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Abstract
The perception of, and neural responses to, sensory stimuli in the present are
influenced by what has been observed in the past—a phenomenon known as
adaptation. We focus on adaptation in visual cortical neurons as a paradigmatic
example. We review recent work that represents two shifts in the way we study
adaptation, namely (i) going beyond single neurons to study adaptation in
populations of neurons and (ii) going beyond simple stimuli to study adaptation
to natural stimuli. We suggest that efforts in these two directions, through a
closer integration of experimental and modeling approaches, will enable a more
complete understanding of cortical processing in natural environments.
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Introduction
Visual adaptation, hereon simply referred to as adaptation, is the 
influence of past visual stimuli on the responses of neurons and 
on perception of the present. Though adaptation was first identified 
millennia ago1, its principles and functional role are still not well 
understood.

The earliest experimental studies of neuronal-level adaptation 
effects used simple, artificial stimuli repeated over time, such as 
oriented bars and moving dots, a technique still commonly used. 
Simple repetitive stimuli such as these can result in striking per-
ceptual after-effects. For instance, in the tilt after-effect, prolonged 
exposure to a particular orientation of a grating results in systematic 
biases in perception of the orientation of another grating presented 
later in time2. Adaptation to stimulus features such as orientation 
and contrast can notably change the gain and tuning properties of 
neurons in early cortex as well as other response properties. These 
phenomena have been reviewed previously (see e.g. 3–8). Here,  
we also start from this class of adaptation phenomena because they 
provide the springboard for the more recent developments that 
are the focus of this review. We then identify ways in which these 
effects are being reinterpreted and extended within the context of 
natural scenes and neuronal populations.

While we have gained considerable knowledge with the classi-
cal approach, it has some important limitations. First, adaptation 
effects are not limited to low-level image features such as orienta-
tion and contrast, as they have also been observed for higher-level 
visual content such as facial expression and for complex stimuli 
such as natural scenes9,10, with some studies focusing on influences 
across the cortical hierarchy (see e.g. 11). Furthermore, as com-
pared to artificial stimuli, the visual inputs we receive from the 
natural environment have more complex temporal dynamics; for 
instance, we may view dynamically changing images in a given 
location12 or entirely new scene structure owing to eye move-
ments. Second, most experiments have probed adaptation in single  
neurons8. Visual processing, however, relies on populations of  
neurons, and circuit-level effects of adaptation are poorly under-
stood (but see recent progress13–18). As a consequence, we have 
a limited understanding of what aspects of neural adaptation are 
responsible for the observed perceptual effects, as we illustrate 
below. Third, computationally, despite recent advances19–25, we still 
lack a comprehensive model that can predict when adaptation will 
be recruited for arbitrary, natural stimuli or the degree to which it 
will occur. More generally, the link between the observable effects 
and the functional goals of adaptation has been elusive.

One promising approach to address these issues is based on the 
assumption that neural systems are sensitive to the statistical struc-
ture of stimuli in the natural environment over space and time and 
that adaptation reflects these statistics6,7,26–32. According to this view, 
to more fully understand and accurately model adaptation would 
require studying neural systems exposed to the natural environment. 
Here, we review recent literature that is taking studies of adaptation 
in exciting new directions, focusing on new experiments, analyses, 
and models that (i) are going beyond the single-neuron level and 
tapping into the neuronal population level and (ii) are using natural-
istic scenes in lieu of simple, artificial stimuli.

For recent reviews covering other aspects of visual adaptation, such 
as timescales of adaptation, effects outside of the classical receptive 
field, inheritance across multiple stages of neural processing, poten-
tial neural mechanisms, and compensation for biological variation, 
see 8,33. Adaptation may also be related to forms of plasticity that 
take place on different timescales such as perceptual learning and 
developmental processes, and studies of adaptation have extended 
beyond the traditional sensory domains to systems such as mem-
ory and action34–39. Although beyond the scope of this review, we 
believe that the framework that is emerging from the more limited 
set of studies we discuss here on natural scenes and population cod-
ing could, in the future, provide a conceptual bridge to those afore-
mentioned domains.

Adaptation in neuronal populations
Most neurophysiology studies of adaptation have focused on single 
neurons—more specifically, examining the average neural response 
across repeated trials of the same stimulus condition8. However, 
some adaptation effects are revealed only by analyzing the activity 
of populations of neurons. For example, Benucci et al.40 demon-
strated a form of homeostasis across the neuronal population while 
recording simultaneously from tens of neurons. They adapted the 
population to a biased stimulus ensemble in which some orienta-
tions were presented more frequently than others. They found that 
after adaptation, despite the stimulus bias, neurons with different 
orientation preferences, on average, had the same response level 
across the ensemble. Such population data offer a richer test bed for 
models of adaptation19,20 and have the potential to link to perceptual 
phenomena.

Here we focus, in particular, on adaptation as it affects the variabil-
ity of neural activity. It is well known that neural responses fluctuate 
substantially across trials41,42 and that such fluctuations are shared 
between neurons, as quantified by “noise correlations”43. This vari-
ability can strongly influence information in neuronal populations 
and, ultimately, perception44–51. The structure and stimulus depend-
ence of cortical variability have been thoroughly characterized52–58, 
and recent studies have begun to examine how it is affected by 
adaptation.

Benucci et al.40 reported that, in their experimental paradigm, adap-
tation did not affect the overall level of noise correlations. The 
adapted neurons exposed to the biased stimulus ensemble main-
tained the same degree of average correlation as the unadapted 
neurons did to the uniform stimulus ensemble, regardless of the 
similarity between the preferred orientation of the neurons and the 
biased orientation. This result was at odds with a previous study59 
based on the traditional adaptation paradigm of prolonged exposure 
to a single stimulus (a grating with fixed orientation, as opposed to 
a biased ensemble). Gutnisky et al.59 reported an overall reduction 
of noise correlations in primary visual cortex (V1) after adaptation. 
The strength of the reduction depended on the relative orientation 
preference of the neurons and the orientation of the adapter. They 
also speculated that these effects could increase population infor-
mation about stimulus orientation.

A more recent study has also reported evidence for decorrelation60, 
primarily for pairs of neurons in marmoset middle temporal visual 
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area (MT), whose preferred direction of visual motion was similar 
to the adaptor. The authors took a more direct approach to assess-
ing the consequences of adaptation for population information. 
They used a decoding-based analysis to read out, on a trial-by-trial 
basis, the direction encoded by the population. They found no 
impact of adaptation on decoder performance, i.e. no change in the 
percentage of cases where the decoder’s output matched the true 
test direction. However, the distribution of errors was asymmetri-
cal, and the decoder was on average biased in a manner consistent 
with the perceptual direction after-effect61,62, i.e. the decoded direc-
tion was repelled away from the true direction by up to 5 degrees 
when the adapter was around 60 degrees away from the test. Zavitz  
et al.60 also found that noise correlations had a minimal effect on 
the decoder’s performance; the direction after-effect was attributed 
mainly to the effects of adaptation on response gain, consistent with 
previous models in the temporal7 and spatial63,64 domains. Another 
recent study65 has focused on population-level adaptation in rat  
barrel cortex, reporting that adaptation generally increases noise 
correlations but increases single-neuron information even more. 
The net effect is that adaptation increases information at the popu-
lation level around the adapter.

The heterogeneity of effects reported in these studies is indicative 
of a number of caveats that should be considered when studying 
population coding. For instance, the conclusion of Gutnisky et al.59, 
that adaptation increases information, was based on simulating 
populations with artificially constructed tuning curves and covari-
ances, a method that is prone to mis-estimation of information49,51. 
Benucci et al.40 analyzed noise correlations only at a coarse level, 
and it is possible that a decoding-based approach could reveal a role 
of noise correlations despite their relatively small change, on aver-
age, across the population. The decoder-based analysis of Zavitz 
et al.60 and Adibi et al.65 is a safer route to address the effects of 
adaptation on stimulus discrimination performance; however, it has 
recently become clear that correlations may have a substantially 
different impact on information for small populations of few tens 
of neurons versus larger populations with size comparable to the 
number of neurons presumably involved in solving the perceptual 
task51. It is also important to keep in mind that decoding is always 
task dependent and conclusions drawn from decoding-based analy-
ses are specific to the task considered (e.g. discrimination of visual 
orientation in V1 or motion direction in MT). Adaptation-induced 
changes in the population code may have different functional rel-
evance when considering different tasks or computational goals, a 
point we explore further below.

The field clearly needs a much more extensive and systematic 
study of population-level adaptation and its relation to perception. 
We suggest that this effort could benefit from leveraging recent  
developments in the broader field of neuronal population coding: 1) 
simultaneous recording from larger populations of hundreds (which 
is feasible with current technology53) or thousands of neurons 
(which might soon become feasible66), 2) decoding-based analy-
sis of population data, which is becoming commonplace in other  
studies of visual processing besides adaptation49,67–70 (please  
see 47,71 for broader reviews on population decoding), and 3)  
theories of population coding in the context of well-specified  
computational goals72,73. While this section has focused on the 

first two elements above, in the next section we discuss recent  
proposals for the computational goals of adaptation that go beyond  
discrimination tasks with simple stimuli.

Adaptation to natural scenes
While we have learned a lot from studying adaptation to simple 
stimuli, and these continue to be useful as benchmarks for sys-
tematic manipulation, replication, and comparison, there has been 
growing interest in understanding adaptation for more naturalistic 
stimuli. This interest is because of the difficulty in extrapolating 
from simple stimuli how the brain adapts to stimuli it encounters in 
the natural environment. There is also reason to expect that aspects  
of neural responses are tuned to the properties of the visual envi-
ronment, as has been demonstrated in many areas of visual  
processing26,29,32,74,75. Some studies have pushed forward the hypoth-
esis that neural properties are constrained by task-related goals: 
for example, Burge and Geisler76 used natural scenes to develop 
an ideal observer for speed estimation and showed that this closely 
matched human performance. Other studies have focused on deriv-
ing models of visual neurons with task-independent goals, such as 
efficient coding. In this section, we first discuss the use of natural 
stimuli in experimental paradigms of adaptation. We then discuss 
computational models of adaptation motivated by the structure of 
visual scenes. Finally, we note new techniques which potentially 
can be applied to adaptation in the near future.

Many studies of adaptation have focused on synthetic stimuli 
owing to the inherent complexity of natural stimuli and the  
difficulty of parsing specific aspects of these stimuli to create con-
trolled experiments28. Recently, there has been a trend of experi-
mental design using more naturalistic stimuli, with the main focus 
on using static natural images77–82. The use of natural stimuli  
can often provide similar benchmarks to synthetic stimuli. For  
example, the perceptual tilt after-effect seen with synthetic stimuli 
is still observed with natural images (chosen according to their 
dominant orientation), but to a lesser degree77,78. Repulsive adapta-
tion effects have also been studied for faces and have been reported 
for higher-level properties such as openness of the scene9,83.  
Taking a different approach, in an elegant reversal of the con-
ventional design, instead of starting from a gray screen and then 
testing the effect of adapting to an oriented contrast grating,  
Haak et al.84 used an alternate reality system to remove an orien-
tation from subjects’ otherwise natural visual input, continuously, 
over multiple days. The overall strength of the adaptive effects 
peaked after the first day, then declined, but increased again more 
slowly as the days progressed. Each of their testing paradigms 
had its own set of peaks and troughs, with the strength of effects 
changing within individual sessions and across progressive days. 
They concluded that the variations in adaptive effects were due to  
multiple neural mechanisms operating at different time scales, in 
line with their earlier work85 and related to results seen for synthetic 
stimuli (for review, see 8).

Computational models have also started to incorporate more 
aspects of natural scenes. We first discuss theoretical approaches 
for modeling the functional role of adaptation. We then focus on 
how the form and parameters of such models may be constrained 
and learned from natural scenes. One early hypothesis was that  

Page 4 of 9

F1000Research 2017, 6(F1000 Faculty Rev):1246 Last updated: 27 JUL 2017



adaptation implements efficient coding principles (see, for exam-
ple, the discussion in 4,7). Examples of this perspective range 
from a reduction of metabolic cost86 to improved signal-to-
noise ratio22, enhanced information transmission87,88, redundancy  
reduction19,23,25,26,75,89, and complementary directions of probabilis-
tic inference in generative models of the environment20,24. Foun-
dational work has related changes in V1 population-level activity 
over long time scales (development) to learning a well-calibrated 
prior for natural stimuli36. Along with other similar work, this has 
provided a normative framework of how response variability and 
noise correlations depend on features of the visual inputs90, and 
recent findings indicate that a similar approach could provide a new 
view of population-level adaptation on relatively shorter timescales 
(minutes to hours91).

Another hypothesis states that adaptation serves to enhance 
stimulus salience, which may be related to the notion of reducing 
redundant information. Salience has been studied extensively in the 
spatial context domain (e.g. 92–94). In particular, computational 
modeling and experimental tests have supported the hypothesis 
that V1 forms a salience map corresponding to the breakdown of 
homogeneity of the input92,93,95,96. In the temporal domain, salience  
may be viewed as novelty detection, postulating that adaptation 
serves to enhance neural responsivity to stimuli that are unexpected,  
e.g. stimuli that differ significantly from the adapter. This relates 
to ideas of predictive coding21 and to literature on the mismatch 
negativity in evoked potentials, which is more prominent in the 
auditory domain97–100. Recently, experimental groups have started 
to perceptually test the hypothesis that adaptation enhances  
saliency101–103.

In recent work, following some of our earlier approaches on spatial 
context modeling104, we have proposed, in the temporal domain, 
that adaptation effects may be explained as probabilistic inference 
in a generative model of the statistical dependencies in natural  
movies20. In this framework, adaptation also reduces statistical 
redundancies that are induced by the stimuli. The redundancy  
reduction is achieved by adjusting the strength of a divisive  
normalization signal based on inference in the model about whether 
stimuli in the present and past are deemed statistically dependent. 
This constitutes a generalization of earlier work on redundancy 
reduction in still images and divisive normalization25,105, and  
relates to previous work on salience as a breakdown of statistical 
homogeneity93.

Divisive normalization refers to a non-linear computation, whereby 
the response of a given neural unit is divided by the activity of 
other neural units106. It has been termed a canonical computation in  
cortex107 and has been shown to be consistent with adaptation 
phenomena in a range of other cortical areas, such as the auditory 
cortex, olfactory system, visual attention, and integration of mul-
tisensory information4,8. A mechanism for divisive normalization 
in the context of adaptation has been proposed recently, in which 
adaptation adjusts the strength of the interactions between model 
neurons (specifically, the weights of a divisive normalization sig-
nal) to homeostatically maintain the products of responses of pairs 
of neurons19. Both modeling frameworks19,20 replicated aspects of 
the main adaptation phenomena, namely suppression and repulsion  

at the single-neuron level as well as equalization of population 
responses, and they both could explain the tilt after-effect.

However, although learned with natural scenes, the adaptation 
model of Snow et al.20 (as well as other models inspired by or 
learned with natural scenes) have typically been tested experimen-
tally only with simple stimuli. While an important first step, simple 
stimuli lack the richness of natural stimuli, with which such models 
are learned. This constitutes a limitation not only for testing our 
models but also, more broadly, when a variety of cortical properties 
appear to be attuned to the inherent properties of natural scenes76,108. 
Testing computational models with natural stimuli offers a much 
richer test set. More importantly, one can study neural or percep-
tual responses to natural stimuli in the context of the computational 
models and their predictions.

Testing computational models derived from natural scenes with 
natural scene stimuli has been emerging in other domains. For 
instance, in studying spatial (rather than temporal) context effects, 
Coen-Cagli et al.109 derived a model of V1 from the statistics of 
static natural scenes. Using probabilistic inference in a genera-
tive model of spatial dependencies in images, the model made the 
specific prediction that when visual inputs to the receptive field 
center and surround of a neuron were deemed statistically depend-
ent according to the model, this resulted in more recruitment of  
surround suppression to reduce the dependency. Through close 
interplay between the modeling and neurophysiology experiments 
using natural scenes in V1, this study suggested that surround  
suppression in cortical neurons is gated by the statistical similarity 
of center and surround stimuli. These directions can be extended 
to adaptation models and to more natural stimuli for adaptation, 
such as movies that incorporate motion in the environment and eye 
movements. There is also the potential to extend such approaches to 
perceptual studies (e.g. in the spatial domain110).

We have thus far focused largely on unsupervised learning in natu-
ral scenes and how such approaches may be used to build and test 
models of adaptation in early cortex. There are also other poten-
tial routes to modeling neural adaptation based on learning with 
natural scenes. Recently, there have been exciting advances in 
an area of machine learning known as deep convolutional neural  
networks. Deep convolutional neural networks consist of a hier-
archy of layers that learn progressively more complex structure 
in images, inspired by the hierarchical organization in the visual 
cortex. Recent advances in the field have focused on supervised 
task-based learning approaches that discriminate between a large 
ensemble of labeled images. Modern versions of deep convolu-
tional neural networks have led to state-of-the-art results in scene 
recognition in computer vision111,112. These approaches have in turn 
been recently applied within the neuroscience community, with the 
goal of capturing cortical processing in higher visual areas, beyond 
V1. There has been some indication of success relative to previous 
approaches113–116.

These approaches have not yet been used to model cortical adap-
tation, but we believe there is potential. To address adaptation, 
one would need to consider how learning in deep neural network  
models is updated over time as the network is exposed to new  
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stimuli. We believe there are two potential routes for achieving this, 
both of which require extending the deep neural network frame-
work. One approach includes adding recurrent connections that are 
updated over time. This form of model has interestingly been shown 
to be effective for modeling contrast adaptation of retinal neurons 
to natural scenes117. A second approach includes adding divisive 
normalization to deep neural network models. Divisive normaliza-
tion is already present in simple forms in deep convolutional neural 
networks (see e.g. references in 37,118). One would need to extend 
such models to incorporate adaptation in time. We should empha-
size that the potential of incorporating adaptation into deep neu-
ral networks is not limited to supervised discriminative networks. 
There has also been recent progress in building unsupervised deep 
convolutional networks with divisive normalization (e.g. 119). 
Deep convolutional networks together with more plausible non- 
linearities may provide a means of modeling adaptation in cortical 
neural areas beyond V1 but will ultimately need to be tested against 
experimental data.

In summary, simple stimuli were the starting point for studying 
the visual system and have taught us much over the past 50-plus 
years, but, as a field, our focus should shift to more complex stim-
uli. We suggest that experiments and models focus on using natural 
stimuli for both learning and testing for two reasons: 1) the greater  
complexity in natural inputs as compared to simple stimuli will 
increase our understanding of how the visual cortex deals with this 

complexity, potentially leading to the discovery of new phenom-
ena, and 2) a better understanding of how cortex processes natural  
images could potentially equip us with more powerful tools for 
computer vision.

Summary
Our ability to record and predict neuronal and perceptual responses 
has improved dramatically over the last few years. We are able to 
record from more neurons simultaneously, using more complex 
stimuli, over longer periods of time. As we have elucidated more 
and more about how adaptation occurs, this has informed our 
understanding of the properties of adaptation. In parallel develop-
ments, theory has helped formulate hypotheses for the functional 
role of adaptation. In sum, it is our hope that increased capabilities 
for studying visual cortex at the population level, and with more 
naturalistic stimuli, combined with the interplay with modeling 
approaches, will help move forward our understanding of adapta-
tion and its functional goals.
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