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Abstract
Background. Acute kidney injury (AKI) represents a
major clinical problem with high mortality and limited

causal treatments. The use of cell therapy has been sug-
gested as a potential modality to improve the course and
outcome of AKI.
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Methods. We investigated the possible renoprotection of
freshly isolated, uncultured adipose tissue-derived stem
and regenerative cells (ADRCs) before and after cryo-
preservation in a rat ischemia–reperfusion (I–R) model
of AKI.
Results. We demonstrated that ADRC therapy drastically
reduced mortality (survival 100% vs. 57%, ADRC vs. con-
trols, respectively) and significantly reduced serum cre-
atinine (sCr on Day 3: 3.03 ± 1.58 vs. 7.37 ± 2.32 mg/
dL, ADRC vs. controls, respectively). Histological ana-
lysis further validated a significantly reduced intratubular
cast formation, ameliorated acute tubular epithelial cell ne-
crosis and mitigated macrophage infiltration. Further-
more, a reduced RNA expression of CXCL2 and IL-6
was found in the ADRC group which could explain the
reduced macrophage recruitment. Use of cryopreserved
ADRCs resulted in an equally high survival (90% vs.
33% in the control group) and similarly improved renal
function (sCr on Day 3: 4.64 ± 2.43 vs. 7.24 ± 1.40 mg/
dL in controls).
Conclusions. Collectively, these results suggest a potential
clinical role for ADRC therapy in patients with AKI. Im-
portantly, cryopreservation of ADRCs could offer an au-
tologous treatment strategy for patients who are at high
risk for AKI during planned interventions.

Keywords: acute renal failure; adipose tissue-derived stem and
regenerative cells; adult stem cells; cell therapy; ischemia–reperfusion
injury

Introduction

Kidney disease is a leading cause of morbidity and mortal-
ity in hospitalized patients and represents an annual cost of
at least $32 billion for the care of end-stage renal disease
alone, representing more than a quarter of annual Medicare
expenditures [1]. Currently, acute kidney injury (AKI) is
diagnosed in >300 000 Americans annually [1] and is de-
fined by an abrupt and sustained impairment of renal func-
tion [2–5] that can be initiated by various insults, including
ischemia, bacterial infections and nephrotoxins. Renal is-
chemia is often a secondary result of procedures such as
cardiopulmonary bypass, nephron-sparing surgery and
kidney transplantation, and is the most common initiator
of AKI [6–9].

Despite advances in modern medical technology, no ef-
fective therapies for AKI beyond supportive treatment are
currently available [10,11]. While still in the early stages of
research, recent advancements in cell-based therapies offer
new potential therapeutics for the treatment of AKI [12].

One such novel potential therapy for AKI lies within the
regenerative properties of adipose tissue-derived stem and
regenerative cells (ADRCs), which are an easily accessible
and abundant source of regenerative cells available for
real-time, autologous use. They can be isolated in large
quantities by a minimally invasive liposuction, requiring
no ex vivo expansion, thus making it an appealing source
for immediate cell-based therapies [13,14]. Furthermore,

the therapeutic benefits of freshly isolated ADRCs have
been shown recently in large and small animal models of
acute myocardial infarction [15,16].

It is important to note that ADRCs are composed of sev-
eral cell populations, including adipose-derived stem cells
(ADSC), endothelial cells, endothelial progenitor cells and
vascular smooth muscle cells as well as others which have
been described elsewhere [17].

While preclinical studies have shown that cultured
adipose-derived cells are beneficial in cisplatin-induced
AKI, the efficacy of freshly isolated and cryopreserved
ADRCs in ischemic AKI has yet to be demonstrated
[18]. Thus, we investigated the therapeutic efficacy of both
freshly isolated and cryopreserved, uncultured, syngeneic
ADRCs in a clinically relevant rat AKI model of ischemia–
reperfusion (I–R).

Materials and methods

Model of I–R injury

All experimental procedures were approved by the in-house Animal Care
and Use Committee. Renal I–R was performed as previously described
with minor modifications (Supplementary data) [19].

Experimental groups

Two separate, blinded experiments were performed to evaluate the effi-
cacy of freshly isolated ADRCs and cryopreserved ADRCs. A total of
57 rats were subjected to bilateral renal arterial and venous clamping in
the fresh group. Approximately 20 min after reperfusion, animals were
randomized, and received an intra-arterial infusion of 200 μL of either
vehicle control (phosphate-buffered saline, PBS) or 5 × 106 ADRCs.
Twenty-nine rats (ADRC: n = 15 and Control: n = 14) had serum creatin-
ine (sCr) monitored prior to surgery (baseline) and daily for 1 week after
AKI. Survival rates were recorded daily. For mechanism evaluation, 28
rats were euthanized at 5 min (ADRC: n = 2), 2 h (ADRC: n = 6 and
Control: n = 3), 24 h (ADRC: n = 6 and Control: n = 3) or 72 h post-
surgery (ADRC: n = 5 and Control: n = 3). In 10 of the ADRC-treated rats
(n = 3 each at the 2- and 24-h sacrifice time points, and n = 2 at the 5-min
and 72-h sacrifice time points), cells were DiI-labeled for tracking ADRC
engraftment within the kidneys. The remaining rats (ADRC: n = 3 and
Control: n = 3 at each time point) that were sacrificed at 2 and 24 h
post-AKI had one kidney snap-frozen in liquid nitrogen and stored at
−80°C (for RNA isolation), while the other kidney was used for hist-
ology. All six rats (ADRC: n = 3 and Control: n = 3) sacrificed at 72 h
post-AKI were evaluated histologically.

In the second experiment, 19 rats were randomly assigned to the two
different groups, and received an intra-arterial infusion of 200 μL of either
vehicle (Control: n = 9) or 5 × 106 recovered ADRCs from cryopreserva-
tion (n = 10). sCr was evaluated on Day 1–5 and 7 after AKI, with daily
monitoring of animal survival.

Isolation of ADRCs

ADRCs were isolated from adult male Fisher 344 rats (100–200 g) as
previously described with minor modifications [16]. Briefly, inguinal sub-
cutaneous adipose tissue was removed and minced, then digested with
0.09% collagenase (Sigma-Aldrich, St. Louis, MO, USA) for 45 min at
37°C. The ADRC fraction was separated by centrifugation at 600 g for
5 min and passed through 100- and 40-μm Falcon™ cell strainers (BD
Biosciences, San Jose, CA, USA), sequentially. Cells were washed in
PBS and incubated with Intravase™ (Cytori Therapeutics, San Diego,
CA, USA) for 10 min followed by more PBS washing. ADRCs were
re-suspended at 25 × 106 cells/mL in PBS.

ADRC labeling for tracking

Freshly isolated ADRCs were labeled with Vybrant® DiI (Supplementary
data).
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ADRC cryopreservation

Briefly, ADRCs were isolated and frozen in 10% syngeneic Fisher 344 rat
serum and 10% dimethyl sulphoxide in lactated Ringer’s solution using a
Cryogenic Control Rate Freezer 2000 (MVE Biological Systems, Mariet-
ta, GA, USA) presenting optimized conditions for recovery and viability.
Cooling was performed at −1°C/min from 4°C to −50°C, and at −10°C/
min to −90°C. Then, cells were stored in liquid nitrogen for at least 48 h.
Prior to infusion, cells were thawed rapidly and re-suspended in 10× vol-
ume of PBS. The cells were centrifuged at 400 g for 10 min, washed in
PBS and re-suspended at 25 × 106 cells/mL.

Flow cytometric analysis of ADRCs

Flow cytometric studies were performed on fresh and cryopreserved cells
(Supplementary data).

Assessment of renal function

sCr concentration was measured (Supplementary data).

Histology and immunohistochemistry

Sections from post-AKI Day 3 kidneys (n = 3 for each group) were
stained with hematoxylin and eosin. Tubular necrosis [20] and intratubu-
lar cast formation [21] were scored as described with modifications
(Supplementary data). Other kidneys were collected at 24 h after AKI for
Ki-67 staining (Supplementary data).

For the assessment of in vivo cell tracking, sections were mounted with
Vectashield mounting medium with DAPI (Supplementary data).

The long-term outcome after ADRC administration was evaluated
through histology and macroscopic pathology 3 months after cell injec-
tion in all surviving animals of the fresh and cryopreservation group
(fresh ADRCs efficacy study: Control n = 6; fresh ADRCs treated: n =
9; and cryopreserved ADRCs efficacy study: Control n = 3; cryopre-
served ADRCs treated: n = 9) (Supplementary data).

PCR array and TaqMan RT-PCR

Angiogenesis PCR arrays were used for preliminary screen, and candidate
genes were further validated with TaqMan real-time PCR system. Specific
TaqMan primers and probes for interleukin-6 (IL-6) and chemokine (C-X-
C motif) ligand 2 (CXCL2) were applied (Supplementary data) [22].

Statistical analysis

All data were expressed as mean + standard deviation (SD) and analysed
using (as appropriate) Student’s t-test, ANOVA, Kaplan–Meier method and
log-rank as well as Wilcoxon/Kruskal–Wallis test (JMP 7 software, SAS
Institute, Cary, NC, USA) with a P-value ≤0.05 considered significant.

Results

Characteristics of ADRCs

The cell yield of freshly isolated ADRCs was 1.24 ± 0.39 ×
106 cells per gram of the pooled rat adipose tissue (n = 9).
Flow cytometric evaluation of these cells showed that
they comprised an average of ~44% CD45+ cells (blood-
and tissue-derived leucocytes), 3.4% endothelial cells
(CD45−/CD31+), and 51% cells that expressed neither
CD45 nor CD31 (Supplemental Figure 1A, see online
supplementary material for a color version of this figure).
CD11b+ cells (neutrophils, monocytes and tissue macro-
phages) comprised the majority of CD45+ cells, while
CD73 and CD90 were expressed by the majority of CD45−

cells (Supplemental Figure 1B–D, see online supplemen-
tary material for a color version of this figure). Epitope
expression was retained following cryopreservation (Sup-
plemental Table 1) with a slight reduction in the fre-
quency of CD45+/CD11b+ cells and a corresponding
increase in CD45−/CD31+ cells consistent with greater
sensitivity of neutrophils to freezing/thawing.

ADRC treatment abolished AKI-induced mortality

This I–R model of AKI resulted in a high mortality (43–
67%) in rats that received control treatment with a peak
seen between 3 and 5 days after injury (Figures 1 and
2). As shown in Figure 1, the infusion of 5 × 106 freshly
isolated ADRCs rescued all animals from acute mortality,
resulting in a significant difference in survival (100% vs.

Fig. 1. Fresh, syngeneic ADRC administration significantly improved survival after ischemic AKI in rats. Kaplan–Meier survival curves representing
the percentage of surviving rats subjected to 38 min of ischemia with or without cell therapy during 7 days of follow-up. P = 0.005 vs. control
(PBS-treated) group (log-rank test).
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57%, P = 0.005, log-rank test). Similarly, animals treated
with 5 × 106 cryopreserved ADRCs also showed a signifi-
cant improvement in survival. As demonstrated in Figure 2,
only 33% of the control rats survived compared with 90%
of the ADRC-treated group (P = 0.019, log-rank test).

ADRC administration improved renal functional recovery

The baseline (prior to I–R injury) sCr value of all rats was
similar (Figures 3 and 4) with a significant elevation at

1 day post-AKI in all animals. However, while the sCr
level in control rats continued to rise through Day 3, rats
treated with ADRCs showed a significantly accelerated re-
covery with overall lower sCr value. It is important to con-
sider that while the control rats also demonstrated recovery
of sCr level, albeit delayed, these data are skewed as these
only include surviving animals leading to fewer animals
for comparison after Day 3. The largest difference in sCr
level was observed on post-AKI Day 3 (sCr: 3.03 ± 1.58
vs. 7.37 ± 2.32 mg/dL, P < 0.0001, ADRC vs. Control),

Fig. 2. Kaplan–Meier survival curves demonstrating that cryopreserved ADRCs also dramatically improved survival after ischemic AKI. P = 0.019 vs.
control (PBS-treated) group (log-rank test).

Fig. 3. Renal function was evaluated by determining serum creatinine (milligram per decilitre) levels over 7 days after ischemic AKI. Rats infused with
freshly isolated ADRCs (n = 15) presented a significant decrease in sCr values at Day 1–7 after ischemia compared with control (PBS-treated) rats (n =
14). ****P < 0.0001, ***P < 0.001; **P < 0.01, *P < 0.05 vs. control (PBS-treated) group.

ADRCs preserve post-AKI renal function 3877



but significant differences could be seen as early as 24 h
after cell administration (Figure 3). Cryopreserved ADRCs
showed a similar response in sCr values with the largest
difference seen on Day 3 as well (4.64 ± 2.43 vs. 7.24 ±
1.40 mg/dL, P < 0.05, ADRC vs. Control, Figure 4).

ADRC infusion dramatically attenuated acute tubular
necrosis and intratubular cast formation

Histological analysis revealed that I–R injury leads directly
to acute tubular necrosis and cast formation, both of which
are rarely found in healthy kidneys (Figure 5). Examin-
ation of kidneys obtained from control (PBS-treated) ani-
mals at 72 h after AKI (the time point when the majority of
animals are still alive in the control group and creatinine
differences are maximal between groups) demonstrated a
significant degree of renal injury and exhibited degener-
ation of tubular structures including severe tubular necro-
sis, loss of brush border and tubular dilatation (Figure 5).
Cast formation was found in the cortex and outer medullar
region in control rats and was almost absent in healthy kid-
neys. There was significant reduction in cast formation in
rats treated with ADRCs compared with controls on post-
AKI Day 3 (0.75 ± 0.50 vs. 3.97 ± 0.17; P < 0.0001 ADRC
vs. control animals, Figures 5D,E,F and 6).

Quantification of tubular injury/degeneration demon-
strated the extent of tubular damage (3.50 ± 0.79 vs.
0.11 ± 0.32; P < 0.0001 Control vs. normal kidney, Sup-
plemental Figure 3, see online supplementary material for
a color version of this figure). ADRC administration mark-
edly reduced the severity of acute tubular necrosis com-
pared with kidneys obtained from control (PBS-treated)
animals at 72 h post-AKI (0.39 ± 0.50 vs. 3.50 ± 0.79;
P < 0.0001 ADRC vs. Control, Figure 5A,B,C and Supple-

mental Figure 2, see online supplementary material for a
color version of this figure).

ADRC engraftment in the injured kidney

ADRCs were detected by the presence of DiI in the glom-
eruli as early as 5 min after infusion (Figure 7A). This
staining was still evident at 2 h but declined thereafter
with a reduced intensity at 24 h (Figure 7B and C). How-
ever, staining was still detectable within the glomeruli at
72 h after ADRC administration (Figure 7D). Faint DiI
staining of ADRCs could be seen in the tubular region
as early as 2 h after infusion (Supplemental Figure 3,
see online supplementary material for a color version of
this figure) and up to 72 h (data not shown) at which time
it could no longer be clearly distinguished from back-
ground fluorescence.

ADRCs promoted tubular epithelial cell proliferation

Abundant Ki-67-positive staining was found in the distal
and proximal tubular region of kidneys treated with ADRCs
at Day 1 (Supplemental Figure 4, see online supplementary
material for a color version of this figure). Ki-67-positive
cells were rare in control (PBS-treated) animals (0 ± 1 Ki-
67-positive cells/visual field vs. 8 ± 6 Ki-67-positive cells/
visual field in control and ADRC animals, respectively; P <
0.0001, Supplemental Figure 5, see online supplementary
material for a color version of this figure).

ADRC therapy significantly decreased CD68-positive
macrophage infiltration

Control animals exhibited prominent infiltration of
CD68-positive macrophages (Figure 8C) in the tubu-

Fig. 4. Cryopreserved ADRCs also improved recovery of renal function. Rats infused with cryopreserved ADRCs (n = 10) showed significantly lower
sCr values at Day 2–3 after ischemia compared with control (PBS-treated) rats (n = 9). *P < 0.05 vs. control (PBS-treated) group.
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lointerstitial compartment of the renal cortex and outer
medulla in kidneys at 3 days post-AKI, consistent with
the acute inflammatory response following I–R injury.
In contrast, treatment with ADRCs resulted in a 25-fold
decrease in CD68-positive cell infiltration (6 ± 7 vs.
154 ± 75 cells/visual field in ADRC and Control, re-
spectively; P < 0.0001; Supplemental Figure 6, see on-
line supplementary material for a color version of this
figure).

ADRC treatment downregulated the inflammatory-related
gene expression

The expression of CXCL2 and IL-6 was assessed at 2 and
24 h post-AKI after those genes were identified to be sig-
nificantly regulated in the PCR array (Supplemental Table

2). We further validated a significant downregulation of
both CXCL2 and IL-6 mRNA expression at 24 h after
AKI in the ADRC-treated animals compared with control
(Figure 9).

ADRC administration did not cause abnormalities in
kidneys or other organs

The long-term consequences of the ADRC administration
was assessed in the surviving animals after 3 months by
microscopically evaluating the kidneys. Furthermore, the
lungs, heart, liver and spleen were assessed macroscopic-
ally. Histological analysis of the kidneys did not show any
abnormal tissue growth or other abnormalities. Also, no
abnormal tissue growth could be detected macroscopically
in any of the other organs.

Fig. 5. ADRC treatment using freshly isolated cells reduced the extent of post-AKI acute tubular necrosis (A–C) and decreased intratubular cast
formation (D–F) 3 days post-AKI as assessed by hematoxylin and eosin staining. (A) Normal kidney. (B) Control (PBS-treated) rat showing acute
tubular necrosis characterized by loss of tubular epithelial cells (asterisk) and shedding of the brush border (arrow). (C) ADRC treatment attenuated
ischemia-induced acute tubular necrosis. Mild detachment of brush border (arrow) was observed. Representative images were taken from the cortex
and/or outer medulla areas of the kidney (scale bar 50 μm and magnification ×400). (D) Normal kidney, where almost no cast formation was observed.
(E) Control (PBS-treated) rat showing extensive intratubular cast formation. (F) Almost no intratubular cast formation was observed in the ADRC-
treated animals. Arrowhead indicates cast formation (scale bar 100 μm and magnification ×200).
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Discussion

Extensive research has been performed to investigate the
therapeutic utility of cells derived from adipose tissue as
well as other tissue sources. While initial theories of the
regenerative potential of adult stem cells, including cul-
tured adipose-derived cells, were focused on their ability
to differentiate into multiple mature cell phenotypes [23],
it is increasingly apparent that adult stem cell therapy can
provide substantial benefit through mechanisms other than
differentiation. This is particularly evident in ischemia or
toxin-induced injury in which cell therapy appears to act
primarily through the secretion of paracrine therapeutic
factors. For instance, the administration of culture-expanded
adipose-derived cells, as well as their conditioned medium,
has proven to be beneficial in a cisplatin-induced renal in-
jury model [18].

Here, we have used the I–R-induced renal injury model
in rats, which is a well-established preclinical model per-
tinent to AKI [11]. Several routes of cell injection had
been contemplated, and intra-arterial administration was
chosen to provide the highest local cell concentration by
avoiding filtering organs [24–26]. While arterial infusions
of cultured cells (diameter usually >20 μm due to culture
hypertrophy) have reportedly caused microvascular ob-
struction, it is important to note that the diameter of freshly
isolated ADRCs is ~11 μm and therefore close to the ca-
pillary diameter [27,28]. The safety of intracoronary deliv-
ery of ADRCs has been shown in porcine models and is
being tested in clinical trials with no reported adverse in-
fusion events (ClinicalTrials.gov NCT00442806) [15,29].
Furthermore, ADRC injection into the left ventricle with
an identical dose used in this study was tested to be safe
in a rat model of myocardial infarction [16]. Overall, de-

livery of ADRCs into the renal artery would be desirable in
a clinical setting, and we therefore used the carotid cannu-
lation to deliver into the aorta as an approximation for de-
livery into the renal artery [30].

The present study is the first to demonstrate that culture
expansion is not a necessary component of cell therapy,
and that freshly isolated, syngeneic ADRCs have the abil-
ity to salvage renal function and prevent mortality in a pre-
clinical rat model of AKI. The multiple end points
described here suggest that ADRC therapy changes the in-
flammatory response and augments the regenerative re-
sponse starting early in the injury process. In particular,
24 h after cell delivery, renal function was significantly im-
proved, tubular cell proliferation was increased and a re-
duction in CXCL2 and IL-6 expression in the kidneys of
ADRC-treated animals could be seen.

This was accompanied by a vast reduction of CD68-
positive cell infiltration. The speed of this response com-
bined with the low number of donor cells physically
present within the kidney is inconsistent with a differenti-
ation mechanism and indicates that ADRCs are, in some
other fashion, reducing injury. This early response leads
to increasing differences in serum creatinine, to different
degrees of macrophage infiltration and tubular cast forma-
tion, and ultimately, to dramatic differences in mortality
between treated and control animals.

Ischemic AKI is known to be associated with acute
tubular necrosis, endothelial dysfunction and tubulointer-
stitial inflammation, which exacerbates the resultant tissue
destruction post-injury [2,31,32]. Both tubular epithelial
cell-derived cytokines/chemokines and endothelial cell-
derived adhesion molecules have been shown to augment
the inflammatory process and are associated with delayed
tissue regeneration post-AKI [33–37]. Furthermore, the

Fig. 6. Semi-quantitative scoring of cast formation at 3 days post-AKI. ***P < 0.0001 vs. control (PBS-treated) animals (Wilcoxon/Kruskal–Wallis tests).
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substantial inflammatory cell infiltration and activation,
particularly of macrophages, are characteristic pathologic
changes which are also observed clinically [38]. It has
been shown that reduction of macrophages by liposomal
clodronate significantly protects rats against I–R-induced
AKI [39]. Thus, there could be an association between the
observed reduction in macrophages in the kidneys and im-
provement in renal function.

It has been shown that the therapeutic effect of bone
marrow-derived mesenchymal stem cells in sepsis is due to
their ability to reprogram host monocytes/macrophages lead-
ing to a reduction in circulating IL-6. It was also reported that
the circulating level of IL-6 is clinically associated with
mortality in renal injury [38]. Immunosuppressive [40] or
immunomodulatory properties of adipose-derived cells
have been described, partially explained through inhibition
or modulation of the T-cell response. They have been
applied clinically in graft-versus-host disease (GvHD) asso-
ciated with allogeneic hematopoietic stem cell transplant-
ation in patients [41,42]. Based on this, the underlying
mechanism of ADRCs upon infusion may also be related
to systemic immunomodulatory characteristics.

The observation of a significant reduction in tubular epi-
thelial cell necrosis may be directly correlated with the re-
duction in inflammation. However, it may also be plausible
that ADRCs evoke a benefit by increasing cell survival under
hypoxia [43]. More importantly, additional in vitro evidence
indicated that freshly isolated ADRCs abundantly expressed
vascular endothelial growth factor A (VEGF-A) and IGF-1
[44]. Also, a significant reduction in apoptotic/necrotic car-
diomyocytes after acute myocardial infarction in rats treated
with fresh ADRCs was demonstrated [16]. Overall, the re-
lationship between inflammation and necrosis/apoptosis in
this model remains unclear; however, it is likely that attenu-
ation of both contributes to the benefit observed. Important-
ly, this reduction in tubular cell necrosis/apoptosis also led
to a reduction in tubular cast formation, thus explaining the
maintenance of some level of renal function.

The contribution of renal resident stem/progenitor cells
in the repair of renal injury has been recently postulated
[45,46]. It was suggested that such beneficial effects might
rely on the administration of cell-based therapies to gener-
ate a favorable environment for resident stem/progenitor
cell expansion and proliferation [47]. Interestingly, we

Fig. 7. ADRCs are located within the glomeruli at 5 min and at 2, 24 and 72 h after infusion. (A, B.) ADRCs (red) were abundant in the glomeruli at
5 min and 2 h after administration. (C, D). ADRCs (red) were detectable in the glomeruli at 24 and 72 h after AKI with reduced staining intensity. The
nuclei (blue) were counterstained with DAPI (scale bar 25 μm and magnification ×400).
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have also demonstrated that ADRCs enhance tubular cell
proliferation as detected by an increase in Ki-67-positive
cells as early as 24 h after cell infusion, while ADRCs at
that time were found primarily in the glomeruli.

Another finding in this study is the preserved ability of
ADRCs to reduce mortality and improve renal function
following AKI after cryopreservation. Long-term storage
of autologous ADRCs could provide several benefits since

Fig. 9. Administration of freshly isolated ADRCs downregulated the expression of CXCL2 and IL-6 mRNA compared with the control (PBS-treated)
group, using real-time quantitative RT–PCR. The results were normalized to β-actin mRNA. The ΔΔCt method was used for each gene to calculate
relative fold change in gene expression between groups.

Fig. 8. Freshly isolated ADRC infusion dramatically reduced macrophage infiltration into the post-ischemic kidney, assessed by CD68 staining in the
corticomedullary junction 3 days after AKI. (A) Normal kidney, with almost no detectable macrophages infiltration. (B) No detectable staining when
primary antibody was omitted. (C) Control (PBS-treated) rats displayed prominent CD68-positive cell infiltration in the renal interstitium. (D) ADRC
(freshly isolated)-treated rats showed significantly less CD68 staining. Sections were counterstained with hematoxylin. Arrows indicate CD68-positive
macrophages (scale bar 50 μm and magnification ×400).
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it has been shown that cells have a reduced therapeutic po-
tential as an organism ages [48,49]. Walter and colleagues
have also shown that the number of endothelial progenitor
cells inversely correlates with age [49]. These findings
could support the rationale of cryogenic storage of ADRCs
in preparation for future therapeutic use. ADRCs could
then be utilized in patients who are undergoing scheduled
procedures with an inherent risk of renal ischemic damage
such as cardiopulmonary bypass surgery, kidney transplan-
tation, and partial nephrectomy or when the administration
of nephrotoxic agents, such as chemotherapeutics or con-
trast dyes, is planned.

Isolation of autologous ADRCs represents a crucial step
that could affect its therapeutic effectiveness. It is therefore
essential to establish a reliable and standardized ADRC
isolation procedure, taking different depot and age factors
into account in order to reduce variability in outcomes as
much as feasible [50,51]. Furthermore, reports on clinical
trials to date using ADRCs have not shown an unfavorable
safety profile, but longer follow-up data are needed to
draw final conclusions. In general, any cell therapy ap-
proach and clinical investigation should follow careful
consideration of the risk/benefit ratio for the patient popu-
lation to be studied, and i.e. intravascular cell administra-
tion needs to be considered and titrated carefully.

Collectively, the present study demonstrates that fresh
and cryopreserved ADRCs significantly decrease mortality
and increase renal function in a preclinical model of ische-
mia/reperfusion-induced AKI, offering a potential thera-
peutic approach. Administration of ADRCs modified the
expression of pro-inflammatory cytokines CXCL2 and
IL-6 as well as the infiltration of macrophages. The result
was a significant reduction in tubular necrosis/apoptosis
and an increase in the proliferation of tubular cells, thus
improving functional and structural recovery, and overall
survival.

Supplementary data

Supplementary data is available online at http://ndt.
oxfordjournals.org.
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Abstract
Background. A large body of accumulated data has now
revealed that podocytes play a major role in the develop-

ment of proteinuria. However, the mechanisms of podocyte
injury, leading to foot process effacement and proteinuria,
are still unclear partly due to the current lack of an appro-

3884 A. Murakami et al.

© The Author 2010. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
For Permissions, please e-mail: journals.permissions@oxfordjournals.org




