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Abstract: Current treatment methods for patients diagnosed with gliomas have shown limited success.
This is partly due to the lack of prognostic genes available to accurately predict disease outcomes.
The aim of this study was to investigate novel prognostic genes based on the molecular profile
of tumor samples and their correlation with clinical parameters. In the current study, microarray
data (GSE4412 and GSE7696) downloaded from Gene Expression Omnibus were used to identify
differentially expressed prognostic genes (DEPGs) by significant analysis of microarray (SAM)
between long-term survivors (>2 years) and short-term survivors (≤2 years). DEPGs generated
from these two datasets were intersected to obtain a list of common DEPGs. The expression of
a subset of common DEPGs was then independently validated by real-time reverse transcription
quantitative PCR (qPCR). Survival value of the common DEPGs was validated using known survival
data from the GSE4412 and TCGA dataset. After intersecting DEPGs generated from the above two
datasets, three genes were identified which may potentially be used to determine glioma patient
prognosis. Independent validation with glioma patients tissue (n = 70) and normal brain tissue
(n = 19) found PPIC, EMP3 and CHI3L1 were up-regulated in glioma tissue. Survival value validation
showed that the three genes correlated with patient survival by Kaplan-Meir analysis, including
grades, age and therapy.
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1. Introduction

As the most common primary central nervous system malignancy in humans, glioma is
characterized by the existence of heterogeneous cells that are involved in disease progression [1].
Generally speaking, gliomas are divided into two classes: low-grade gliomas (LGG, I or II) that
display relatively slow growth, and high-grade gliomas (HGG, III or IV) characterized by rapid
growth and invasion into normal brain tissue [2]. Gliomas are highly fatal and the majority of HGG
patients suffer from a poor quality of life [3,4]. Median survival time of patients with glioblastoma
multiforme (GBM)—the most common and most malignant type of glioma—is only 14.6 months, and
the five-year survival rate is less than 10% [5,6]. Increasing efforts are made to improve HGG treatment.
Recently, several studies have focused on using gene expression profiles to identify potential new
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biomarkers for diagnosis, prognosis, staging and therapy development [7,8]. Multiple studies suggest
that gene expression-based classification of malignant gliomas may correlate better with survival than
histological classification [9], and provide a useful method to identify previously unrecognized but
clinically relevant prognostic indicators [10,11]. To date, microarray analysis has been successfully
used to identify potential glioma-related genes [12] and analyze gene expression levels within certain
biological networks [13–15]. However, evidence from microarray analysis of gliomas suggests that
examination of a single gene offers limited information with poor clinical outcome correlations [16,17].

Taken collectively, the failure to empirically develop an effective treatment for glioma emphasizes
the need to utilize the molecular profile of tumor samples and its correlation with clinical parameters
to develop rationally designed treatment strategies. In this study, we identified three differentially
expressed prognostic genes (DEPGs) that were common among two glioma expression profiles. Gene
expression was validated by real-time quantitative reverse transcription PCR (qPCR). We determined
that PPIC, EMP3 and CHI3L1 were up-regulated in the glioma tissue. The survival value of the
DEPGs was validated using known survival data from the expression profiles and TCGA datasets.
Kaplan-Meir analysis of the datasets revealed that the three genes were correlated with survival,
including grades, age and therapy. Taken together, the results suggest that the genes may be suitable
biomarkers for diagnostic or therapeutic strategies for high-grade gliomas.

2. Results

2.1. Identification of DEPGs

Two gene expression profiles (GSE4412 and GSE7696) of long-term survivors’ (>2 years) and
short-term survivors’ (≤2 years) glioma tissue samples were analyzed to identify genes differentially
expressed. As shown in Figure 1A,B, there was significant difference between long-term and short-term
survivors groups both in GSE4412 and GSE7696 datasets by Kaplan-Meier analysis (p < 0.001 and
p < 0.001, respectively). A total of 151 genes (25 up-regulated and 126 down-regulated genes) in
GSE4412 and 63 genes (8 up-regulated and 55 down-regulated genes) in GSE7696 were identified
as differentially expressed prognostic genes (DEPGs) between long-term survivors and short-term
survivors (Figure 1C,D, Table S1). Intersection of the DEPGs revealed a total of three common
DEPGs—PPIC, EMP3 and CHI3L1—suggesting that these common DEPGs may be potential prognostic
indicators of glioma progression (Figure 1E).

2.2. Independent Validation of Glioma-Specific Markers

We further validated the three relevant prognostic genes by expression profile and real-time
reverse transcription quantitative PCR (qPCR). We analyzed expression of PPIC, EMP3 and CHI3L1
in expression profiles acquired from the Gene Expression Omnibus (GEO) database, and glioma
datasets acquired from The Cancer Genome Atlas (TCGA). Analysis of the GSE7696 data revealed that
PPIC, EMP3 and CHI3L1 have greater than two-fold up-regulation at the transcription level and were
drastically increased in malignant gliomas when compared to non-tumor brain tissue (Figure 2A–C).
It is also noteworthy that expression changes of these genes are consistent with those in the TCGA
datasets (Figure 2D–E).

To further validate these results, expression of the three genes was validated by real-time
quantitative reverse transcription-PCR (qPCR). We found that expression of PPIC expression was
significantly higher in malignant gliomas compared to lower grade gliomas and non-tumor brain
tissue. PPIC expression directly correlated with glioma grade (Figure 3A), and was upregulated
more than two-fold as determined by GSE4290 (Figure 3D). Additionally, our results showed that
EMP3 and CHI3L1 expression was significantly higher in gliomas compared to non-tumor brain tissue.
No correlations between gene expression and glioma grade were identified (Figure 3). Furthermore,
the associations between DEPGs expression and clinicopathological parameters were analyzed in the
present study. No significant association was observed between target gene expression and patient age
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or gender (Table 1). Taken together, the results suggest that expressions of PPIC, EMP3 and CHI3L1
may play a vital role in glioma progression.Int. J. Mol. Sci. 2016, 17, 1808 3 of 13 

 

 
Figure 1. Identification of DEPGs. (A,B) There was significant difference between long-term and 
short-term survivors groups both in GSE4412 and GSE7696 datasets by Kaplan-Meier; (C) 151 genes 
between long-term survivors and short-term survivors in GSE4412 were filtered as DEPGs, including 
25 up-regulated and 126 down-regulated genes; (D) A total of 63 genes between normal and tumor 
tissues in GSE7696 were filtered as DEPGs, including 8 up-regulated and 55 down-regulated genes; 
(E) After intersection, a total of three common DEPGs were detected. 
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short-term survivors groups both in GSE4412 and GSE7696 datasets by Kaplan-Meier; (C) 151 genes
between long-term survivors and short-term survivors in GSE4412 were filtered as DEPGs, including
25 up-regulated and 126 down-regulated genes; (D) A total of 63 genes between normal and tumor
tissues in GSE7696 were filtered as DEPGs, including 8 up-regulated and 55 down-regulated genes;
(E) After intersection, a total of three common DEPGs were detected.
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Figure 2. Independent validation of glioma-specific markers in GSE7696 and The Cancer Genome 
Atlas (TCGA). (A–C) Analysis of the GSE7696 data revealed that PPIC, EMP3 and CHI3L1 have  
>2-fold up-regulation at the transcription level and were drastically increased in malignant gliomas 
when compared to non-tumor brain tissue; (D–F) The expression changes of PPIC, EMP3 and CHI3L1 
are consistent with those in the TCGA datasets. 

 
Figure 3. Independent validation of glioma-specific markers. Three related genes were validated by 
real-time quantitative reverse transcription-PCR. (A) The expression of PPIC expression was 
significantly higher in malignant gliomas compared to lower grade gliomas and non-tumor brain 
tissue. PPIC expression directly correlated with glioma grade; (B,C) EMP3 and CHI3L1 expression 
was drastically increased in malignant gliomas, but no directly correlated with the glioma grade;  
(D–F) PPIC, EMP3 and CHI3L1 expression was drastically increased between gliomas and normal 
tissue in GSE4290 data. 

Figure 2. Independent validation of glioma-specific markers in GSE7696 and The Cancer Genome
Atlas (TCGA). (A–C) Analysis of the GSE7696 data revealed that PPIC, EMP3 and CHI3L1 have >2-fold
up-regulation at the transcription level and were drastically increased in malignant gliomas when
compared to non-tumor brain tissue; (D–F) The expression changes of PPIC, EMP3 and CHI3L1 are
consistent with those in the TCGA datasets.
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Figure 3. Independent validation of glioma-specific markers. Three related genes were validated
by real-time quantitative reverse transcription-PCR. (A) The expression of PPIC expression was
significantly higher in malignant gliomas compared to lower grade gliomas and non-tumor brain
tissue. PPIC expression directly correlated with glioma grade; (B,C) EMP3 and CHI3L1 expression
was drastically increased in malignant gliomas, but no directly correlated with the glioma grade;
(D–F) PPIC, EMP3 and CHI3L1 expression was drastically increased between gliomas and normal
tissue in GSE4290 data.
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Table 1. Correlation between PPIC/EMP3/CHI3L1 expression and glioma clinicopathologic features in 70 patients.

N%

PPIC Expression Levels EMP3 Expression Levels CHI3L1 Expression Levels

High Low Ratio p High Low Ratio p High Low Ratio p

Expression Expression (High/Low) Expression Expression (High/Low) Expression Expression (High/Low)

Sex
Male 48 (68.57) 13 35 0.371

0.184
16 32 0.5

0.835
15 33 0.454

0.441Female 22 (31.42) 10 12 0.833 5 17 0.294 7 15 0.467

Age, year
<45 45 (64.28) 13 32 0.406

0.068
14 31 0.452

0.762
13 32 0.406

0.965≥45 25 (35.72) 11 14 0.786 7 18 0.389 9 16 0.563

Grade
Low (I + II) 38 (54.28) 7 31 0.226

0.005
11 27 0.407

0.876
13 25 0.52

0.935High (III + IV) 32 (45.71) 16 16 0.500 10 22 0.454 9 23 0.391
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2.3. Survival Value Validation of Patients with Grades III and IV Gliomas by the Three-Gene Signature

To investigate the relationship between the expression of the validated DEPGs and patients’
survival, we analyzed the prognostic significance of the genes using Kaplan-Meier analysis for
expression profile GSE4412 and TCGA datasets. The three-gene signature classified patients into low
mRNA and high mRNA expression groups, which differed in overall survival of HGG significantly,
reflecting the biological characteristics and heterogeneity of the glioma grade (GSE4412, Figure 4A).
In Kaplan-Meier analysis, the three-gene signature significantly separated patients in grade III
(GSE4412, Figure 4B) and IV (GBM TCGA, Figure 4C) into high and low expression groups. These
results indicated that low expression of the three-gene signature probably confers a survival advantage
to glioma patients. These results collectively suggested the prognostic value of the three-gene
signature expression.
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signature. (A,B) The three-gene signature classified patients into low mRNA and high mRNA
expression groups which differed in overall survival and grade III of GSE4412 dataset significantly;
(C) The three-gene signature significantly separated patients in IV (GBM) into high and low expression
groups in TCGA dataset. The p-values were computed by the log-rank test.

2.4. Survival Value Validation of Patients with Age by the Three-Gene Signature

To investigate the association of the three-gene signature with age, patients were classified into
groups of people under 50 (young patients) and over 50 (old patients) years of age. Diagnosis with
gliomas at a younger age (under 50) is a strong predictor of longer patient survival. As shown in
Figure 5, it could not significantly classify in old patients (Figure 5B,D) both in GSE4412 and TCGA.
However, in young patients groups, the three-gene signature significantly stratified patients set into
high and low expression groups (Figure 5A,C). Consistent with recent reports showing that patients
under 50 years of age have more favorable prognosis than patients over 50 years old our study classified
most patients under 50 years as low risk and over 50 years of age as high risk.
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In young patients groups, the three-gene signature significantly stratified patients set into high and
low expression groups both in GSE4412 (A) and TCGA(C); However, it could not significantly classify
in old patients both in GSE4412 (B) and TCGA (D). The p-values were computed by the log-rank test.

2.5. Survival Value Validation of Patients with Temozolomide (TMZ) and Radiotherapy by the
Three-Gene Signature

To determine the association of the three-gene signature with response to chemotherapy and
radiotherapy, subset analyses were performed on TCGA dataset, for which therapeutic information
was available. As shown in Figure 6, patients in different groups benefitted from TMZ therapy
(Figure 6A–C) and radiation therapy (Figure 6D–E). These results indicated that expression of the
three-gene signature is indicative of a positive response to adjuvant chemotherapy and radiotherapy.
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3. Discussion

Recently, microarray-based expression profiling studies have revealed molecular events of glioma
which could be of prognostic value [18]. Studies based on gene expression datasets have been
reported to classify patients according to known prognostic factors. Unfortunately, no report has
yet predicted chemotherapy response in gliomas. In this study, microarray data from GSE4412 and
GSE7696 datasets were used to identify differentially expressed prognostic genes (DEPGs) between
long-term and short-term survivors. After intersecting DEPGs generated from the above two datasets,
three common DEPGs (PPIC, EMP3 and CHI3L1) were identified, suggesting that these genes may
be potential predictors of prognosis in high-grade gliomas patients. Besides, our qPCR results
suggest that expressions of PPIC, EMP3 and CHI3L1 may provide new biomarkers to assist in clinical
decision-making concerning new opportunities for targeted treatment of individual patients.

Among them, PPIC encodes Cyclophilin C (Cyp-C), an enzyme that is part of the cyclophilin
family. Human Cyclophilin C was isolated from a human kidney cDNA library [19]. Researchers found
that cyclophilins have been implicated in the folding and function of multiple proteins in various
cellular compartments [20–22]. Cyclophilin C-associated protein (CyCAP) is a 77 kDa intracellular
protein, with a scavenger-receptor cysteine-rich domain that is released into the cytoplasm and cell
membrane [23–25]. The expression of CyCAP has been shown to be elevated by wounds and ischemia
due to the presence of interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) [26,27].
In addition, the deletion of CyCAP abolished a 45 kDa fibronectin-induced MMP-13 expression [28,29].
However, the reports about PPIC and glioma were very limited and the detailed mechanism in glioma
is still unclear.

Another potential predictor of glioma prognosis is EMP3. EMP3 is a member of the peripheral
myelin protein 22-kDa (PMP22) gene family (also known as the TMP gene family). The PMP22 gene
family is comprised of five members including PMP22, EMP3, EMP2, and EMP1, and MP20 [30,31].
The EMP3 gene encodes protein epithelial membrane protein 3 (EMP-3), a 163-amino acid protein
containing four transmembrane domains and two N-linked glycosylation sites in the first extracellular
loop. EMP3 is thought to participate in cell proliferation and cell-cell interactions [30,31]. A study by
Alaminos M showed that EMP3 reintroduction in EMP3-deficient cancer cells inhibits colony formation
and tumor growth in xenografts, indicating a tumor suppressing function of the EMP3 gene. EMP3
has also been reported to show frequent promoter methylation in high-grade astrocytomas and
neuroblastomas [32], two tumor entities that display frequent allelic deletions at 19q13.3 [33–35].

Additionally, CHI3L1, also known as YKL-40, is a secreted 40 kDa glycoprotein that is upregulated
in several human cancers and other diseases characterized by chronic inflammation [36]. A wealth of
clinical evidence has revealed that elevated serum levels of CHI3L1 in GBM are positively correlated
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with cancer invasiveness, radioresistance, recurrence, and reduced patient survival times [37,38]. There
are data that suggest that CHI3L1 expression could be a prognostic predictor of glioblastoma [39–41].
This is the same as what we found.

Of interest was the fact that our univariate analysis of patients with available TMZ information
suggested that the three-gene signature could predict patients who would benefit from TMZ. The utility
of the gene signature for treatment management in glioma still needs to be further evaluated in
a prospective TMZ clinical trial. In addition, the three-gene signature has the ability to identify
patients benefiting from radiotherapy. Therefore, the established gene signature might be helpful in
clinical management.

Reasonable use of microarray datasets not only allows for quicker and simpler analysis of large
quantities of biological information, but also facilitates the accurate identification of key molecular
mechanisms. In the present study, we provided the expression of these potential markers, PPIC,
EMP3 and CHI3L1. We also identified and validated the prognostic value of novel candidate genes.
However, their role in glioma development is largely unknown. Therefore, further studies are required
to more precisely characterize the functional significance of these genes in glioma progression, and
their potential application for glioma prognosis.

4. Materials and Methods

4.1. Affymetrix Microarray Data

Expression profiles (GSE4412, GSE7696 and GSE4290) were acquired from the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database. The platform of GSE4412 is GPL96
[HG-U133A] Affymetrix Human Genome U133A Array. The platform of GSE7696 and GSE4290 is
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. Only grade III (n = 24)
and IV (n = 50) gliomas were included in GSE4412. Sixty glioblastoma multiforme (GBM) were included
in GSE7696. In GSE4290 data, 157 glioma samples, including astrocytoma, oligodendroglioma and
glioblastoma samples (45 grade II, 31 grade III and 81 grade IV) were used. The original CEL files
as well as the probe annotation were downloaded from the platform. Moreover, we used public
TCGA (http://cancergenome.nih.gov/) data repositories as our other source of samples, and a total
of 567 tumors having clinical data were profiled for class discovery and survival analysis. Detailed
information used for these datasets are described in Table 2.

Table 2. Clinical and histological characteristics of patients with glioma.

Sequence GSE4412 GSE7696 GSE4290 TCGA

Patients (n) 74 60 157 567
Male 28 43 347

Female 46 17 220
Age (years) 46 (18–82) 48 (33–70) 58 (10–89)

Grade (n)
I
II 45
III 24 31
IV 50 60 81 567

Temozolomide (TMZ) (n)
Yes 166
No 401

Radiotherapy Z (n)
Yes 422
No 145

http://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov/
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4.2. Differentially Expressed Prognostic Genes (DEPGs) Analysis

The probe-level data in CEL files were converted into expression profiles and the robust multiarray
average (RMA) with affy package was used to correct the background and normalize quartile data.
For genes with multiple corresponding probe sets, which have a plurality of expression values, the gene
expression values reflect the averaged values of those probe sets [42,43]. All the patients were classified
into long-term survivors (>2 years) and short-term survivors (≤2 years). Genes were considered
differentially expressed when meeting the cut-off criterion of |log fold change (FC)| ≥ 1.5 and p < 0.05.
The results generated from GSE4412 and GSE7696 datasets were then intersected to find DEPGs. These
genes were further validated utilizing GSE4412 and TCGA datasets with known survival data to
determine their prognostic significance in GBM patients.

4.3. Patients and Tissue Samples

Seventy patients with grade I to IV gliomas that underwent surgical resection in Hunan Cancer
Hospital (Changsha, China) between 2007 and 2013 were enrolled in this institutional review
board-approved study. Nineteen normal brain samples (from patients with brain injuries) were
collected for controls. Tumors were histopathologically classified according to the WHO classification.
The tissue samples were flash frozen in liquid nitrogen immediately after resection and stored at
−80 ◦C until further processing.

4.4. RNA Extraction and Reverse-Transcription PCR from Human Tissue

Total tissue RNA was extracted by trizol reagent according to the manufacturer’s protocol
(Takara Bio Inc., Otsu, Japan). The extracted RNA with an A260/A280 ratio of 1.9 to 2.1 was considered
to be pure and was used in subsequent experiments. Two micrograms RNA was reverse-transcribed
into cDNAs using Primescript RT reagent Kit with gDNA Eraser (Takara Bio Inc., Japan). Real-time
PCR was performed using the SYBR Premix DimerEraser kit (Takara Bio Inc., Japan). Thermal cycling
conditions were as follows: 30 s at 95 ◦C, then 40 cycles of 5 s at 95 ◦C, 30 s at 55 ◦C and 30 s at 72 ◦C.
All the experiments were performed in duplicate. Primers used for real-time PCR are shown in Table 3.
The relative expression of target mRNA was normalized to the expression level of GAPDH mRNA
using the 2−∆Ct method.

Table 3. Primer sequences used for real-time PCR.

Gene Sequence Base

PPIC
F: AGCAAGTTTCATCGTGTCATCA 22

R: TGGAAATGTCTCACCATAGATGC 23

EMP3
F: GGAGGTCTCTTCTATGCCACC 21
R: AGGATCTCCTCGGCGTGAAT 20

CHI3L1
F: GTGAAGGCGTCTCAAACAGG 20
R: GAAGCGGTCAAGGGCATCT 19

GAPDH
F: GAGTCAACGGATTTGGTCGT 20
R: TTGATTTTGGAGGGATCTCG 20

4.5. Statistical Analysis

The SPSS16.0 (SPSS Inc., Chicago, IL, USA) software was used for general statistics analyses.
Comparisons between two experimental groups were performed using Student’s t-test. Data are
expressed as mean ± standard deviation (SD) values. Survival rate was calculated using the
Kaplan-Meier method with the log-rank test applied for comparison. All tests performed were
two sided and the criterion for statistical significance was p < 0.05.
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5. Conclusions

In conclusion, we identified PPIC, EMP3 and CHI3L1 as highly discriminative predictors of
prognosis. Furthermore, these genes were also found to be highly expressed in glioma tissue compared
to normal brain tissue. Furthermore, the prognostic value of the three-gene signature was statistically
significant in grades, age and therapy. Therefore, we propose that PPIC, EMP3 and CHI3L1 may be
suitable as prognostic genes or therapeutic targets for high grade gliomas.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/11/1808/s1.
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