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Backgrounds: Accumulating evidences have demonstrated that CD55 can protect cells

from complement-mediated attack, and is involved in tumor dedifferentiation, migration,

invasiveness, and metastasis. However, the role of CD55 in gastrointestinal stromal tumors

(GISTs) has not been investigated.

Aims: Our study aimed to analyze the expression of CD55 in gastric GISTs and its

correlations with clinicopathologic characteristics and prognosis.

Materials and methods: A total of 118 gastric GIST patients were included in our study.

CD55 expression in GIST tissue samples was evaluated using immunohistochemistry.

Cumulative survival was conducted using the Kaplan–Meier method. Cox regression ana-

lyses were performed to identify factors associated with progression-free survival (PFS) for

patients with gastric GISTs.

Results: Of 118 gastric GISTs patients included in our study, 44 (37.3%) were positive for

CD55 expression. Positive CD55 expression in gastric GISTs was closely associated with

tumor size (13.52±7.35 vs 5.07±1.90 cm, respectively; P<0.001), Ki 67 labeling index

(P=0.001), mitotic counts (P=0.005), NIH risk classification (P<0.001), PLR (P<0.001),

and metastasis at initial diagnosis (P=0.002). Kaplan–Meier analyses revealed that tumor

size (P<0.001), mitotic counts (P<0.001), Ki 67 labeling index (P<0.001), PLR (P<0.001),

metastasis at initial diagnosis (P=0.031), and CD55 expression (P<0.001) were statistically

significant risk factors affecting PFS of patients with gastric GISTs. Cox multivariate

survival analysis showed that mitotic counts, Ki 67 labeling index, and CD55 expression

were independent predictors of PFS for gastric GISTs.

Conclusion: CD55 may be a potential prognostic marker in gastric GISTs patients.
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Introduction
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors

of the gastrointestinal tract. It is recognized as originating from intestinal cells of Cajal

or their precursors and is characterized by the gain-of-function mutations of KIT and

platelet-derived growth factor receptor-α (PDGFRA) gene.1–3 GISTs are clinically

heterogeneous, and half of the patients experience tumor recurrence or metastasis after

complete resection, usually within 2 years of resection.4,5 Imatinib, a small-molecule

tyrosine kinase inhibitor (TKI) that blocks the activity of receptor tyrosine kinases,

KITor PDGFRA, has revolutionized the treatment of GIST. In patients with advanced,

inoperable, or high-risk GISTs, imatinib achieves significant improvement of the
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progression-free survival (PFS) and overall survival.

Unfortunately, with time most patients experience disease

progression or acquired resistance during targeted

treatment.6,7 Therefore, it is important to explore the biology

mechanism of GIST and discover new therapeutic targets for

this tumor.

Several prognostic models for assessing the malignant

potential of GIST have been proposed in recent 20 years,

which mainly comprise clinical factors such as tumor size,

mitotic count, tumor location, and presence of tumor

rupture.8–11 However, these existing risk classification criteria

cannot accurately predict the prognosis of GISTs, and the

intrinsic mechanism of clinical aggressiveness of GIST is

still undefined. Recently, a series of studies have reported

that manymolecular biomarkers are associatedwith the devel-

opment and progression of GISTs, including tumor suppres-

sors PTEN, P53, CD9, and tumor promoters CD133, Ki67,

MMP-9.12–20

In our previous study,21 we compared the gastric GIST

tissues of low-grade malignance (tumor size ≤2 cm and

mitotic rate ≤5 mitoses/50 HPFs) with those of high-grade

malignance (tumor size ﹥2 cm and mitotic rate ﹥10

mitoses/50 HPFs) using protein microarray analysis, with

the aim of identifying the candidate proteins associated with

the malignant biological potential of GISTs. And a list of

differentially expressed proteins between low- and high-

grade malignant gastric GISTs were detected. We found

a potentially novel candidate protein CD55 was markedly

upregulated in gastric GISTof high-grade malignancy when

compared to those of low-grade malignancy (P=0.015).

Hence, we hypothesized that CD55 protein might be

involved with the prognosis of gastric GISTs (Figure S1).

CD55 is known as complement decay accelerating factor

and is a glycosylphosphatidylinositol-anchored protein that

regulates complement system activation. CD55 plays a role

in protecting cells from complement-mediated attack by

binding to C3 convertases from both the classic and alter-

native complement pathways, preventing C3b deposition

and inhibiting the formation of the membrane attack com-

plex. Complement attack is a powerful innate mechanism in

the protection of the host against pathogens, including can-

cer. A number of studies have demonstrated that CD55 is

involved in tumor dedifferentiation, migration, invasive-

ness, and metastasis, and is overexpressed in various

cancers.22–25 Furthermore, several studies suggest that the

overexpression of CD55 is an independent factor for poor

prognosis and is associated with metastatic progression in

many cancers including gastric cancer and breast

cancer.26,27 However, the expression and potential role of

CD55 in the initiation and progression of GISTs have not

been reported yet.

Therefore, in this study, based on data obtained from

118 consecutive patients with gastric GISTs in our institu-

tion, we aimed to investigate the expression and clinico-

pathological significance of CD55 in gastric GISTs, as

well as to explore its potential value as a prognostic mar-

ker in gastric GISTs patients.

Materials and methods
Patients
This study was approved by the Research Ethics Board

of West China Hospital, Sichuan University and was

conducted in accordance with the Declaration of

Helsinki. Written informed consent was obtained from

all patient included in this study. A total of 118 gastric

GISTs patients were consecutively involved at the

department of gastrointestinal surgery, West China

Hospital, Sichuan University between January 2008

and July 2017. Eligible patients met the following cri-

teria: all primary gastric GISTs were confirmed by post-

operative pathological and immunohistochemical

analyses; patients underwent surgical resection; patients

with complete medical records. Patients with the follow-

ing conditions were excluded: patients received preo-

perative chemotherapy and/or radiotherapy; patients

with serve disease of other systems or coexistence of

any other malignancies. Furthermore, due to the role of

CD55 involved in the interaction with complement, it

would be interesting to see whether other features that

could suggest an enhanced systemic inflammatory

response, such as perioperative high neutrophil-to-

lymphocyte ratio (NLR) or platelet-to-lymphocyte ratio

(PLR) would also add up to the negative prognostic role

of CD55. Hence, for all enrolled patients, clinicopatho-

logical parameters including patient demographics,

tumor size, tumor location, mitotic count, ki67 labeling

index, laboratory data (neutrophil, lymphocyte, and pla-

telet counts) of the patients within one week prior to

surgery, metastasis at initial diagnosis, NIH risk classi-

fication were retrieved from patients’ medical records.

In this study, the cutoff values of the NLR and PLR

were set at 2.24 and 141.29, respectively, based on the

study conducted by Feng et al.28 The patients were then

divided into two groups: high and low NLR groups,

high and low PLR groups.
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Immunohistochemistry analysis
Immunohistochemistry staining for CD55 was performed

on 4-μm-thick sections of the paraffin-embedded tissues

using the avidin-biotin-peroxidase complex method.

Briefly, these sections were deparaffinized in xylene and

dehydrated in gradually decreasing concentrations of alcohol

to water. Then, the tissue sections underwent heat-induced

antigen retrieval at 95°C for 15 mins while immersed in

citrate buffer (pH 6.0). Endogenous peroxidase activity was

blocked with 3% hydrogen peroxidase for 30 mins. Next,

phosphate-buffered saline (PBS) containing 5 g/L bovine

serum albumin was utilized to block nonspecific antibody

binding. The specimens were then incubated with a 1:100

dilution of the primary antibody against CD55 (ab133684,

Abcam, United Kingdom) overnight at 4°C. After incubation,

the specimens were washed three times with PBS and then

were incubated with a secondary antibody. The specimens

were stained with diaminobenzidine (Dako) and finally were

counterstained with hematoxylin. Negative controls were

performed by replacing the primary antibody with nonim-

mune immunoglobulin. Immunostaining was scored blindly

by two independent pathologists using an Olympus CX31

microscope (Olympus, Center Valley, PA), who were blinded

to clinicopathological parameters of each sample. CD55

expression was identified as the existence of yellow-brown

membrane staining of tumor cells. The percentage of positive

cells was calculated as 0 (<10%), 1 (10–50%), 2 (51–75%),

3 (>76%). And the intensity of staining was scored as 0

(negative), 1 (weak), 2 (moderate), 3 (strong). A final score

was counted from the percentage staining score × intensity

score, ranging from 0 to 9. Therefore, tumors with a total

score exceeding 3 were defined as a positive expression of

CD55, otherwise were considered to be negative. The expres-

sion level of CD55 was analyzed by determining the integral

optical density (IOD) of the signal. The IOD of each slide

(original magnification 400×) covering the entire tissue speci-

men was quantitatively assessed by using Image-Pro Plus

version 7.0 (Media Cybernetics, Inc, USA) software.

Follow-up
Ultrasonography and/or computed tomography of the

whole abdomen was performed every 3–6 months after

surgery. Follow-up data including postoperative imatinib

therapy, tumor recurrence, and/or metastasis, death events

were collected by telephone call or the outpatient clinic

visit. PFS was defined as the date from surgery to the date

of first disease progression, patients alive without

progression at the time of data collection were censored.

OS was calculated from the date of surgery to the date of

death, patients who were alive were censored.

Statistical analysis
SPSS for Windows Version 19.0 (SPSS Inc, IL, USA) was

used for statistical analysis. Categorical variables were pre-

sented as percentages and were analyzed using the Chi-

squared or Fisher’s exact tests. Continuous variables were

expressed as mean ± standard deviation (SD). One-way

analysis of variance was applied to two-sided pair-wise mul-

tiple comparisons. Cumulative survival was conducted using

the Kaplan–Meier method and log-rank test. Univariate and

multivariate cox proportional hazards model were performed

to explore independent prognostic factors. A two-sided

P-value <0.05 was considered statistically significant.

Results
Patient characteristics
A total of 118 patients with gastric GIST were included in

our study, there were 61 males and 57 females, with

a mean age of 55.66±12.47 years and a median age of

57.0 years (range, 13–84 years). The mean tumor size was

8.22±6.24 cm and with a median size of 6 cm (range,

2–40 cm). Tumor sites were mainly located in the upper

third and low third of the stomach, and all patients under-

went radical resection (R0). Immunohistochemical stain-

ing for CD117, CD34, and DOG-1 protein was positive in

110 (93.2%), 106 (89.8%), and 114 (96.6%) cases, respec-

tively. The cohort study of 118 patients included 4 very

low-risk, 25 low-risk, 34 intermediate-risk, and 55 high-

risk patients according to the NIH classification. Of these

patients, 17 patients had hepatic and/or peritoneal metas-

tasis at initial diagnosis. A total of 32 gene mutations were

available (27 mutations in KIT exon 11, 2 mutations in

KIT exon 9, 1 mutation in PDGFRA exon 18, and 2

mutations with wild type). The remaining cases refused

molecular typing and were unavailable for genetic data

due to economic reasons. Adjuvant imatinib dose of

400 mg/d was administered to 42 (42/118, 35.6%) patients

for a median time of 23 months (range, 9–46months). Part

of patients with high-risk GISTs refused imatinib therapy

because of economic reasons. The common toxicities for

imatinib were palpebral edema, nausea, and leukopenia,

which were well tolerated by patients. The clinicopatholo-

gical characteristics of 118 patients are presented in

Table 1.
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Associations between CD55 expression

and clinicopathological characteristics
The expression of CD55 in 118 gastric GISTs was investi-

gated using immunohistochemistry staining. Positive fea-

tures of CD55 expression were localized in the membrane

of tumor cells (Figure 1). In this study, CD55 protein was

observed to be positively expressed in 44 (44/118, 37.3%) of

gastric GISTs. Table 2 indicates the association between

CD55 expression and clinicopathological characteristics in

gastric GISTs. The mean age of CD55-positive patients was

significantly younger than that of CD55-negative patients

(53.23±14.61 vs 57.11±10.86 years, respectively; P=0.039).

The CD55 expression in gastric GISTs was significantly

associated with tumor size (13.52±7.35 vs 5.07±1.90 cm,

respectively; P<0.001), Ki 67 labeling index (P=0.001),

mitotic counts (P=0.005), NIH risk classification

(P<0.001), PLR (P<0.001), and metastasis at initial diagno-

sis (P=0.002). However, other clinicopathological character-

istics such as gender, tumor location, NLR, adjuvant IM

therapy, and hospital stay were not significantly correlated

with CD55 expression. According to the Image-Pro Plus

analysis results, the average IOD of CD55 was the highest

in primary metastatic GISTs (tumor metastasis has occurred

at the intimal diagnosis) and gradually defective in GISTs

with metachronous metastasis, and GISTs without metastasis

(P<0.001) during the follow-up period, as shown in Figure 2.

Correlation between CD55 expression

and tumor prognosis
After a median follow-up time of 67 months (ranges, 4–110

months), the median PFS was 64 months (ranges, 6–110

months). However, the median OS was not reached. After the

last follow-up, 29 patients experienced tumor progression,

whereas 18 patients died due to tumor progression or other

causes. Survival curves were drawn between CD55-negative

and CD55-positive gastric GISTs (Figure 3). Kaplan–Meier

analyses showed that patients with positive CD55 expression

had significantly poorer PFS than those with negative expres-

sion (P<0.001).

Univariate analysis of prognostic factors through

Kaplan–Meier method showed that tumor size

(P<0.001), mitotic counts (P<0.001), Ki 67 labeling

index (P<0.001), PLR (P<0.001), metastasis at initial

diagnosis (P=0.031), and CD55 expression (P<0.001)

were statistically significant risk factors affecting PFS of

patients with gastric GISTs (Table 3). To determine the

independent prognostic factors, multivariate analyses

were performed using the Cox proportional hazard

model. Results showed that mitotic counts, Ki 67 labeling

index, and CD55 expression were independent predictors

of PFS for gastric GISTs.

Discussion
GISTs are common neoplasms of the gastrointestinal

tract, the annual incidence of GISTs is about 10–15

cases per million.29 Unlike many other benign tumors,

GISTs are heterogeneous with a broad clinical spectrum,

ranging from indolent tumors to highly aggressive tumors

Table 1 Clinicopathological characteristics of 118 patients with

gastric GISTs

Clinicopathological
characteristics

Mean ± SD (no./%),
patients (N=103)

Gender (n, %)

Male 61 (51.7)

Female 57 (48.3)

Age (years); Mean ± SD 55.66±12.47

Tumor size, cm; Mean ± SD 8.22±6.24

Tumor location (n, %)

Upper third of stomach 58 (49.2)

Middle third of stomach 13 (11.0)

Low third of stomach 47 (39.8)

Mitotic counts (n, %)

≤5/50 HPF 50 (42.4)

6–10/50 HPF 35 (29.7)

>10/50 HPF 33 (28.0)

Ki 67 (n, %)

<10% 88 (74.6)

≥10% 30 (25.4)

CD117 positive 110 (93.2)

CD 34 positive 106 (89.8)

DOG-1 positive 114 (96.6)

NIH risk classification (n, %)

Very low to low 29 (24.6)

Intermediate to high 89 (75.4)

CD55 expression

Negative 74 (62.7)

Positive 44 (37.3)

Metastasis at initial diagnosis (n, %)

No 101 (85.6)

Yes 17 (14.4)

Hospital stay, days; Mean ± SD 15.59±6.15

Adjuvant IM therapy (n, %) 42 (35.6)

Median follow-up (range, months) 67 (4–110)

Abbreviations: GIST, gastrointestinal stromal tumors; HPF, high power field; NIH,

National Institutes of Health.
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with extensive metastasis.30 Patients with advanced

GISTs (metastatic or unresectable primary disease) have

a poor clinical outcome, with a median survival of

approximately 18 months.31 Because of most GISTs dri-

ven by activating mutations in KIT or PDGFRA, the use

of TKI, such as imatinib, has been the backbone of

therapy in both adjuvant and metastatic setting for GIST

patients. Hence, several risk classification schemes were

proposed to predict the biological behavior of GISTs and

determine which patients should receive adjuvant imati-

nib treatment. However, these risk-stratification systems

were all based on clinical parameters such as tumor

location, mitotic count, and tumor size, which could not

reveal the intrinsic mechanism of tumor progression in

GISTs. The exact mechanism of progression in GISTs is

still incompletely understood.

CD55 is a member of membrane-bound complement

regulatory proteins, which was defined for the first time

in 1969.32 Physiologically, CD55 is expressed in all

cells exposing to the complement system, including red

blood cells, leukocytes, endothelial cells, and epithelial

cells. Moreover, soluble CD55 is detectable in body

fluids and extracellular matrix.33 The most well-known

function of CD55 is regulating the activation of the

complement system by accelerating the decay of the

C3/C5-convertase of the classic and alternative path-

ways. Besides, CD55 has an inhibiting effect on natural

killer cells. CD55 is also known as a receptor for certain

viruses and microorganisms, and as a ligand of the

CD97 receptor, which is a seven-span transmembrane

receptor that is associated with cell–cell and cell-matrix

adhesion.34

Recently, CD55 has been detected in various kinds

of malignant tumors such as colorectal cancer, gastric

cancer, esophageal cancer, breast cancer, malignant

glioma, thyroid cancer, medullary thyroid cancer,

renal cancer, prostate cancer, ovarian cancer, cervical

cancer, non-small cell lung cancer, nasopharyngeal

cancer. Quantitative analysis of CD55 in the tumor

environment showed that tumor cells have a 4–100-

fold increase in CD55 expression when compared to

normal cells.35,36 It is reported that overexpression of

CD55 is associated with malignancy and contributes to

tumor invasion and metastases, leading to a poor prog-

nosis. Durrant et al,22 retrospectively analyzed the cor-

relation between CD55 expression and 7-year survival

in 136 colorectal cancer patients, and found that

patients with high levels of CD55 had a significantly

worse survival than patients with low levels of CD55.

Shen et al,25 revealed that CD55 expression is posi-

tively associated with lymph node metastasis, distant

metastasis, and clinical stage of nasopharyngeal carci-

noma patients. However, the data on CD55 expression

in GISTs have not been investigated until now.

In our previous study, we explored differential

expression of proteins which might be responsible for

gastric GISTs biologic progression by performing pro-

tein microarray analysis. We found that CD55 expres-

sion was significantly upregulated in high-grade

malignant GISTs compared with low-grade ones. To

investigate whether CD55 is involved in the progression

of GISTs, we studied CD55 expression in 118 gastric

GISTs tissue samples by immunohistochemistry, and

analyzed the correlations of CD55 expression with clin-

icopathological characteristics and prognosis of gastric

GISTs. Our results showed that CD55 expression in

gastric GISTs was significantly associated with tumor

size (P<0.001), Ki 67 labeling index (P=0.001), mitotic

counts (P=0.005), NIH risk classification (P<0.001), and

metastasis at initial diagnosis (P=0.002), suggesting that

Figure 1 Representative immunohistochemical staining of CD55 in gastric GISTs (original magnification 400×).

Notes: (A) Absent or only weakly positive expression of CD55 in gastric GISTs without metastasis. (B, C) High expression of CD55 in gastric GISTs with metachronous

metastasis and simultaneous metastasis, respectively.

Abbreviation: GISTs, gastrointestinal stromal tumors.
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CD55 may be a potential tumor promoter in the devel-

opment and progression of gastric GISTs. When analyz-

ing the correlation between PLR and CD55 expression,

we found that the rate of high PLR in CD55-positive

tumors was significantly higher than that of CD55-

negative tumors (P<0.001). This result suggests that

upregulation of CD55 expression in gastric GISTs may

be associated with the reduction of peripheral blood

lymphocyte counts, attributing to an enhanced systemic

inflammatory response.

After the last follow-up, patients in our study were

divided into three groups: patients with simultaneous

metastasis (tumor metastasis has occurred at the initial

diagnosis), patients with metachronous metastasis, and

patients without metastasis. According to the Image-

Pro Plus analysis results, the average IOD of CD55

was highest in gastric GISTs with simultaneous metas-

tasis, and gradually defective in that with metachro-

nous metastasis, and without metastasis (P<0.001).

This result indicates that the overexpression of CD55

may be a possible marker for the metastatic potential

of gastric GISTs patients. To explore the impact of

CD55 expression on the prognosis of GIST patients,

we plotted the survival curve of GISTs patients accord-

ing to CD55 expression using the Kaplan–Meier

method and log-rank test. The result showed that

patients with positive CD55 expression had signifi-

cantly poorer PFS than those with negative expression

Table 2 Correlation of CD55 expression with clinicopathologi-

cal features of gastric GISTs

Variables CD55 expression,
n (%)

P-value

Positive
(n=44)

Negative
(n=74)

Gender (n, %)

Male 26 (59.1) 35 (47.3) 0.215

Female 18 (40.9) 39 (52.7)

Age (years); Mean ± SD 53.23±14.61 57.11±10.86 0.039

Tumor size, cm, Mean ±

SD

13.52±7.35 5.07±1.90 <0.001

Tumor location (n, %)

U 22 (50.0) 36 (48.7) 0.979

M 5 (11.4) 8 (10.8)

L 17 (38.6) 30 (40.5)

Ki 67 (n, %)

<10% 25 (58.6) 63 (85.1) 0.001

≥10% 19 (43.2) 11 (14.9)

Mitotic counts (n, %)

≤5/50 HPF 14 (31.8) 36 (48.6) 0.005

6–10/50 HPF 10 (22.7) 25 (33.8)

>10/50 HPF 20 (45.5) 13 (17.6)

NIH risk classification

(n, %)

Very low to low 2 (4.5) 27 (36.5) <0.001

Intermediate to high 42 (95.5) 47 (63.5)

NLR (n, %)

Low NLR (≤2.24) 20 (45.5) 41 (55.4) 0.296

High NLR (>2.24) 24 (54.5) 33 (44.6)

PLR (n, %)

Low PLR (≤141.29) 14 (31.8) 55 (74.3) <0.001

High PLR (>141.29) 30 (68.2) 19 (25.7)

Metastasis at initial diag-

nosis (n, %)

No 32 (72.7) 69 (93.2) 0.002

Yes 12 (27.3) 5 (6.8)

Adjuvant IM therapy (n, %)

Yes 13 (29.5) 29 (39.2) 0.290

No 31 (70.5) 45 (60.8)

Hospital stay, days, Mean

± SD

15.84±5.76 15.45±6.90 0.737

Abbreviations: GIST, gastrointestinal stromal tumors; HPF, high power field; NIH,

National Institutes of Health; L, lower third of stomach; M, middle third of stomach;

U, upper third of stomach.
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Figure 2 CD55 expression level was the highest in gastric GISTs with primary

metastasis, and gradually defective in GISTs with metachronous metastases, and

GISTs without metastasis (P<0.001).
Abbreviation: GIST, gastrointestinal stromal tumors.
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(P<0.001), suggesting that CD55 expression has poten-

tial value for predicting the prognosis of GIST patients.

In addition, multivariate cox regression analysis

showed that high mitotic counts (HR: 3.355, 95%CI:

1.182–9.519; P=0.023), high Ki 67 labeling index (HR:

2.385, 95%CI: 1.063–5.350; P=0.035), and positive

CD55 expression (HR: 4.815, 95%CI: 1.567–14.800;

P=0.006) were independent risk factors of PFS for

gastric GISTs. However, the exact mechanism of

CD55 in tumorigenesis, invasion, and metastases is

yet to be elucidated. It has been predicted that over-

expression of CD55 by tumor cells might protect

tumors from complement-mediated cell lysis and the

deposition of C3b, which leads to endocytosis by anti-

gen-presenting cells.37 Furthermore, CD55 on tumor

cells may promote tumor proliferation through activat-

ing the oncogenic tyrosine kinase pathway. Li et al,38

reported that CD55 is overexpressed within the stroma

of colorectal tumors, suggesting that CD55 within the

extracellular matrix is released from the cell membrane

or secreted in a soluble form by MMP-7. Extracellular

CD55 may inhibit the activation of complement system

and specifically bind to CD97 for induction of cell

migration. Additionally, studies have shown that over-

expression of CD55 on K562 cells may make tumors

more resistant to NK lysis.39

The majority of GISTs harbor oncogenic mutations in

KIT or PDGFRA, and the application of TKIs significantly

prolongs the survival in GIST patients. Unfortunately,

most patients develop resistance to TKI therapy after sev-

eral years of treatment, resulting in tumor progression.

Treatment of progressive GISTs containing multiple

resistant subclones remains a therapeutic challenge.

Therefore, a novel molecular target needs to be developed

to treat these progressive GISTs. Based on the presence

and overexpression of CD55 in gastric GISTs, CD55 may

serve as a potential target for molecular targeting therapy

of GISTs. The anti-CD55 monoclonal antibody SC-1 has

been identified to bind CD55 which is expressed in gastric

carcinoma, resulting in apoptosis of tumor cells.40 Illert

et al,41 reported that treatment with SC-1 in nude mice

with metastatic gastric cancer could remarkably reduce the

number of disseminated tumor cells in the bone marrow.

The toxicity of SC-1 has been reported that is comprehen-

sively low and tolerable.42 In addition, the application of

CD55 as a target for immunotherapy could enhance tumor

killing, T-cell infiltration, and NK activity within the

tumors of immunized patients. A human monoclonal anti-

idiotypic antibody, 105AD7, which mimics the antigen,

CD55, has been developed. Studies have shown that

105AD7 is able to stimulate T-cell responses and NK

activity in vitro and in vivo.43–46 Hence, bispecific anti-

bodies binding CD55 as well as another tumor-specific

antigen KIT might be a solution to improve the therapeutic

efficacy and decrease unwanted side effects in GISTs.

Conclusion
In conclusion, this is the first study to investigate the

role of CD55 expression in patients with gastric GIST.

Our study indicated that patients with positive CD55

expression had a significantly poorer PFS than those

with negative CD55 expression. Our study demonstrated

that CD55 may be a potential prognostic marker and
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Figure 3 Kaplan–Meier survival curves of progression-free survival in patients with primary gastric GIST (n=118).

Notes: (A) The tumors with mitotic counts ≤5/50 HPF showed a significantly better PFS compared with these of 6–10/50HPF and >10/50HPF (P<0.001). (B) The tumors

with ki67<10% showed a significantly better PFS in comparison to those with ki67≥10% (P<0.001). (C) Patients with positive CD55 expression showed a significantly poorer

progressive-free survival (PFS) than those with negative expression (P<0.001).
Abbreviation: GIST, gastrointestinal stromal tumors.
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therapeutic target in gastric GISTs. Further studies

investigating the exact mechanism of CD55 in gastric

GISTs are warranted.
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Figure S1 Hierarchical cluster analysis of data between low-malignant GISTs and high-malignant GISTs. Each column represents a single tissue specimen, and each

horizontal line refers to a protein. Color legends are on the top of the figures. Red indicates a high expression, green indicates a low expression, and black indicates a mean

expression.

Abbreviation: GIST, gastrointestinal stromal tumors.
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