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Abstract: This paper explored the potential mediating role of hydrogen sulfide (H2S) and the oxytocin
(OT) systems in hemorrhagic shock (HS) and/or traumatic brain injury (TBI). Morbidity and mortality
after trauma mainly depend on the presence of HS and/or TBI. Rapid “repayment of the O2 debt” and
prevention of brain tissue hypoxia are cornerstones of the management of both HS and TBI. Restoring
tissue perfusion, however, generates an ischemia/reperfusion (I/R) injury due to the formation
of reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, pre-existing-medical-conditions
(PEMC’s) can aggravate the occurrence and severity of complications after trauma. In addition to
the “classic” chronic diseases (of cardiovascular or metabolic origin), there is growing awareness
of psychological PEMC’s, e.g., early life stress (ELS) increases the predisposition to develop post-
traumatic-stress-disorder (PTSD) and trauma patients with TBI show a significantly higher incidence
of PTSD than patients without TBI. In fact, ELS is known to contribute to the developmental origins of
cardiovascular disease. The neurotransmitter H2S is not only essential for the neuroendocrine stress
response, but is also a promising therapeutic target in the prevention of chronic diseases induced
by ELS. The neuroendocrine hormone OT has fundamental importance for brain development and
social behavior, and, thus, is implicated in resilience or vulnerability to traumatic events. OT and H2S
have been shown to interact in physical and psychological trauma and could, thus, be therapeutic
targets to mitigate the acute post-traumatic effects of chronic PEMC’s. OT and H2S both share
anti-inflammatory, anti-oxidant, and vasoactive properties; through the reperfusion injury salvage
kinase (RISK) pathway, where their signaling mechanisms converge, they act via the regulation of
nitric oxide (NO).

Keywords: early life stress; adverse childhood experiences; posttraumatic stress disorder; traumatic
brain injury; acute subdural hematoma; hemorrhagic shock; cystathionine-γ-lyase; hydrogen sulfide;
oxytocin; pig

1. Introduction Polytrauma–Hemorrhage and Brain Injury

The presence of hemorrhage and traumatic brain injury (TBI) are the main determin-
ers of morbidity and mortality after poly-trauma. Hemorrhage alone is responsible for
30–40% of the mortality [1–3] and also decisively determines the extent of post-traumatic
multi-organ failure (MOF) [4,5]. In a prospective clinical study, it was shown that pa-
tients who required transfusions in the context of a trauma due to hemorrhage had a
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significantly increased risk of developing MOF [6]: 30% of the patients with systolic hy-
potension (<90 mmHg), metabolic acidosis (base excess −6 mmol/L), and/or requiring
red blood cell transfusion within the first 12 h developed MOF within 2–3 days [6]. The
underlying pathophysiological mechanism is systemic [2,3] and, in TBI, also local hyper-
(neuro-)inflammation [7,8], which originates, in addition to direct mechanical/physical
trauma, from tissue hypoxia due to blood loss and reduced perfusion [9]. TBI significantly
worsens the acute prognosis of patients with polytrauma: for example, a retrospective long-
term analysis over 15 years showed that TBI was responsible for 58%, whereas hemorrhagic
shock (HS) was responsible for 28% of deaths after major trauma [10]. Moreover, long-term
recovery of polytraumatized patients with TBI is much worse than in the absence of TBI;
patients with TBI showed significantly worse functional restitution than patients with the
same severity of trauma without TBI [11,12]. These functional impairments were associated
with chronic systemic hyper-inflammation and increased signs of oxidative stress over the
long-term course [13]. As mentioned above, shock-induced tissue hypoxia is a main trigger
of hyper-inflammation, ultimately leading to MOF [9,14]. Therefore, rapid “repayment
of the O2 debt” [15,16] and prevention of brain tissue hypoxia [17,18] to restore/maintain
tissue O2-supply and thereby ATP-homeostasis are cornerstones of the management of
TBI and HS. However, restoring tissue perfusion represents an ischemia/reperfusion (I/R)
injury due to the formation of reactive oxygen (ROS) and nitrogen (RNS) species [19], which
may further aggravate MOF as a result of ROS- and RNS-induced mitochondrial dysfunc-
tion [20–22]. This effect, as well as enhanced inflammation, may be further enhanced by
catecholamines, which represent standard practice to maintain perfusion pressure [23–25].

2. Impact of Chronic Cardiovascular and Psychological Pre-Existing Medical
Conditions on the Long-Term Patient Outcome

The presence and severity of pre-existing-medical-conditions (PEMC’s) critically
influences morbidity and mortality [26,27], e.g., patients with cardiovascular disease
(atherosclerosis, arterial hypertension or coronary artery disease) are at increased risk
of post-traumatic MOF by a factor of 2–10 [28–30]. Vascular comorbid patients are char-
acterized by chronic hyper-inflammation, excess ROS formation, and mitochondrial dys-
function [31,32] and, accordingly, patients with underlying cardiovascular co-morbidity
(hypertension, coronary artery disease (CAD), congestive heart failure) present with a
several-fold higher risk of MOF and mortality after HS and/or TBI [28,30]. This is in line
with the worse outcome of TBI in the elderly [33], which in mice was shown to result from
more pronounced oxidative stress [34].

Psychological trauma or early life stress (ELS) have been shown to have similar ef-
fects to these somatic pre-existing conditions [35]. ELS or adverse childhood experience
(ACE) (i.e., trauma, neglect, etc. in childhood and/or adolescence) are of particular im-
portance [35,36]. ELS/ACE increase the predisposition to develop post-traumatic stress
disorder (PTSD) [36], and trauma patients with TBI show a significantly higher incidence
of PTSD than patients without a TBI [37,38]. In this regard, the effect of ELS/ACE on long-
term morbidity after TBI is similar to that of comparable experiences in adulthood [35].
These clinical-epidemiological data are supported by experimental data in rats: ELS/ACE
induce chronic neuro-inflammation [39,40] and oxidative stress concomitant with reduced
mitochondrial activity [41]. Acute TBI in addition to pre-traumatic ELS/ACE amplifies
microglial activation, neuro-inflammation [42,43], and cortical atrophy [44]. The few avail-
able clinical data showed a direct relationship between PTSD severity and changes in
cerebral cortex thickness in war veterans with/without ELS/ACE experience [45]. Other
authors found a significant association between PTSD severity and late neuro-psychological
damage after mild TBI, but no relationship with “white matter” integrity [46].

In addition to these direct effects of an ELS experience on the course after TBI, an
indirect influence on morbidity and mortality after TBI can also be assumed in the context
of the aforementioned importance of PEMC’s: it has long been known that ELS experiences
increase the incidence and severity of chronic diseases [47–53], such as cardiovascular
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disease [54–57], chronic obstructive pulmonary disease (COPD) [58,59], or metabolic syn-
drome [60].

Psychological stress, in general [61–63], like physical trauma, and ELS/ACE, in partic-
ular, lead to a pro-inflammatory immune response in peripheral blood mononuclear cells
(PBMC) [64] and granulocytes [65]; in addition, ELS/ACE amplify this pro-inflammatory
response after acute stress exposure [66]. Psychological stress [67–69] and ELS/ACE are fur-
thermore associated with increased oxidative and nitrosative stress [70–72]. Oxidative and
nitrosative stress, in turn, leads to the uncoupling of electron transfer and transmembrane
H+ transport and, thus, to the inhibition of the mitochondrial respiratory chain, which
is considered as an essential mechanism for the development of MOF after trauma or in
sepsis [22]: both animal data [20] and clinical studies [21] showed a direct correlation be-
tween morbidity and mortality on the one hand and the degree of inhibition of respiratory
chain complex I on the other. Hyperinflammation further impairs the respiratory chain
through the increased release of nitric oxide (NO) and its inhibitory effect on respiratory
chain complex IV (i.e., cytochrome c oxidase) [73].

In turn, an altered mitochondrial function has also been attributed a specific role in
the stress response in general [74,75] and specifically in ELS/ACE [76]: hyperinflammation
and oxidative stress are associated with ELS/ACE and were accompanied by reduced
mitochondrial respiratory chain activity of immune cells [70,77]. These associative clinical
data regarding ELS/ACE, radical stress, and mitochondrial function are supported by
mechanistic experimental findings: ELS led to the increased release of superoxide radical
in mouse models with consecutively impaired endothelial cell function [78]. Moreover, in
mice, the neuro-endocrine, metabolic, and inflammatory response to acute mental stress
was shown to be determined by mitochondrial respiratory chain function [79]. Finally, a
reciprocal relationship between TBI and psychological stress was demonstrated in rats: post-
traumatic behavioral disturbances were directly related to mitochondrial dysfunction [80],
and repetitive psychological stress in turn amplified the effect of TBI on mitochondrial
respiratory chain protein expression [81].

3. The Role of Oxytocin in Psychological and Physical Trauma

The neuro-hormone oxytocin (OT) plays a central role in the response to ELS/ACE.
OT is produced in the hypothalamus and released from the posterior pituitary lobe (see
Figure 1).

Figure 1. Oxytocin (OT) production and release. The neuro-hormone OT is produced within the
magnocellular neurons of the hypothalamus and paraventricular nucleus (PVN). From the posterior
lobe of the pituitary gland, OT is released into the circulation, where it acts via the G-protein-coupled
oxytocin receptor (OTR). OT: oxytocin; OTR: oxytocin receptor; PVN: paraventricular nucleus.
Illustrations of the heart, brain, and the circle shapes (spheres) were taken from the Library of Science
and Medical Illustrations (somersault18:24, https://creativecommons.org/licenses/by-nc-sa/4.0/).

https://creativecommons.org/licenses/by-nc-sa/4.0/
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In addition to its well-known function in the transition to motherhood (inducing uter-
ine contraction during labor, birth process, and the onset of lactation), OT is of fundamental
importance for the development of the fetal brain and subsequent social behavior [82],
which in response to traumatic events may manifest as resilience or vulnerability [83–85].
Indeed, patients with traumatic childhood experiences (CM) showed decreased expression
of the OT receptor (OTR) in PBMC, which is necessary for OT-mediated responses [86,87].
Experimental findings show an alteration of cerebral OT concentrations and OTR expres-
sion in mice after ELS/ACE. These findings are complemented by a recent meta-analysis
showing a decreased response to intranasal OT in human subjects with severe ELS/ACE
history [88]. The OT system has also been implicated in the regulation of the immune sys-
tem [89,90], both directly and indirectly via the balance between sympathetic and parasym-
pathetic activity in the autonomic nervous system and through the “gut-brain axis” [91],
as well as having antioxidant properties [89,92]. It has pleiotropic effects and is expressed
in numerous organ systems: the gastrointestinal tract [93], kidney [94], heart [94,95], and
the cardiovascular system, wherein it has been shown to be cardioprotective [96–99] by
improving glucose utilization [100,101], stimulating the NO system [102,103], and having
negative chronotropic effects [103]. Finally, in mice, OT-induced attenuation of depressive
behavior, which was induced by ELS/ACE (maternal separation), was accompanied by
improvement in hippocampal mitochondrial respiration [104].

However, the role of OT in circulatory shock has not been elucidated to date: OT
activates not only OTR but also arginine vasopressin (AVP) receptors, as the two hormones
only differ by two amino acids. Moreover, the activation of the respective receptors by OT
and AVP is reciprocal [105,106]. Given the fact that endogenous AVP release plays a critical
role in the regulation of blood pressure and volume in circulatory shock [107,108] and
that AVP and its analogues are also used exogenously for hemodynamic management of
shock [109–113], a corresponding role for OT can be assumed. However, except for the use
of OT for uterine contraction in so-called atonic uterine hemorrhage or postpartum hemor-
rhage [114], few corresponding clinical and/or experimental studies are available [115–117].
Nevertheless, due to the above-mentioned multiple pleiotropic effects, OT is also referred to
as “Nature’s Medicine” [118]. A clinical trial of intranasal OT has already been conducted
in a pilot study in PTSD patients (Clinical Trials Registry NCT03238924: “Prolonged Expo-
sure and Oxytocin”) [119]. Furthermore, OT is being reviewed in a consecutive multicenter
study (Clinical Trials Registry NCT04228289: “Oxytocin to Treat PTSD”) [120]. Effects
of intranasal OT application on hyperoxia-induced inflammation and oxidative stress
induced by breathing hyperoxic gas mixtures during exercise are currently the subject of a
US Navy study in healthy volunteers (Clinical Trials Registry NCT04732247: “Oxytocin
for Oxidative Stress and Inflammation”). In this context, it should be noted that the actual
presence of ELS/ACE may be of particular importance for the effectiveness of intranasal
OT application: if pigs were repetitively treated immediately postnatal with intranasal OT,
stress tolerance was actually worsened. OT-treated pigs showed more aggressive behavior
in social interactions and a dysregulated HPA axis responsiveness at later time points,
contrary to the original hypothesis of OT-induced long-term protective effects against social
stress [121].

4. The Role of Hydrogen Sulfide in Psychological and Physical Trauma

It has been known for more than two decades that the three so-called “gaseous
mediators” NO, carbon monoxide (CO), and hydrogen sulfide (H2S) play an essential
role in the neuroendocrine stress response [122]. Gaseous mediators are endogenously
synthesized by different enzyme systems [123,124]. Due to their physicochemical properties
as gases and their very low molecular weight, and hence their freely diffusible properties,
they have ubiquitous biological effects without the need for membrane-bound receptors
and/or transport systems [124].

H2S, which was first described as a “gaseous mediator” in the brain, plays a special
role in the context of the neuroendocrine stress response [125]. Endogenously, H2S is
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synthesized by the enzymes cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS),
and 3-mercaptopyruvate sulfur transferase (3-MST) [123,124] (see Figure 2).

Figure 2. Hydrogen Sulfide (H2S) production and oxidation. H2S has a low molecular weight and is
thus freely diffusible and acts independent of a membrane-bound receptor/transport system. H2S
is produced enzymatically by three different enzymes: cystathionine γ-lyase (CSE), cystathionine-
β-synthase (CBS), and 3-mercaptopyruvate sulphurtransferase (3MST). L-Cysteine is converted by
CBS or CSE to H2S. Homocysteine is converted by CBS to cystathionine, which is then converted
by CSE to H2S. Thiosulfate is an oxidation product of H2S, which is part of the stepwise enzymatic
oxidation pathway within the mitochondria and can be utilized for non-enzymatic H2S production.
In the mitochondria, H2S is oxidized by the sulfide:quinone oxidoreductase (SQOR) to glutathione
persulfide. H2S: hydrogen sulfide; CSE: cystathionine γ-lyase; CBS: cystathionine-β-synthase; 3MST:
3-mercaptopyruvate sulphurtransferase; SQOR: sulfide:quinone oxidoreductase. Illustrations of the
mitochondrion, the circle shapes, and spheres were taken from the Library of Science and Medical
Illustrations (somersault18:24, https://creativecommons.org/licenses/by-nc-sa/4.0/).

Genetic CSE deletion (CSE−/−) leads to the development of arterial hypertension [126].
In line with the CSE−/−-related development of arterial hypertension, we showed that
CSE−/− mice undergoing pre-traumatic cigarette smoke exposure to induce COPD pre-
sented with higher mean arterial pressures (MAP) during the acute phase after blunt chest
trauma despite more pronounced metabolic depression as evidenced by reduced capacity
to maintain normoglycemia [127]. We previously also showed that CSE expression is crucial
for the adaptive response during acute stress situations [128,129]: (i) CSE-expression was
inversely related to barrier dysfunction and, hence, the severity of sepsis-induced acute
kidney injury (AKI) [130]; (ii) acute stress-related hyperglycemia down-regulated CSE
expression, thereby impairing mitochondrial respiration [131]; (iii) CSE−/− mice presented
with aggravated post-traumatic acute lung injury (ALI) after pre-traumatic cigarette smoke
exposure [127]; (iv) reduced CSE expression was associated with impaired mitochondrial
respiration during sepsis-induced acute kidney injury [132]; (v) in resuscitated murine
blunt chest trauma and HS, genetic mutation of another, mainly mitochondria-located
H2S-producing enzyme 3-MST, the deletion of which is associated with hypertension and
cardiac hypertrophy in aged mice [133], caused down-regulation of cardiac CSE expres-
sion, which coincided with lower activity of the mitochondrial complex IV activity [134].
Therapeutic effects of H2S are at least in part related to improved mitochondrial respiratory
activity [135–137]. In fact, at low concentrations, H2S can indeed stimulate mitochondrial
respiration by entering the respiratory electron transfer chain via the sulfide:quinone ox-

https://creativecommons.org/licenses/by-nc-sa/4.0/
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idoreductase (SQOR) (see Figure 2) and complex II, while at high concentrations it can
inhibit mitochondrial respiration due to the inhibition of cytochrome c oxidase (complex
IV) [138]. We previously showed using Na2S that the dose-effect relation of this biphasic
H2S activity is cell-type dependent [139] and that H2S-related mitochondrial protection
may depend on temperature and the presence/absence of circulatory shock [140–142].
In cultured cortical neurons from fetal rat brains, sodium thiosulfate, Na2S2O3, (STS),
which can produce H2S both enzymatically and non-enzymatically [143,144] (see Figure 2),
showed a similar U-shaped effect on mitochondrial respiration [145].

In addition, H2S was also shown to be beneficial in various models of TBI [14,146–148]
by attenuating brain edema and maintenance of the blood-brain-barrier, which was at
least in part related to improved mitochondrial function [136]. Despite various promising
reports [19,149–155] exogenous H2S during HS produced equivocal results [156–158].
Undesired side effects were due to the narrow timing and dosing window [159] and
the potentially high H2S peak concentrations [160] when the H2S-releasing salts NaSH
and/or Na2S were used, or the aggravation of shock due to the vasodilatory properties
of so-called slow-releasing H2S donors [161]. The latter problems may be overcome by
evaluating already approved drugs, especially for potential clinical use, such as ammonium
tetrathiomolybdate (approved for the treatment of Wilson’s disease) [155,162] or STS, a
drug devoid of major undesired side effects and approved as an antidote for cyanide
and mustard gas poisoning, cis-platinum overdose in oncology, and calciphyllaxy in end-
stage kidney disease [163]. Ammonium tetrathiomolybdate prevented organ failure and
morphological damage after cerebral and myocardial ischemia and hemorrhagic shock
in mice [155,162]; however, none of the experimental groups received standard clinical
therapy. Experimental data are also available for STS in organ protection after burns [164],
myocardial infarction [165], and E. coli septicemia [166]. More recently, STS has been shown
to be beneficial in LPS- and polymicrobial sepsis-induced ALI [167], acute liver failure [168],
I/R injury [145], and Pseudomonas aeruginosa-sepsis [169] as well as both LPS- [170] and
I/R-induced [171] brain injury. STS also protected against arterial hypertension-induced
congestive heart failure [172,173] and kidney disease [174,175]. In good agreement with
the findings on acute therapeutic efficacy of STS, we demonstrated that it attenuated ALI
after HS in swine with coronary artery disease and, hence, consecutively reduced CSE
expression [150]. This organ-protective property of STS under conditions of reduced CSE
expression was confirmed by the even more pronounced effect in CSE−/− mice after
combined blunt chest trauma + HS [176].

5. Interaction of Oxytocin and Hydrogen Sulfide in Physical and Psychological
Trauma

Recent findings show that H2S and the OT systems also interact in psychological
trauma: Exogenous H2S delivery increased systemic AVP and OT concentrations [177].
Vitamin B deficiency-induced hyperhomocysteinemia with consecutively reduced en-
dogenous H2S availability enhanced chemically induced experimental colitis [178], and
ELS/ACE-induced colitis was significantly ameliorated by exogenous H2S supplemen-
tation [179] (see Figure 3). Moreover, OT [92,96] and H2S [180,181] showed comparable
protective properties in the cardiovascular system and converge in the reperfusion injury
salvage kinase (RISK) pathway, a signaling mechanism that acts via the regulation of
NO [54,96,134] (see Figure 4). Our own findings support this interaction between OT (or
the OTR) and H2S (and the CSE responsible for endothelial H2S formation [182]) Both
blunt thoracic trauma [183] and hemorrhagic shock [134] were associated with a parallel
reduction of OTR and CSE expression in the myocardium in mice (see Figure 5). In mice
with a genetic CSE deletion, this reduction of OTR expression was markedly enhanced; in
contrast, administration of the slow-releasing H2S donor GYY4137 was able to partially
restore this effect [183]. A reciprocal interaction between CSE and OTR was demonstrated
in mice with genetic deletion of OTR and, furthermore, ELS/ACE induced by maternal
separation led to the reduction of myocardial CSE expression in comparison with wild
type, and the authors showed that there was a linear relationship between myocardial OTR
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and CSE expression [85] (see Figure 3). The reciprocal interaction between OTR and CSE
could also be confirmed in large animal experiments: pigs with coronary heart disease
(CHD) showed a parallel reduction of myocardial expression of OTR and CSE after septic
shock [184,185] (see Figure 5).

Figure 3. Interaction of Oxytocin/Oxytocin Receptor (OT/OTR) and Hydrogen Sulfide (H2S) in Early Life Stress (ELS) and
Psychological Trauma. ELS can lead to the development of pre-existing medical conditions, such as chronic cardiovascular
diseases. Both ELS and pre-existing medical conditions are associated with a dysregulation of the OT and H2S system
in the heart and the colon. How the two systems are affected in other peripheral organs, or the brain is unknown
so far. H2S: hydrogen sulfide; CSE: cystathionine γ-lyase; CBS: cystathionine-β-synthase; 3MST: 3-mercaptopyruvate
sulphurtransferase; ∆MST: genetic mutation of 3MST; OTR: oxytocin receptor. ↓ slightly down. Illustrations of the
male, female, brain, heart, lung, kidneys, gut, and liver were taken from the Library of Science and Medical Illustrations
(somersault18:24, https://creativecommons.org/licenses/by-nc-sa/4.0/).

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Figure 4. Interaction of Oxytocin/Oxytocin Receptor (OT/OTR) and Hydrogen Sulfide (H2S)
via the Reperfusion Injury Salvage Kinase (RISK) Pathway. Through OT binding to the OTR,
and/or H2S production from cystathionine γ-lyase (CSE), cystathionine-β-synthase (CBS), or
3-mercaptopyruvate sulphurtransferase (3MST), pro-survival kinases of the RISK pathway can
be activated: Phosphatidylinositol 3-kinase/ Protein Kinase B (PI3K/Akt) and extracellular signal-
regulated kinase 1/2 (ERK1/2). These kinases stimulate endothelial nitric oxide synthase (eNOS)
and subsequently the release of nitric oxide (NO). NO activates regulation of blood pressure and
blood volume, reperfusion, vasodilation, angiogenesis, and finally cardio-protection. H2S: hydro-
gen sulfide; CSE: cystathionine γ-lyase; CBS: cystathionine-β-synthase; 3MST: 3-mercaptopyruvate
sulphurtransferase; OT: oxytocin; OTR: oxytocin receptor; RISK: reperfusion injury salvage kinase;
PI3K: Phosphatidylinositol 3-kinase; Akt: Protein Kinase B; ERK1/2: extracellular signal-regulated
kinase 1/2; eNOS: endothelial nitric oxide synthase; NO: nitric oxide. Illustrations of the circle shapes
and spheres were taken from the Library of Science and Medical Illustrations (somersault18:24,
https://creativecommons.org/licenses/by-nc-sa/4.0/).

In the recently established large-animal model of acute subdural hematoma
(ASDH) [186], co-localization of CSE, CBS, OT, and OTR, especially in the area of the
hematoma and at the base of the sulci of the cerebral cortex [187], which is particularly
vulnerable to intra cranial pressure (ICP) elevations (e.g., in the context of TBI), was
demonstrated [188] (see Figure 5). This observation again highlights the importance of the
interaction of the H2S and OT systems in the context of acute changes in blood volume,
circulatory shock, and acute brain injury [189] (see Table 1).

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Figure 5. Interaction of Oxytocin/Oxytocin Receptor (OT/OTR) and Hydrogen Sulfide (H2S) in
Polytrauma. Polytrauma, including hemorrhagic shock (HS), septic shock, and brain injury, such
as acute subdural hematoma (ASDH), are associated with a dysregulation of the OT and H2S
systems in the in the brain and the peripheral organs. Polytrauma can lead to multi-organ fail-
ure. Intensive care management is standard in the clinical treatment of polytrauma patients and
provides organ-protective support. HS: hemorrhagic shock; ASDH: acute subdural hematoma;
STS: sodium thiosulfate; H2S: hydrogen sulfide; CSE: cystathionine γ-lyase; CBS: cystathionine-
β-synthase; CSE−/−: CSE knock out mice; OT: oxytocin; OTR: oxytocin receptor. ↓ slightly
down, ↑ slightly up, ↑↑ strongly up. Illustrations of the male, female, brain, heart, lung, kidneys,
gut, and liver were taken from the Library of Science and Medical Illustrations (somersault18:24,
https://creativecommons.org/licenses/by-nc-sa/4.0/).

Table 1. Summary of studies: Interaction of the H2S system and the OT/OTR system.

Author and Year Species Experimental Challenge/Trauma/
Treatment Interaction of OT and H2S

Trautwein et al.,
2021 [134] Mice

Naïve
∆MST animals

Hemorrhagic Shock wt
Hemorrhagic Shock & Blunt Chest Trauma wt

Constitutive CSE & OTR in
cardiomyocytes

CSE & OTR↓
CSE & OTR↓
CSE &OTR↓↓

Wigger et al.,
2020 [85] Mice

Maternal
Separation

(Early Life Stress)
LTSS (long)
STSS (short)

CSE & OTR↓↓
CSE↓ & OTR↑↑

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Table 1. Cont.

Author and Year Species Experimental Challenge/Trauma/
Treatment Interaction of OT and H2S

Flannigan et al.,
2014 [178]

Rats
(vs. wt)

Diet for 6 weeks:
“B-Def” lacked vitamins B6, B9, and B12

Colitis induction:
1. Drinking water supplemented with dextran

sodium sulfate
2. Intracolonic administration of the hapten

dinitrobenzene sulfonic acid
3. IL-10–deficient mice

intra-colonical
diallyl disulfide administration

In 1., 2., and 3., diet-induced
hyperhomocysteinemia ↑colitis
diallyl disulfide administration:

↓severity of colitis
IL-10-deficient mice on a normal diet

had ↓colonic H2S synthesis, a 40%
↑serum homocysteine

IL-10–deficient mice fed the vitamin
B-deficient diet exhibited ↑↑colonic

inflammation
Administration of IL-10 to the

IL-10–deficient mice restored colonic
H2S synthesis ↓serum homocysteine

Li et al.,
2017 [179] Mice

Maternal Seperation
(vs. control animals)

intraperitoneal NaHS administration
(vs. vehicle)

Maternal Separation led to:
↓Crypt lengths, ↓goblet cells per
crypt, ↓glutathione peroxidase

activity, ↑expression of thiobarbituric
acid reactive substances, ↑inducible
nitric oxide synthase mRNA, ↑IL-6,
↑TNFα ↑myeloperoxidase
Administration of NaHS:

counteracted negative effects of
maternal separation

Mani et al.,
2013 [180]

Mice CSE−/−

(vs. wt)

Knock out and atherogenic diet
intraperitoneal NaHS administration (vs. PBS

injection)

Early fatty streak lesions in the aortic
root

↑Plasma levels of cholesterol,
↑low-density lipoprotein cholesterol

Hyperhomocysteinemia
↑Lesional oxidative stress and
adhesion molecule expression
↑aortic intimal proliferation

CSE−/− treated with NaHS: inhibited
the accelerated atherosclerosis

development

Merz et al.,
2018 [183]

Mice
CSE−/−

(vs. wt)

Native wt
Blunt Chest Trauma

(and cigarette smoke exposure (CS))
Blunt Chest Trauma CSE−/−

(& CS)
Blunt Chest Trauma CSE−/− and GYY4137

administration (and CS)

Constitutive OTR in cardiomyocytes
OTR↓

OTR↓↓
OTR↑↑

Nußbaum et al.,
2016 [184]

Swine
(hypercholesteremic
vs. sham animals)

Septic Shock
Systemic Troponin↑
↓ Cardiac output

Cardiac CSE↓

Merz et al.,
2020 [185]

Swine
(hypercholesteremic
vs. sham animals)

Septic Shock Cardiac OTR↓
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Table 1. Cont.

Author and Year Species Experimental Challenge/Trauma/
Treatment Interaction of OT and H2S

Coletti et al.,
2015 [177] Rats Water deprivation for 12 and 24 h

intra cerebroventricular Na2S

24 h water deprivation:
↑Activity of sulfide-generating

enzymes in the medial basal
hypothalamus

Na2S administration:
↓Water intake, ↑arginine vasopressin,

OT and corticosterone in plasma,
↓medial basal hypothalamus

nitrate/nitrite content

Denoix et al.,
2020 [188] Swine ASDH

CSE, CBS, OTR, and OT were
localized to:

(i) Cortical neurons in the gyri and at
the base of sulci, where

pressure-induced injury leads to
maximal stress in the gyrencephalic

brain
(ii) In the parenchyma at the base of

the sulci
(iii) microvasculature and pial arteries
(iv) Resident and infiltrating immune

cells.

For the purposes of this perspective review, a medline pubmed search of the following key words was performed: early life stress,
adverse childhood experience, posttraumatic stress disorder, traumatic brain injury, acute subdural hematoma, poly-trauma, hemorrhagic
shock, sodium thiosulfate (Na2S2O3), cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), Oxytocin, Oxytocin-receptor, arginin-
vasopressin (AVP), arginin-vasopressin-receptor (AVP-R), oxidative stress, nitrosative stress, porcine. Abbreviations: H2S = hydrogen
sulfide; OT = oxytocin; OTR = oxytocin receptor; CSE = cystathionine γ-lyase; CBS = cystathionine-β-synthase; 3MST = 3-mercaptopyruvate
sulphurtransferase; ∆MST = genetic mutation of 3MST; CS = cigarette smoke exposure; NaHS = Sodium hydrosulfide; Na2S = Sodium
sulfide; wt = wild type; CSE−/− = CSE knock out; PBS = phosphate buffered saline; ASDH: acute subdural hematoma. ↓ slightly down,
↓↓ strongly down, ↑ slightly up, ↑↑ strongly up.

6. Therapeutic Potential of Oxytocin and Hydrogen Sulfide in Trauma

The impaired endogenous availability of OT or H2S can theoretically be corrected by
exogenous supply. As already mentioned above, for the exogenous supply of H2S, salts
that directly release the molecule (NaSH, Na2S), slow releasing H2S donors (e.g., GYY4137,
AP39), and already approved drugs (e.g., ammonium tetrathiomolybdate, STS) are avail-
able. H2S-releasing salts, injected as bolus intravenously (i.v.), can lead to toxic peak con-
centrations, which subsequently subside very rapidly and are barely detectable [128]. More-
over, these high peak concentrations have pro-inflammatory and oxidative effects [160],
which are dose-dependent with possibly irreversible inhibition of mitochondrial respi-
ration [138,190]. Even when these peak concentrations are avoided by continuous i.v.
infusion, these H2S-releasing salts have a very small dose and time window, making them
unsuitable for clinical use [141,142,159]. The slow-releasing H2S donors GYY4137 or AP39,
which have been investigated so far in pre-clinical models in vivo, will in all likelihood
not be considered for clinical use, as they either showed no organ-protective effects at all
or possibly even pronounced undesirable side effects, despite the anti-inflammatory and
oxidative effects mentioned above [161,191].

For exogenous delivery of OT, intranasal (e.g., for PTSD; [119] or multicenter study
Clinical Trials Registry NCT04228289: “Oxytocin to Treat PTSD”) [120]), and i.v. adminis-
tration can be considered, which in turn is used in obstetrics for contraction of the uterus
and thus for prophylaxis of postpartum hemorrhage [192], especially after caesarean sec-
tion [193]. Both forms of administration allow cerebral accumulation of OT [194,195],
with identical doses in monkeys resulting in comparable or even higher concentrations in
cerebrospinal fluid (CSF) after i.v. administration [194,196].
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Nevertheless, the OT system is associated with stress-related responses, anxiolytic ef-
fects, maternal behavior, optimistic-belief updating, optimism and social reward perception,
and several psychiatric disorders as well as prosocial (or anti-social) behaviors. [197–200].
Even though the role OT administration has been extensively studied, there is still ambiva-
lence and a lack of clarity to the impact of OT treatment. OT administration was associated
with pro-social behavior when the environment was considered safe and with defensive,
anti-social behavior when the environment was perceived as unsafe [201]. The authors also
suggest that OT treatment in individuals with a history of child maltreatment, borderline
personality disorder, and/or severe attachment disorder, to promote aggressive tenden-
cies [201]. Ellis et al., in a recent meta-analysis, concluded that individuals growing up in
adverse conditions have lower endogenous OT levels and higher levels of methylation
of the OTR gene [88]. Interestingly, individuals who reported less exposure to adverse
childhood conditions responded more positively to intranasal OT administration [88]. The
results of exogenous OT administration were ambivalent; on the one hand OT administra-
tion was anxiolytic in case with less severe forms of emotional trauma but on the other hand
in patients with recent traumatic experience exogenous OT increased anxiogenic effects,
enhancing the fear response [202,203]. The authors conclude that the use of exogenous
OT for the prevention of PTSD warrants caution because of the ambivalent effects that
appear to be context related [202]. The ambivalent findings and variable effects of OT
administration in early life in individuals with ELS, PTSD, and/or psychiatric disorders
suggests a need to better understand discrepancy between circulating levels of OT and
OTR tissue expression levels (see Table 2).

Table 2. Summary of studies: Therapeutic potential of the H2S system and the OT/OTR system in trauma.

Author and Year Species Experimental Challenge Therapeutic Potential of OT and H2S in
Trauma

Ellis et al.,
2021 [88] Humans ELS

Intranasally administered OT

People who grew up under more adverse
conditions tend to have ↓endogenous OT
Early adversity is associated with higher

levels of methylation of the OTR gene
Adults who report ↓levels of childhood

adversity tend to show ↑positive responses
to intranasal OT

Flanagan et al.,
2018 [119] Humans

Posttraumatic Stress Disorder (PTSD)
Treatment: Prolonged Exposure

Therapy and intranasal OT
(vs. placebo)

OT group:
↓PTSD & depression symptoms during

Prolonged Exposure Therapy
↑Working alliance scores

Bracht et al.,
2012 [159] Swine

Hemorrhagic Shock
Intravenous Na2S administration

1. 2 h before hemorrhage
2. Simultaneously with blood removal
3. At the beginning of retransfusion of

shed blood

2. simultaneous treatment group:
↓Progressive kidney, liver, and
cardiocirculatory dysfunction

↓Histological damage of lung, liver, and
kidney

Na2S: ↓mortality irrespective of the timing of
its administration

Whiteman et al.,
2010 [160]

Murine
RAW264.7

macrophages

Lipopolysaccharide (LPS) treatment
NaHS or GYY4137 administration

GYY4137 led to:
Concentration-dependently ↓LPS-induced

release of proinflammatory mediators (IL-1β,
IL-6, TNFα, NO, and PGE(2)), ↑synthesis of

the antiinflammatory IL-10
NaHSlet to:

Biphasic effect on proinflammatory
mediators, at high concentrations, ↑synthesis

of IL-1β, IL-6, NO, PGE(2) and TNFα
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Table 2. Cont.

Author and Year Species Experimental Challenge Therapeutic Potential of OT and H2S in
Trauma

Wepler et al.,
2019 [161] Mice

Wave-induced thorax trauma and
hemorrhagic shock

(vs. sham)
Intravenous bolus injection high and

low dose of AP39
(vs. vehicle)

High-dose AP39 in thorax trauma:
↓Systemic inflammation, ↓inducible nitric

oxide synthase and IκBα in lung tissue
thorax trauma and hemorrhagic shock:

High-dose AP39:
↓Mean arterial pressure, ↑norepinephrine

requirements, ↑mortality
Low-dose AP39:

no effects

Matallo et al.,
2014 [190]

Immortalized cell
line (AMJ2-C11) Na2S solution stimulation

Mitochondria analysis:
The onset of inhibition of cell respiration by

sulfide occurs earlier under a continuous
exposure when approaching the anoxic

condition.

Nußbaum et al.,
2017 [191]

Swine
(Pre-existing

coronary artery
disease)

Septic Shock
(vs. sham)

intravenous GYY4137 administration

GYY4137 led to:
↑Aerobic glucose oxidation, ↑requirements

of exogenous glucose to maintain
normoglycemia, ↓arterial pH, ↓base excess
↓Cardiac eNOS expression, ↑troponin levels
no effect on cardiac and kidney function or

the systemic inflammatory response

Lee et al.,
2020 [194]

Rhesus
Macaques

Labelled OT administration
nebulizer/intravenous

infusion/intranasal

2 h after OT administration:
Labeled OT is found after intranasal

administration in orbitofrontal cortex,
striatum, brainstem, and thalamus (these lie

in the trajectories of the olfactory and
trigeminal nerves, bypassing the blood-brain

barrier)

Martins et al.,
2020 [195] Humans

healthy volunteers
OT administration

nebulizer/intravenous
infusion/standard nasal spray (vs.

placebo or saline)

OT-induced:
↓Amygdala perfusion (a key hub of the OT

central circuitry)due to OT ↑in systemic
circulation following both intranasal and

intravenous OT administration
Robust evidence confirming the validity of
the intranasal route to target specific brain

regions

Lee et al.,
2018 [196]

Rhesus
Macaques

Labelled OT administration:
intravenous infusion/intranasal
(vs. intranasal saline as control)

Cerebro-spinal fluid penetrance of labelled
OT

exogenous OT delivered by intranasal and
intravenous administration

Intravenous administration of labelled OT
did not lead to increased endogenous OT or
endogenous OT in the cerebro-spinal fluid

Ma et al.,
2016 [199] Humans Intranasally administered OT

↑Optimistic belief updating by facilitating
updates of desirable feedback, but ↓updates

of undesirable feedback
↑Learning rate (the strength of association
between estimation error and subsequent

update) of desirable feedback
↑Participants’ confidence in their estimates

after receiving desirable but not undesirable
feedback
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Table 2. Cont.

Author and Year Species Experimental Challenge Therapeutic Potential of OT and H2S in
Trauma

Saphire-Bernstein
et al., 2011 [200] Humans Genotype of OTR

Link between the OTR SNP rs53576 and
psychological resources

“A” allele carriers have ↓levels of optimism,
mastery, and self-esteem, relative to G/G

homozygotes

Domes et al.,
2010 [203] Humans

Presented with fearful, angry, happy
and neutral facial expressions after a

single dose of intranasal OT or placebo
administration

Blood-oxygen-level-dependent signal was
↑in the left amygdala, the fusiform gyrus &
the superior temporal gyrus in response to

fearful faces & in the inferior frontal gyrus in
response to angry and happy faces following

OT treatment.
independent of basal plasma levels of OT,

estradiol, and progesterone

For the purposes of this perspective review a medline pubmed search of the following key words was performed: early life stress,
adverse childhood experience, posttraumatic stress disorder, traumatic brain injury, acute subdural hematoma, poly-trauma, hemorrhagic
shock, sodium thiosulfate (Na2S2O3), cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), Oxytocin, Oxytocin-receptor, arginin-
vasopressin (AVP), arginin-vasopressin-receptor (AVP-R), oxidative stress, nitrosative stress, porcine. Abbreviations: ELS = early life stress;
PTSD = post-traumatic stress disorder; H2S = hydrogen sulfide; OT = oxytocin; OTR = oxytocin receptor; NaHS = Sodium hydrosulfide;
Na2S = Sodium sulfide; SNP = single nucleotide polymorphism. ↓ slightly down, ↓↓ strongly down, ↑ slightly up, ↑↑ strongly up.

7. Sex

The OT and H2S systems play sex-specific roles, and production of OT has been shown
to vary between males and females [109]. The effect of ELS/ACE on the incidence or sever-
ity of subsequent COPD [204], as well as arterial hypertension, CHD, and cerebrovascular
disease [205–207] was more pronounced in women, in contrast to the higher incidence
of these conditions in men in the general population [208,209]. These epidemiological
findings are complemented by recent data that the long-term outcome after TBI is worse in
women than in men, particularly after “mild” TBI [210]. This indication of greater vulnera-
bility of women to ELS/ACE is confirmed by experimental data in a model of early life
adversity in pigs: female animals showed significantly more pronounced stress-induced
pathophysiological changes in the gastrointestinal mucosa than males [211,212]. We previ-
ously showed that the aggravated posttraumatic pulmonary and systemic inflammation
in CSE−/− mice was more pronounced in male than in female animals [127]. This is in
line with the most recent data that white matter damage and cognitive dysfunction was
more pronounced in male than in female mice [213]. Moreover, mortality after TBI is most
pronounced in the elderly, male patient [214,215], and, finally, the incidence and morbidity
of ASDH is highest in this population [216,217]. However, there is clear evidence for age-
and sex-dependent differences after murine TBI as well as the response to treatment: juve-
nile male mice revealed less acute inflammatory cytokine expression, but greater subacute
microglial/macrophage accumulation, and improved neurological recovery after TBI [218].
This observation agrees with recent clinical findings that female patients showed worse
long-term outcomes after mild TBI [210,219]. Finally, treatment with tranexamic acid to
attenuate intracerebral hemorrhage after TBI attenuated blood-brain barrier disruption
in males, but even increased its permeability in female mice [220], thus suggesting the
importance of including sex in experimental protocols.

8. Impact of Intensive Care Treatment in Pre-Clinical Animal Models

Current guidelines of care for patients with TBI [17] include (i) control of ICP and
related maintenance of cerebral perfusion pressure (CPP); (ii) avoidance of hypoxic phases,
as assessed by the measurement of the partial pressure of O2 in cerebral tissue (PtcO2), in
addition to decompression by (hemi)craniectomy. Indeed, several clinical studies showed
that ICP, CPP, and PtcO2 are key determinants of both morbidity and mortality after
TBI [221–225]. Additional prognostic factors after TBI include cerebral tissue concentrations
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of glutamate, glucose, lactate, and pyruvate [225–228], which indicate the metabolic state
of the traumatized tissue.

However, none of the aforementioned studies integrated standard intensive care
measures into the experimental protocol, limiting translational value. In fact, it may
explain why in spite of many promising pre-clinical results the rodent acute brain injury
models have been problematic in translation into clinical benefits [187,188].

In a randomized, controlled, double-blind trial conducted by our own group in pigs
with CHD that underwent HS followed by 72 h of therapy according to the guidelines of
the intensive care societies, a 24 h STS infusion (starting at the onset of intensive care in a
“post-treatment” design) was associated with significant improvement in lung mechanics
and gas exchange [150] (see Figure 5). Histomorphological and immunohistochemical
analysis of tissue samples taken post-mortem from the paraventricular nuclei (PVN) of
the hypothalamus showed that (i) HS alone (i.e., without additional local brain damage)
resulted in only minor, neuro-histopathological changes and only in the “white matter”;
and (ii) i.v. administration of STS in situations without local brain damage had no effect
on the expression of CSE, CBS, OT, OTR, and the GR [150,229]. This finding is most likely
due to the blood-brain barrier (BBB) remaining intact despite the HS, which prevented the
passage of STS into the brain [230]. This situation of HS alone, i.e., without additional local
damage to the brain, is diametrically opposed to the situation of an ASDH: histomorpho-
logical and immunohistochemical examination of the brain after ASDH alone, i.e., even
without systemic circulatory depression and, thus, reduced perfusion of the brain, were
accompanied by disruption of the BBB in the area of ASDH [188]. Other authors were also
able to demonstrate an antioxidant effect for STS in terms of protection against doxyrubicin-
induced oxidative DNA strand breaks [231]. The conclusion that STS apparently exhibits
organ-protective effects after traumatic hemorrhagic shock in the presence of reduced en-
dogenous H2S availability was confirmed by corresponding findings in mice with genetic
CSE deletion [176]. Therefore, STS (i) which is approved as an antidote for cyanide and
mustard gas poisoning, cis-platinum overdose in oncology, and calciphyllaxia [163]; (ii) for
which dose information is available both as bolus and continuous i.v. infusion in humans
and for large animals are known and identical [150,232–234]; and (iii) which is almost free
of side effects even in high doses [163,235] and is therefore being tested in a clinical trial
in patients with myocardial infarction (Clinical Trials Registry NCT02899364: “Sodium
Thiosulfate to Preserve Cardiac Function in STEMI (GIPS-IV)”) may prove to be a safe and
efficacious therapy for ASDH and HS [235].

Finally, an interesting aside, though not directly related to the topic at hand but
very relevant to the current global pandemic of Coronavirus disease 2019 (COVID-19)
caused by SARS-CoV-2, are the recent reports of reduced H2S levels as “a hallmark of
COVID-19” [169,236,237] and the therapeutical potential for H2S donors; especially STS, in
this context, is beyond the scope of this perspective but has been recently
reviewed [150,169,238–240].

9. Conclusions

Taken together, this perspective explored the role of the biological connection of the
H2S and OT systems in polytrauma e.g., HS and TBI with a special emphasis on transla-
tional modeling. Translational models need to reflect the pathophysiology of the patient
population as well as the standard intensive care therapy, which polytrauma patients re-
ceive. As emphasized, many of the promising pre-clinical results in rodent TBI models have
failed to translate into clinical benefits, and an obvious omission is the lack of intensive
care unit (ICU) measures in these models. This perspective also highlighted the signifi-
cance of the H2S and OT systems and their dysregulation in PEMC’s, both physical and
psychological, that may affect therapeutic management of polytrauma patients. Sex-related
differences were shown to also contribute to the complexity of therapeutic efforts and are
often lacking in the experimental design. In an effort to improve translational studies,
clinically relevant large animal models reflecting the pathophysiology (comorbidities) of
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the patient population (male and female) handled with the appropriate intensive care
measures are necessary. Thus, in that there are no clinical data available in trauma, for
HS and acute brain injury for the already approved STS (devoid of undesired side effects),
it may be a relevant candidate to test in large animal models for these potential clinical
applications.
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