÞ = 1:900; Figures 2(b) and
2(e)) but not in other DSTs examined (all LP P > 0:050;
Figures 2(a), 2(c), 2(d), 2(f), and 2(g)). In terms of DFS,
UBE2I showed favorable prognostic significance in PAAD
only (LP P = 0:036, HR ðhighÞ = 1:600; Figure 2(l)). It sug-
gests that upregulated UBE2I is beneficial for COAD but
not for PAAD in terms of both OS and DFS.

3.3. Immune Infiltrate Analysis of UBE21 in Pan-DSTs.
Spearman’s correlation coefficients were used to evaluate
the correlation of UBE2I expression with immune infiltrates
in a range of pan-DSTs. The data showed no connection
between UBE2I expression and purity or immune infiltrates
(B cells, CD4+, and CD8+ T cells, as well as NP, MP, and
DC) in CHOL and ESCA (all P > 0:050, Figures 3(a) and
3(c)). In COAD, UBE2I was positively associated with purity
but negatively with CD4+ T cells, MP, NP, and DC (all P
< 0:050, R = 0:143, -0.309, -0.149, -0.104, and -0.162;
Figure 3(b)). In LIHC, a positive association between UBE2I
and B cells, CD8+ T cells, MP, NP, and DC was determined
(all P < 0:050, R = 0:339, 0.355, 0.296, 0.275, and 0.379;
Figure 3(d)). In PAAD, an inverse connection was found
between UBE2I and CD8+ T cells and MP (both P < 0:050,
R = −0:276 and -0.306; Figure 3(e)). In READ, UBE2I was
positively linked to purity but negatively to CD4+ T and
DC (all P < 0:050, R = 0:182, -0.37, and -0.273; Figure 3(f)).
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Figure 5: Immune infiltrate-related survival and UBE2I expression in pan-DSTs. (a–g) Immune infiltrate-related survival and UBE2I
expression in CHOL, COAD, ESCA, LIHC, PAAD, READ, and STAD.
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Figure 6: Continued.
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And in STAD, UBE2I was found to be positively correlated
with CD8+ T cells, NP, and DC but had an inverse associa-
tion with B and CD4+ T cells (all P < 0:050, R = 0:205,
0.178, 0.109, -0.253, and -0.214; Figure 3(g)).

The potential connection between SCNAs of UBE21 and
immune infiltrates was further examined. Notably, no signif-
icant associations were observed between UBE21 and all the
six types of immune infiltrates (B cells, CD4+ T cells, CD8+

T cells, NP, MP, and DC) in CHOL (Figure 4(a)). In con-
trast, SCNAs of UBE2I (deep deletion, arm-level deletion
and arm-level gain) were strongly linked to all the above
six immune infiltrate types in STAD (Figure 4(g)). While
in LIHC, SCNAs of UBE2I were significant only in relation
to neutrophil amplification (Figure 4(d)). In READ, SCNAs
of UBE2I (arm-level deletion and gain) showed statistical
significance in relation to DC (Figure 4(f)). In COAD,
SCNAs of UBE2I were strongly related to B cells, CD8+ T
cells, NP, and DC in terms of arm-level gain (Figure 4(b)).
In PAAD, a close connection between the arm-level deletion
and gain of UBE2I and B cells, CD8+ T cells, and NP was
determined (Figure 4(e)). In ESCA, arm-level gain of UBE2I
showed a significant correlation with the high amplification
of NP and DC (Figure 4(c)).

Next, prognostic analysis was performed based on
immune infiltrates and UBE2I expression in pan-DSTs.
The results showed that neutrophil infiltration was signifi-
cantly correlated with CHOL while macrophage infiltration
was correlated with STAD (log-rank P = 0:044, 0.004;
Figures 5(a) and 5(g)). UBE2I expression showed favorable
prognostic value in COAD, LIHC, and PAAD (log-rank
P = 0:025, 0.009, and 0.004; Figures 5(b), 5(d), and 5(e)),
but not in other cancer types.

3.4. Promoter Methylation Analysis of UBE2I in Pan-DSTs.
Promoter methylation analysis was initially applied to vali-
date differential expression of UBE2I in tumor and normal
samples. Differential methylation of UBE2I was observed in
PAAD, with high methylation in tumor and low methylation
in normal cells (P = 0:003; Figure 6(e)), but not in other
DSTs (all P > 0:050; Figures 6(a)–6(d), 6(f), and 6(g)). Fur-
thermore, upon stratification by gender, differential methyl-
ation of UBE2I was consistently observed in the PAAD
subtype, with high methylation levels in both male and
female populations, compared to their control counterparts
(P = 0:007, 0.005; Figure 6(e)). Stratified analysis by nodal
metastasis showed differential methylation of UBE2I in
ESCA, PAAD, and STAD. Consistently, differential levels
of methylated UBE2I were detected in nodal metastasis
groups of ESCA and STAD, with high methylation at N0
and low methylation at N3 (P = 0:047, 0.029; Figures 6(c)
and 6(g)). In PAAD, high methylated UBE2I levels were
observed at both N0 and N1 stages, compared to normal
samples (both P = 0:005; Figure 6(e)). Upon stratification
by race, differential methylation of UBE2I was detected in
COAD, ESCA, LIHC, and PAAD subtypes. Specifically,
UBE2I methylation levels in COAD and ESCA were signifi-
cantly higher in Asians and Caucasians than in African-
Americans (P = 0:014, 0.036; 0.004, 0.046; Figures 6(b) and
6(c)). Higher methylation in Caucasians and lower methyla-
tion in Asians with LIHC were detected, compared to the
corresponding control groups (P = 0:030, 0.003), with signif-
icant differences between the two races (P = 1:257 ∗ E − 9;
Figure 6(d)). The Caucasian subgroup of PAAD displayed
high UBE2I methylation, compared to the corresponding
control group (P = 0:004; Figure 6(e)).
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Figure 6: Promoter methylation analysis of UBE2I in pan-DSTs and stratified analyses by gender, lymph node, and race. (a–g) Promoter
methylation analysis of UBE2I in pan-DSTs and stratified analyses by gender, lymph node, and race in CHOL, COAD, ESCA, LIHC,
PAAD, READ, and STAD.
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3.5. Protein Expression Analysis of UBE2I in Colon Cancer.
UBE2I was highly expressed in primary colon tumors, versus
normal counterparts (P = 5:839∗E − 28, Figure 7(a)). Strati-
fied analyses by gender, tumor histology, race, and tumor
staging consistently disclosed higher expression in tumor
versus normal tissue. Both sexes in the tumor groups dis-
played higher UBE21 expression than their control counter-
parts (P = 1:603∗E − 16, 1:199∗E − 19; Figure 7(b)). High
expression was detected in both mucinous and nonmuci-

nous types, compared to normal tissue (P = 7:831∗E − 6,
3:132∗E − 28; Figure 7(c)), which was more marked in non-
mucinous than mucinous tumors (P < 0:001). We also
detected high expression in Caucasian, Franco-American,
and Asian populations with colon cancer, compared to their
control counterparts (P = 6:675∗E − 22, 0.001, 7:692∗E − 8;
Figure 7(d)), with even higher expression in Asians versus
Caucasians (P = 0:025). UBE21 was upregulated in tumor
stages I-IV (P = 7:974∗E − 4, 3:419∗E − 16, 1:034∗E − 12,
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Figure 7: Protein expression analysis of UBE2I in tumors. (a–e) Stratified analyses by gender, race, tumor stage, and tumor histology in
colon cancer.

11Oxidative Medicine and Cellular Longevity



Table 1: Coexpression-related genes of UBE2I in COAD.

Correlated
gene

Cytoband
Spearman’s
correlation

P value q value

RNPS1 16p13.3 0.652 4:92E − 73 9:85E − 69
NDUFAB1 16p12.2 0.639 2:76E − 69 2:77E − 65
JPT2 16p13.3 0.626 7:87E − 66 5:25E − 62
PAM16 16p13.3 0.552 1:81E − 48 9:05E − 45
C16ORF91 16p13.3 0.542 1:40E − 46 5:59E − 43
NIP7 16q22.1 0.531 2:23E − 44 7:45E − 41
FOPNL 16p13.11 0.518 5:71E − 42 1:63E − 38
HSBP1 16q23.3 0.516 1:35E − 41 3:37E − 38
DNAJA2 16q11.2 0.516 1:52E − 41 3:39E − 38
KCTD5 16p13.3 0.512 6:05E − 41 1:21E − 37
PMM2 16p13.2 0.509 2:88E − 40 4:81E − 37
LYRM1 16p12.3 0.509 2:88E − 40 4:81E − 37
DNAJA3 16p13.3 0.507 6:38E − 40 9:82E − 37
CFAP20 16q21 0.506 7:81E − 40 1:12E − 36
KARS 16q23.1 0.5 1:07E − 38 1:43E − 35
RSL1D1 16p13.13 0.498 1:95E − 38 2:44E − 35
NDUFB4 3q13.33 0.496 4:52E − 38 5:32E − 35
GINS2 16q24.1 0.495 5:90E − 38 6:57E − 35
NUTF2 16q22.1 0.493 1:58E − 37 1:67E − 34
MRPS34 16p13.3 0.491 3:54E − 37 3:54E − 34
NUBP2 16p13.3 0.488 1:07E − 36 1:02E − 33
POMP 13q12.3 0.487 1:52E − 36 1:39E − 33
TOMM6 6p21.1 0.484 5:17E − 36 4:50E − 33
SNRPC 6p21.31 0.483 6:16E − 36 5:14E − 33
PSMB1 6q27 0.48 1:68E − 35 1:35E − 32
EEF2KMT 16p13.3 0.475 1:24E − 34 9:55E − 32
EXOSC8 13q13.3 0.473 2:57E − 34 1:91E − 31
NAE1 16q22.1 0.471 4:38E − 34 3:13E − 31
EP300 22q13.2 -0.47 7:31E − 34 5:05E − 31
HEBP2 6q24.1 0.467 2:00E − 33 1:33E − 30
METTL9 16p12.2 0.467 2:09E − 33 1:33E − 30
CMC2 16q23.2 0.467 2:13E − 33 1:33E − 30
MSRB1 16p13.3 0.465 4:67E − 33 2:83E − 30
CENPN 16q23.2 0.465 5:04E − 33 2:97E − 30
METTL26 16p13.3 0.464 5:65E − 33 3:23E − 30
CLIC1 6p21.33 0.463 9:56E − 33 5:32E − 30
MRPL18 6q25.3 0.462 1:03E − 32 5:59E − 30
RPS15A 16p12.3 0.459 4:01E − 32 2:11E − 29
EMC8 16q24.1 0.457 8:05E − 32 4:13E − 29
HERC1 15q22.31 -0.454 1:65E − 31 8:28E − 29
NDUFB10 16p13.3 0.454 2:01E − 31 9:84E − 29
THOC7 3p14.1 0.454 2:13E − 31 1:02E − 28
CIAO2B 16q22.1 0.452 3:81E − 31 1:77E − 28

Table 1: Continued.

Correlated
gene

Cytoband
Spearman’s
correlation

P value q value

CYB5B 16q22.1 0.451 4:67E − 31 2:12E − 28
TSR3 16p13.3 0.451 5:35E − 31 2:38E − 28
NOTCH2 1p12 -0.45 6:77E − 31 2:95E − 28
FAM192A 16q13 0.45 7:97E − 31 3:39E − 28
MTMR3 22q12.2 -0.45 8:43E − 31 3:52E − 28
PSMD13 11p15.5 0.449 8:87E − 31 3:62E − 28
NBPF10 1q21.1 -0.449 1:12E − 30 4:47E − 28
UCHL3 13q22.2 0.449 1:17E − 30 4:61E − 28
POLR2C 16q21 0.448 1:70E − 30 6:56E − 28
TMEM208 16q22.1 0.447 2:03E − 30 7:66E − 28
MRPS15 1p34.3 0.446 2:62E − 30 9:72E − 28
HMGB1 13q12.3 0.446 3:08E − 30 1:12E − 27
DIP2A 21q22.3 -0.444 5:29E − 30 1:89E − 27
ZSWIM8 10q22.2 -0.444 6:15E − 30 2:16E − 27
NDUFAF4 6q16.1 0.443 7:55E − 30 2:61E − 27
ARPC4 3p25.3 0.442 9:40E − 30 3:19E − 27
PI4KA 22q11.21 -0.442 1:02E − 29 3:39E − 27
MRPL47 3q26.33 0.442 1:12E − 29 3:69E − 27
ZNF263 16p13.3 0.441 1:67E − 29 5:40E − 27
STUB1 16p13.3 0.44 1:81E − 29 5:75E − 27
RPUSD1 16p13.3 0.44 2:17E − 29 6:69E − 27
FAM168A 11q13.4 -0.44 2:17E − 29 6:69E − 27
UBE2C 20q13.12 0.439 2:65E − 29 8:04E − 27
ZFYVE1 14q24.2 -0.438 3:28E − 29 9:80E − 27

SRSF3
6p21.31-
p21.2

0.438 3:62E − 29 1:07E − 26

PRDX1 1p34.1 0.437 4:54E − 29 1:32E − 26
PSENEN 19q13.12 0.436 6:31E − 29 1:80E − 26
BCL7C 16p11.2 0.436 7:23E − 29 2:04E − 26
TMEM186 16p13.2 0.434 1:56E − 28 4:35E − 26
UTP4 16q22.1 0.434 1:61E − 28 4:42E − 26
PPIH 1p34.2 0.433 1:84E − 28 4:97E − 26
BFAR 16p13.12 0.432 2:31E − 28 6:17E − 26
LSM2 6p21.33 0.431 3:36E − 28 8:86E − 26
GLRX3 10q26.3 0.431 3:72E − 28 9:67E − 26
BANF1 11q13.1 0.429 5:85E − 28 1:50E − 25
BCL2L2 14q11.2 -0.429 6:01E − 28 1:52E − 25
COX7A2 6q14.1 0.429 6:73E − 28 1:68E − 25
MRPL28 16p13.3 0.429 7:08E − 28 1:75E − 25
DCTPP1 16p11.2 0.429 7:54E − 28 1:84E − 25
PTMA 2q37.1 0.427 1:44E − 27 3:48E − 25
ATP5F1C 10p14 0.426 1:58E − 27 3:78E − 25
DYNC1H1 14q32.31 -0.425 2:13E − 27 5:02E − 25
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and 5:507∗E − 8; Figure 7(e)), with higher expression in
stage IV, compared to stage III carcinoma (P = 0:014).

3.6. Interaction Networks of Potential Pathways Involving
UBE2I in COAD and PAAD. UBE2I coexpressed genes in
the cBioPortal database were first identified for analysis.
The top 100 genes related to UBE2I in COAD and PAAD
are presented in Tables 1 and 2, respectively, based on which
the interaction networks involving UBE2I in COAD were
constructed (Figure 8). Associated genes were found to be
involved in preribosome, transport of mature mRNAs
derived from intron-containing transcripts, spliceosomal
snRNP complexes, Notch signaling, mitochondrial protein
complexes, small ribosomal subunits, and Alzheimer’s dis-
ease. The interaction network of UBE2I in PAAD included
genes involved in ruffle membrane, regulation of cellular
senescence, spliceosomal snRNP complex, gene, and protein
expression by JAK-STAT axis after interleukin-12 stimula-
tion, protein phosphatase inhibitor activity, and HIV infec-
tion (Figure 9). Finally, GGI and PPI networks were
constructed to visualize these relationships. GGI analysis
showed physical, coexpression, pathway, and genetic inter-
actions of UBE21 with SUMO1, SUMO3, RANBP2, SYCE2,
SYCE1, PIAS3, PIAS4, RAD51, and RAD52 (Figure 10(a)).
In PPI analysis, physical, coexpression, pathway, and genetic
interactions of UBE21 with SUMO1-3, SAE1, PIAS1, PIAS3,
UBA2, and RWDD3 were detected (Figure 10(b)).

3.7. Diagnostic Value of UBE2I in Pan-DSTs. In view of the
prognostic significance of UBE2I in COAD and PAAD, its
diagnostic value in these cancer types was further explored.
UBE2I displayed differential expression and favorable diag-
nostic value in COAD of TCGA colorectal and Alon datasets
(AUC = 0:766 and 0.978, P = 0:002, <0.001, <0.001, and

Table 1: Continued.

Correlated
gene

Cytoband
Spearman’s
correlation

P value q value

RPS7 2p25.3 0.425 2:24E − 27 5:21E − 25
MCRIP2 16p13.3 0.424 3:50E − 27 8:07E − 25
ZNF236 18q23 -0.423 3:76E − 27 8:56E − 25
TFAP4 16p13.3 0.422 5:43E − 27 1:22E − 24
AKAP13 15q25.3 -0.422 5:96E − 27 1:33E − 24
ZFYVE26 14q24.1 -0.421 7:79E − 27 1:71E − 24
GOT2 16q21 0.421 8:77E − 27 1:91E − 24
COPS9 2q37.3 0.42 1:19E − 26 2:57E − 24
TECPR2 14q32.31 -0.419 1:41E − 26 3:00E − 24
HECTD4 12q24.13 -0.419 1:67E − 26 3:52E − 24
CIAO3 16p13.3 0.418 1:69E − 26 3:52E − 24
FYCO1 3p21.31 -0.418 1:76E − 26 3:63E − 24
MRPL48 11q13.4 0.418 1:97E − 26 4:02E − 24
LSM3 3p25.1 0.417 2:53E − 26 5:12E − 24
ANKRD52 12q13.3 -0.417 2:58E − 26 5:16E − 24

Table 2: Coexpression-related genes of UBE2I in PAAD.

Correlated
gene

Cytoband
Spearman’s
correlation

P value q value

TMSB10 2p11.2 0.75 3:44E − 33 6:87E − 29
PTMA 2q37.1 0.678 3:91E − 25 2:75E − 21
EIF6 20q11.22 0.677 4:13E − 25 2:75E − 21
PPIA 7p13 0.673 1:13E − 24 5:10E − 21
MFSD2B 2p23.3 0.672 1:28E − 24 5:10E − 21
PFDN2 1q23.3 0.671 1:53E − 24 5:10E − 21
SNRPA1 15q26.3 0.671 1:82E − 24 5:20E − 21
PPP4C 16p11.2 0.664 6:75E − 24 1:69E − 20
NUTF2 16q22.1 0.66 1:71E − 23 3:80E − 20
CFL1 11q13.1 0.657 3:06E − 23 6:12E − 20
RNF181 2p11.2 0.653 7:23E − 23 1:31E − 19
PPIH 1p34.2 0.652 9:20E − 23 1:53E − 19
RNPS1 16p13.3 0.649 1:61E − 22 2:48E − 19
PSMD13 11p15.5 0.638 1:20E − 21 1:71E − 18
S100A16 1q21.3 0.638 1:35E − 21 1:80E − 18
BANF1 11q13.1 0.634 2:74E − 21 3:43E − 18
KANK1 9p24.3 -0.633 3:12E − 21 3:67E − 18
CLASP2 3p22.3 -0.632 3:82E − 21 4:02E − 18
NOP10 15q14 0.632 3:82E − 21 4:02E − 18
S100A11 1q21.3 0.629 6:69E − 21 6:68E − 18
CKS1B 1q21.3 0.626 1:19E − 20 1:13E − 17
HMGA1 6p21.31 0.626 1:24E − 20 1:13E − 17
BOLA2 16p11.2 0.62 3:42E − 20 2:97E − 17
NUDT1 7p22.3 0.619 4:09E − 20 3:41E − 17
PPP1R14B 11q13.1 0.618 4:66E − 20 3:73E − 17
MRGBP 20q13.33 0.618 5:15E − 20 3:96E − 17
SNRPG 2p13.3 0.617 5:81E − 20 4:30E − 17
MBLAC2 5q14.3 -0.617 6:18E − 20 4:41E − 17
RALY 20q11.22 0.617 6:40E − 20 4:41E − 17
KCTD5 16p13.3 0.616 6:81E − 20 4:54E − 17
NCOA1 2p23.3 -0.611 1:57E − 19 9:87E − 17
S100A10 1q21.3 0.611 1:58E − 19 9:87E − 17
UBE2C 20q13.12 0.61 1:87E − 19 1:13E − 16
ZNF420 19q13.12 -0.61 2:01E − 19 1:18E − 16
ICA1L 2q33.2 -0.61 2:12E − 19 1:21E − 16
FNDC3A 13q14.2 -0.609 2:44E − 19 1:36E − 16
ELOB 16p13.3 0.608 3:02E − 19 1:63E − 16
CHMP4B 20q11.22 0.606 3:92E − 19 2:06E − 16
METTL7A 12q13.12 -0.605 4:38E − 19 2:25E − 16
C16ORF91 16p13.3 0.605 4:53E − 19 2:26E − 16
CPEB4 5q35.2 -0.604 5:29E − 19 2:58E − 16
STX4 16p11.2 0.604 5:56E − 19 2:65E − 16
TMEM189 20q13.13 0.602 7:50E − 19 3:48E − 16
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<0.001; Figures 11(a)–11(d)). Moreover, UBE2I showed dif-
ferential expression and good diagnostic value in PAAD of
TCGA pancreas and Logsdon datasets (AUC = 0:986 and
0.849, P = 0:003, 0.002, <0.001, and <0.001; Figures 11(e)–
11(h)).

4. Discussion

The current research explored the potential correlation of
UBE2I expression with a range of pan-DSTs, including
CHOL, COAD, ESCA, LIHC, PAAD, READ, and STAD.
Our data preliminary revealed differential expression of
UBE2I, with higher expression in all tumor types, except
ESCA. Interestingly, survival analysis indicated that high
UBE2I expression was associated with adverse OS and DFS
in PAAD but improved OS in READ. In immune infiltrate
analysis, UBE2I expression was partially associated with
purity or B cells, CD8+ and CD4+ T cells, MP, NP, and
DC in COAD, LIHC, PAAD, READ, and STAD. Evaluation
of the correlation between SCNAs and immune infiltrates
revealed that UBE2I was associated with all six immune infil-
trate types in STAD but partially associated with specific
immune cell types in the other five pan-DST types. Differen-
tial promoter methylation of UBE2I was observed in PAAD
only, with high methylation in tumor and low methylation
in normal tissues. Consistently, stratified analyses by gender,
nodal metastasis, and race showed differential methylation
in PAAD, which was also partially observed in COAD,
ESCA, and STAD. In colon cancer, differential UBE2I pro-
tein expression was observed as well as following stratifica-
tion by gender, tumor histology, race, and tumor stage.
Analysis of the interaction networks of potential pathways
disclosed involvement of UBE2I in the spliceosomal snRNP
complex, Notch signaling pathway, mitochondrial protein
complex, small ribosomal subunit, Alzheimer’s disease, pro-
tein phosphatase inhibitor activity, and HIV infection in

Table 2: Continued.

Correlated
gene

Cytoband
Spearman’s
correlation

P value q value

SYNJ1 21q22.11 -0.602 8:40E − 19 3:82E − 16
CKS2 9q22.2 0.599 1:33E − 18 5:87E − 16
CIB1 15q26.1 0.599 1:35E − 18 5:87E − 16
ZNF471 19q13.43 -0.597 1:70E − 18 7:21E − 16
FAM122A 9q21.11 -0.597 1:91E − 18 7:95E − 16
AMIGO1 1p13.3 -0.596 2:13E − 18 8:69E − 16
PTTG1 5q33.3 0.595 2:32E − 18 9:28E − 16
ZNF37A 10p11.1 -0.595 2:58E − 18 9:93E − 16
SMARCA2 9p24.3 -0.595 2:58E − 18 9:93E − 16
PSMA7 20q13.33 0.594 2:83E − 18 1:07E − 15
THOC6 16p13.3 0.593 3:49E − 18 1:29E − 15
TNFRSF12A 16p13.3 0.592 3:73E − 18 1:34E − 15
RNF7 3q23 0.592 3:74E − 18 1:34E − 15
RNF180 5q12.3 -0.591 4:38E − 18 1:54E − 15
WASF3 13q12.13 -0.59 5:81E − 18 1:98E − 15
SCNM1 1q21.3 0.59 5:84E − 18 1:98E − 15
PSMD4 1q21.3 0.589 6:07E − 18 2:02E − 15
PSMA1 11p15.2 0.589 6:15E − 18 2:02E − 15
BCL2L12 19q13.33 0.588 7:19E − 18 2:32E − 15
MRPL28 16p13.3 0.588 7:80E − 18 2:48E − 15
REV3L 6q21 -0.587 8:64E − 18 2:70E − 15
NBEA 13q13.3 -0.586 9:74E − 18 3:00E − 15
TSTD2 9q22.33 -0.586 9:96E − 18 3:02E − 15
HCFC2 12q23.3 -0.586 1:13E − 17 3:37E − 15
ACADSB 10q26.13 -0.585 1:22E − 17 3:59E − 15
SETBP1 18q12.3 -0.585 1:30E − 17 3:78E − 15
C19ORF33 19q13.2 0.583 1:64E − 17 4:68E − 15
ZNF429 19p12 -0.583 1:72E − 17 4:79E − 15
ACACB 12q24.11 -0.583 1:73E − 17 4:79E − 15
PKMYT1 16p13.3 0.583 1:77E − 17 4:85E − 15
ANXA2 15q22.2 0.582 1:83E − 17 4:94E − 15
EIF3M 11p13 0.582 1:94E − 17 5:17E − 15
FTSJ1 Xp11.23 0.582 2:09E − 17 5:48E − 15
KAT2B 3p24.3 -0.581 2:32E − 17 6:01E − 15
CTTNBP2 7q31.31 -0.58 2:78E − 17 7:12E − 15
SLC2A13 12q12 -0.58 2:86E − 17 7:23E − 15
LONRF2 2q11.2 -0.579 2:98E − 17 7:35E − 15
ANKFY1 17p13.2 -0.579 2:98E − 17 7:35E − 15
TAF10 11p15.4 0.579 3:08E − 17 7:50E − 15
ADAMTSL3 15q25.2 -0.578 3:51E − 17 8:41E − 15
MRPS6 21q22.11 0.578 3:53E − 17 8:41E − 15
MAML3 4q31.1 -0.578 3:69E − 17 8:67E − 15
ZBED3 5q13.3 -0.576 4:61E − 17 1:06E − 14

Table 2: Continued.

Correlated
gene

Cytoband
Spearman’s
correlation

P value q value

LEMD1 1q32.1 0.576 4:62E − 17 1:06E − 14
TRMT112 11q13.1 0.576 4:81E − 17 1:09E − 14
PEG3 19q13.43 -0.576 4:92E − 17 1:10E − 14
OST4 2p23.3 0.576 4:93E − 17 1:10E − 14
APC 5q22.2 -0.575 5:37E − 17 1:17E − 14
LYPLA2 1p36.11 0.575 5:38E − 17 1:17E − 14
SF3B6 2p23.3 0.575 5:72E − 17 1:23E − 14
KLHDC1 14q21.3 -0.575 5:91E − 17 1:26E − 14
SELENOH 11q12.1 0.575 6:09E − 17 1:28E − 14
ULK2 17p11.2 -0.574 6:44E − 17 1:34E − 14
TALDO1 11p15.5 0.574 6:61E − 17 1:36E − 14
PREPL 2p21 -0.574 6:70E − 17 1:37E − 14
APPBP2 17q23.2 -0.574 6:80E − 17 1:37E − 14
KCNJ3 2q24.1 -0.573 7:98E − 17 1:59E − 14
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COAD and PAAD. Furthermore, UBE2I showed differential
expression and favorable diagnostic value in COAD and
PAAD from two separate datasets.

Digestive system carcinomas comprise many types of
neoplasms including esophageal cancer, gastric cancer, small
and large bowel cancers, and cancers from liver and bile duct
system, pancreas, and anal regions [31], which are reported
to contribute to more than 3.2 billion deaths worldwide
[2]. In addition, digestive system malignancies account for
~40% of cancer-related deaths worldwide with substantial
adverse effects on both developed and developing countries
[4]. Thus, identifying novel biomarkers for early diagnosis
and survival surveillance for high-risk populations and post-
surgical patients remains an urgent medical requirement.
Digestive system carcinoma subtypes in the TCGA database
include CHOL, ESCA, LIHC, PAAD, COAD, READ, and
STAD. To our knowledge, no studies to date have deter-
mined the expression profiles and clinical implications of
UBE2I, also known as UBC9, in these pan-DSTs.

UBC9, the unique E2-conjugating enzyme needed for
SUMOylation, is a core modulator of essential cellular func-
tions and changes frequently in cancer, contributing substan-
tially to the progression of human tumors [32]. Mattoscio
and Chiocca [33] previously suggested that upregulation of

UBC9 in HGSOC cells with BRCA1 mutations leads to loss
of caveolin-1 and induction of vascular epithelial growth fac-
tor, supporting a pathway linking BRCA1 mutation in
HGSOC with peritoneal permeability and ascites formation.
The same group reported that knockdown of UBC9 in
BRCA1 mutant triple-negative breast cancer and HGSOC
cells inhibited cell proliferation and migration, indicating
the pivotal role of UBC9 in endothelial-mesenchymal transi-
tion in such cancer type [34]. Epithelial-mesenchymal transi-
tion is a biological phenomenon whereby epithelial cells
show enhanced migration ability to distal sites, facilitating
tumor metastasis [35]. These findings support critical roles
of UBC9 expression and dependent pathways in metastasis
of triple-negative breast cancer. Similarly, our results suggest
association of high UBC9 expression with poor prognosis in
PAAD as well as differential levels (low in normal samples)
of promoter methylation concerning lymph node metastasis.
The role of UBC9 in PAAD in our study is consistent with
that reported in other studies across diverse tumor types,
including lung, colorectal, prostate, ovarian, and breast can-
cers as well as melanoma [36–41]. In addition, we deter-
mined the diagnostic potential of UBE2I in PAAD and
COAD, which has rarely been reported in cancers. Our data
showed favorable prognostic value of UBE2I in COAD but
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Figure 8: Illustration of functional enrichment pathways of UBE2I and coexpressed genes involved in COAD.
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not in PAAD. A previous study on 602 early-stage colorectal
cancer patients by Fridman et al. [42] revealed the presence
of high memory T-cell (CD45RO+ and CD8+) infiltrates in

tumors. In our experiments, UBE2I expression was positively
correlated with purity and inversely with CD4+ T cells, MP,
NP, and DC rather than CD8+ T cells, regardless of tumor
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stages. However, whether this inconsistency is associated
with tumor staging or other influencing factors is yet to be
elucidated.

Promoter methylation is the most extensively character-
ized type of epigenetic alteration; in particular, DNA meth-
ylation in CpG islands is predominantly present in the
upstream promoter region that takes responsibility for
inhibitory protein complex recruitment, inducing transcrip-
tional repression of downstream genes [43]. There was once

a proposal that DNA methylation alterations may contribute
to oncogenesis, as the cytosine base of DNA was initially
found to be methylated to 5-methylcytosine, or the fifth base
[44]. Recent evidence has shown that 5-methylcytosine dis-
tribution alterations can help effectively differentiate cancer
from normal cells, with focal hypermethylation of tumor
suppressor gene promoters identified as one of the main
mechanisms [44]. Homeostasis alterations of epigenetic
mechanisms are crucial to the development of human
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Figure 11: Differential expression and diagnostic ROC curves of UBE2I in COAD and PAAD. (a, c) Differential expression of UBE2I in
COAD. (b, d) Diagnostic ROC curve of UBE2I in COAD. (e, g) Differential expression of UBE2I in PAAD. (f, h) Diagnostic ROC curve
of UBE2I in PAAD.
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cancers [44]. Consistently, our experiments showed
increased promoter hypermethylation of UBE2I in PAAD
tumors relative to control, which retained significance upon
stratification by gender, race, and nodal metastasis, support-
ing the involvement of UBE2I hypermethylation in the
development of PAAD. However, no data on methylation
levels and prognostic significance on UBE2I were available
for other pan-DST types.

Marked advances in tumor immunotherapy have been
attributed to the increasing awareness of the importance of
the tumor immunemicroenvironment in inhibiting antitumor
immunity [45]. Overcoming the ability of cancer cells to evade
immune detection allows the available treatment approaches
for multiple cancer types to attack tumors via harnessing the
“non-self”-directed specificity of the immune system [45].
One of the most promising therapeutic strategies for antitu-
mor immunity reactivation is pharmacological manipulation
of physiological immune checkpoints [45]. Exploiting
immune checkpoint pathways is a major mechanism for
tumors to escape immune surveillance, so immune checkpoint
blockade underlies the antineoplasmic activity of most
approved agents targeting CTLA-4, as well as programmed
cell death protein-1/ligand-1 [46]. Additionally, a number of
predictive biomarkers, such as abundance and location of
tumor-infiltrating lymphocytes, have been explored for
immune-oncology applications [42]. Established findings sug-
gest that local inflammation significantly affects tumor pro-
gression. The group further showed that highly adaptive
immune infiltrates of intratumoral lymphocytes present a cru-
cial prognostic marker for solid tumors [42].

Solid tumors are often infiltrated by immune cells,
including T and B lymphocytes, natural killer cells, DC,
MP, NP, eosinophils, and mast cells [42]. Dunn and
coworkers reported an association of immune deficiency
with tumor proliferation and aggressiveness in a mouse
model [47]. Clinical, experimental and epidemiological stud-
ies have indicated chronic inflammation as an important
inducer of various cancer types [48], such as Helicobacter
pylori infection in gastric cancer [49] and mucosal lym-
phoma [50]. The presence of lymphocytes in large quantities,
especially T cells, in contrast to infiltration of cells responsi-
ble for chronic inflammation, is considered a beneficial prog-
nostic marker for diverse cancer types, including melanoma,
non-Hodgkin’s lymphoma, head-and-neck cancer, non-
small-cell lung cancer, and breast, ovarian, esophageal, and
urothelial carcinomas [42, 51–53]. Data from the current
study indicate that UBE2I expression is associated with six
immune infiltrate cell types and purity in COAD, LIHC,
PAAD, READ, and STAD. Similar to earlier findings, a high
NP count was associated with favorable prognosis in CHOL
while a high MP count indicated adverse prognosis in STAD.
Further research is warranted to explain this differential
prognostic relevance.

This study has a number of limitations that should be
taken into consideration. First, the findings obtained require
further validation in other cohorts on a larger scale. Second,
it is essential to clarify the mechanisms of UBE2I in COAD
and PAAD in vivo and in vitro. Third, clinical translation
needs to be explored for optimizing therapeutic application.
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