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In patients with metabolic comorbidity and low to moderate
inflammation and fibrosis, a combination of sTREM2, HOMA-IR

and PRO-C3  holds potential as a surrogate marker of NAS
improvement. FIB-4 and NFS showed low accuracy of histologic

response in our cohort.
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Highlights: Impact and implications:
� NITs to accurately track and reflect treatment responses in
patients with MASLD and MASH are an unmet need.

� This study presents a discovery and exploratory analysis of
potential new biomarkers of treatment response.

� Patients who showed improvement in MASLD demon-
strated lower levels of soluble TREM2, PRO-C3, FAST
score, and HOMA-IR.

� The levels of a novel NIT, PRO-C18L, linked to basement
membrane remodelling, were lower in patients whose dis-
ease worsened.
https://doi.org/10.1016/j.jhepr.2025.101432
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Non-invasive tests (NITs) will play a crucial role in monitoring
treatment responses in metabolic dysfunction-associated
steatotic liver disease, providing a viable alternative to liver
biopsies. Our study investigates whether NITs reflect histo-
logical responses based on changes in the non-alcoholic fatty
liver disease (NAFLD) activity score (NAS) in patients with type
2 diabetes mellitus or obesity. We used non-invasive markers,
some corresponding to different biological aspects of disease
severity. We found that reductions in certain NIT levels corre-
late well with NAS reduction and composite histological im-
provements (lobular inflammation and ballooning). Combining
soluble triggering receptor expressed on myeloid cells 2, PRO-
C3, or homeostatic model assessment of insulin resistance
enhances the potential for monitoring NAS improvement.
for the Study of the Liver (EASL). This is an open access article under the CC BY-
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Background & Aims: Diet and weight loss remain the primary treatment for most patients with metabolic dysfunction-associated
fatty liver disease (MASLD), with one recent drug therapy approved for severe cases. However, a significant need remains for non-
invasive tests (NITs) that can assist clinicians in evaluating treatment response. We aimed to explore the ability of several NITs to
reflect a change of at least one point in histologic non-alcoholic fatty liver disease (NAFLD) Activity Score (NAS).

Methods: This study explores biomarkers reflecting treatment response in 173 patients from secondary care with type 2 diabetes
or severe obesity, all of whom underwent repeated liver biopsies and blood samples. We measured soluble triggering receptor
expressed on myeloid cells 2 (TREM2), collagen markers PRO-C3, PRO-C4, PRO-C6, PRO-C8, and PRO-C18L and liver stiffness
measured by FibroScan, FAST-score, and homeostatic model assessment of insulin resistance (HOMA-IR). We studied biomarker
changes and their capacity to reflect liver biopsy alterations in two distinct cohorts, using comparative paired analyses and
multivariable logistic regression to evaluate the results.

Results: Mean age was 52 years (±12), 38%male, 52% had NAS >−3 at baseline (90/173), 70% had F0–F1 fibrosis, and 23% (39/173)
had metabolic dysfunction-associated steatohepatitis. Significant differences were seen in sTREM2, PRO-C3, HOMA-IR, and FAST-
score levels byNAS changes (worsened, no-change, improved) (p = 0.0001). Inmultivariable analysis, sTREM2 + PRO-C3 andHOMA-
IR predicted NAS improvement (AUROC >0.75), with an odds ratio of 1.13 for each unit decrease (p = 0.001, 95%CI 1.04–1.21). FIB-4
and non-alcoholic fatty liver disease fibrosis score (NFS) did not reflect NAS improvement (AUROC <0.60, OR <1.05, p >0.5).

Conclusions: sTREM2, PRO-C3, and HOMA-IR indicate NAS improvement and warrant further investigation as surrogate markers
for gauging intervention response.

Clinical Trials Registration: ClinicalTrials.gov (NCT03068078; NCT03535142).

© 2025 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Metabolic dysfunction-associated steatohepatitis (MASH) is
the progressive stage of metabolic dysfunction-associated
steatotic liver disease (MASLD), characterised by hepatic
steatosis, inflammation, hepatocyte damage, and fibrosis. In-
dividuals with severe obesity or type 2 diabetes (T2DM) face a
heightened risk of MASLD and developing MASH. Although
liver biopsy remains the gold standard for diagnosing and
monitoring MASH, practical constraints limit its accessibility.1

In early 2024, the FDA approved resmetirom for use in
MASH, marking a significant milestone in the development of
treatment.2,3 The ESSENCE phase III trial of semaglutide also
showed positive results,4 and additional drugs are anticipated
to yield results soon.5 Despite these advancements, lifestyle
intervention remains pivotal,6 and metabolic surgeries like
q Given their role as Associate Editors, Maja Thiele had no involvement in the peer-review
responsibility for the editorial process for this article was delegated to the Co-Editor Jaco
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Roux-en-Y gastric bypass or sleeve gastrectomy are effective
but limited to selected patients.7

Few studies have reported on the ability of non-invasive
tests (NITs) to indicate treatment response. In the REGEN-
ERATE cohort, involving obeticholic acid, reductions were
observed in Fibrosis-4 (FIB-4), aspartate aminotransferase
(AST), and liver stiffness measurement (LSM) in patients with a
one-stage fibrosis improvement.8 Similarly, resmetirom phase II
trial extensions showed reductions in liver fat, LSM, and the
collagen III marker PRO-C3.9

However, these trials involved highly selected participantswith
MASH and varying fibrosis stages. There is a need for NITs to
monitor disease changes, which are applicable to broader pop-
ulations, including younger patients with less advanced dis-
ease.10 One such marker is soluble triggering receptor expressed
on myeloid cells 2 (sTREM2), which is shed frommacrophages in
of this article and had no access to information regarding its peer-review. Full
b George and Associate Editor Jörn M. Schattenberg.
enmark, 5000 Odense C, Denmark. Tel.: +45-21409915.
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Soluble TREM2 and PRO-C3 as monitors of MASLD changes
areas with hepatocellular damage, inflammation, and fibrosis.11

This marker shows promise as a diagnostic test for MASH11–13

and has been proposed as part of a composite diagnostic
score.14We also assessed the neoepitope collagen marker PRO-
C3,15 a component of the ADAPT score,16,17 and other collagen
formation markers (PRO-C4, PRO-C6, PRO-C8).18 Additionally,
we explored PRO-C18L, associated with hepatocyte activity and
basementmembrane remodelling.19 The primary aimof this study
was to assess these NITs, individually or in combination, as
monitoring tools for detecting at least a one-point change in his-
tological NAFLD activity score (NAS).

Participants and methods

Study design and participants

This study is a discovery and exploratory analysis of bio-
markers to reflect treatment response in MASLD. It included
173 participants with risk factors of MASLD and follow-up liver
biopsy from two clinical cohorts previously reported in detail:
(1) Odense cohort (n = 109), an RCT on dietary interventions in
T2DM,20 and (2) Esbjerg cohort (n = 64), a prospective case–
control study in severe obesity (BMI >−35 kg/m2), with a sub-
set undergoing bariatric surgery (Roux-en-Y gastric bypass or
sleeve gastrectomy).12 Not all had surgery, as some individuals
opted out of the procedure, whereas others could not achieve
the 8% weight loss required for surgery eligibility. Baseline
visits preceded surgery, with a mean of 226 ± 121 days.

No alternative liver diseases were suspected or found, and
participants were included based on risk factors (BMI for
Esbjerg or T2DM for Odense), without prior non-invasive liver
assessment. Following the ethical approvals for each clinical
trial, all participants were offered liver biopsy at baseline and
end-of-study (EOS) visits (Odense: 6 months; Esbjerg: �2.5
years). Recruitment and study visits were conducted at the
University Hospitals of Odense and Esbjerg (2016–2022)
(Table S1).

Participants were at least 18 years old and provided written
informed consent. Exclusion criteria: other liver diseases, self-
reported alcohol consumption >20 g/week (women) or >30 g/
week (men), decompensated cirrhosis, use of hepatotoxic
medications, pregnancy, or malignant diseases.

All investigations adhered to a standardised protocol during
both visits. This included liver biopsy, medical history, transient
elastography (TE) using FibroScan (Echosens, Paris, France),
and blood sampling, all of which were conducted with data
collection occurring on the same day under fasting conditions.

The trials complied with GCP standards and the Declaration
of Helsinki. Ethical approval was obtained from regional ethics
authorities: S-20150217 and S-20160006G. Data management
utilised Redcap via the Open Patient Data Explorative Network
(Odense, DK).

Non-invasive markers

Markers were assessed at baseline and EOS, with extra time-
points at 3 months post-EOS (Odense) and during surgery or
control visit (Esbjerg).

Emerging markers

Plasma/serum samples were stored at -80 �C and shipped on dry
ice for biomarker analysis. The external laboratories were blinded
JHEP Reports, --- 2
to clinical data during analysis. For a detailed description, see the
Supplementary material and CTAT Table. Biomarker quantifica-
tion followed the manufacturer’s instructions.

For sTREM2, plasma levels were measured using the Hu-
man ELISA Kit (ab224881, Abcam) with acceptable CV% <10.
No measurements fell below the lower detection limit.

Collagen formation neoepitopemarkers (collagen types III, IV,
VI, VIII, XVIII-long) were measured by competitive ELISA ac-
cording to Nordic Bioscience protocols; PRO-C3 (nordicPRO-
C3TM),21 PRO-C4 (nordicPRO-C4TM),22 PRO-C6,23 PRO-C8,24

and PRO-C18 (technical paper under development); 1.7% to
1.1% of samples fell below the detection limit for PRO-C8 and
PRO-C18L, and were assigned the lowest acceptable value. All
plates were technically approved as per specifications.

Biochemical, TE, and composite markers

LSM and controlled attenuation parameter were measured by
FibroScan. Experienced staff used M-/XL probes as indicated.
A reliable measurement was defined as having at least 10 valid
measurements and an IQR of <30% if the LSM was >7.1 kPa.25

Other NITs investigated included: ALT, aspartate trans-
aminase (AST); gamma-glutamyl transferase (GGT), haemo-
globin A1c (HbA1C); homeostatic model assessment of insulin
resistance (HOMA-IR); FAST score; FIB-4; and NAFLD Fibrosis
Score (NFS).

Assessment of liver biopsies

Percutaneous biopsies from the right liver lobe (16–18G suction
needle) were analysed by two expert hepatopathologists (SD,
Odense; TC, Esbjerg), blinded to all other data. Histology was
graded using NAS (0–8) Clinical Research Network:26 steatosis
(0–3), lobular inflammation (0–3), and ballooning (0–2), alongwith a
composite inflammatory activity score (inflammation and
ballooning) (0–5), as described previously.27 Fibrosis staging used
theKleinerfibrosisscore (0–4).Biopsieswereconsideredsufficient
if >−10 mm in length with six or more portal tracts or regenerative
nodules; the mean biopsy length was 21.7 mm (SD 5.4).28,29

Outcomes

Patients were categorised based on NAS changes in liver bi-
opsies between baseline and EOS: ’worsened by >−1 NAS
point,’ ’no change in NAS,’ and ’improved by >−1 NAS point’
(Fig. 1). This approach focused on liver biopsy results rather
than treatment type (active vs. control) or cohort (Odense vs.
Esbjerg). Biomarker changes were assessed in a combined
cohort, with no FDA/EMA drug trial criteria applied, as phar-
macological interventions were not used. We chose a change
of 1 NAS point as the criterion because of the mild disease
characteristics present in the study cohort, minimising the
likelihood of more considerable changes (e.g. a 2-point
change). The secondary aim was to assess changes of >−1
point in both (1) activity composite score and (2) fibrosis stage.
Changes in NITs from baseline were also calculated.

Statistics

Descriptive statistics are reported as mean ± SD, median (IQR),
or frequencies. Between-group differences were tested using
the X2 test, Mann–Whitney U test, ANOVA, or Kruskal–Wallis
test as appropriate. Logistic regression (n = 140 with
025. vol. 7 j 101432 2
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Fig. 1. Illustration of the primary endpoint: NAS change between baseline and EOS in 173 individuals. Groups: ‘worsened’ (>−1 NAS point, n = 22), ‘no change’ (n =
50), and ‘improved’ (>−1 NAS point, n = 101). EOS, end-of-study visit; NAS, NAFLD activity score.

Research article
complete data) assessed the probability of NAS improvement
(>−1 point) vs. no improvement, reporting odds ratios (OR) with
95% confidence intervals and p values. An OR >1 indicates a
decrease in a biomarker from baseline to EOS associated with
higher odds of NAS improvement. Absolute changes in each
NIT from baseline to EOT were included as unit differences in
univariate and multivariate logistic regression models, adjusted
for treatment (active/placebo), cohort (Odense/Esbjerg), weight
change, ALT, and HOMA-IR. The ability of each NIT to predict
NAS change was assessed using AUROC curves, with model
fit evaluated by Akaike’s Information Criterion (AIC). Values of p
<0.05 were considered significant. Analyses were conducted
using Stata 17 (College Station, TX, USA) and R (version 4.2.2,
R Foundation for Statistical Computing, Vienna, Austria).

Results

Patient characteristics

A total of 173 participants were included, and 19 did not have
MASLD at baseline biopsy (NAS 0–1; no fibrosis, n = 11; F1, n =
7; F4, n = 1). We included all participants in the analysis
because there was a possibility of histological change in at
least one direction. The updated protocol restricts repeat bi-
opsies in non-MASLD patients. The mean age was 52 (±12)
years, comprising 38% males. T2DM was present in 73%, and
44% were using statins. At baseline, 70% had F0–F1 fibrosis,
29% had a NAS >4, and 23% had MASH; there was an equal
prevalence of MASH of (21%; 25%) and NAS >4 (29%; 31%)
between the Odense and Esbjerg cohorts but a somewhat
different prevalence of advanced fibrosis F2–F4 (34%; 22%,
p = 0.002). All baseline characteristics, separated by trial cohort
(Odense and Esbjerg), are available in Table 1 (Fig. S1).

Outcome groups -–change in NAS between baseline and
follow-up

Of the participants, 13% ‘worsened’, 29% had ‘no change’, and
58% ‘improved’ by >−1 NAS point (n = 101). At baseline, partici-
pants in the ‘improved’ group were more metabolically sick with
JHEP Reports, --- 2
HOMA-IR of 7.7 (p = 0.002) and a higher prevalence of MASH (p
<0.001), see full characteristics in Table 2. ThemeanNAS change
from baseline was similar between cohorts (Fig. S2A–C), but pa-
tients with at least one NAS point improvement showed a greater
change in the Esbjerg cohort (-2.6 ± 1.6) compared to Odense
(-1.6 ± 0.8). In the worsened group, 11 participants were from
Odense (nine on a control diet, two on a low-carb, high-fat diet),
and 11 were from Esbjerg, none of whom underwent bariatric
surgery. Most participants had stable fibrosis (n = 102), 39
‘worsened’ by >−1 stage, and 32 ‘improved’ by >−1 stage. Themean
fibrosis change slightly increased in the Esbjerg cohort and
remained stable in Odense (Fig. S2B).

Non-invasive tests and their response to changes in NAS

We examined the relationship between changes in NAS (baseline
to EOS) and all NITs within the outcome groups. In patients who
‘improved’, several NITs showed significant decreases, including
sTREM2, PRO-C3, HbA1c, HOMA-IR, LSM, CAP, and FAST-
score (p <0.0001), while PRO-C18L increased (p = 0.02). HbA1c
slightly decreased (p = 0.005) in the ‘no-change’ group, and no
other markers changed significantly. Among patients who
‘worsened’, PRO-C18 decreased, whereas PRO-C4 and HOMA-
IR increased significantly (p <0.02) (Table 3 and Table S2).

Weight change in patients who ‘improved’ had a mean
weight loss of -12.0 kg (SD 14.70), while those in the ‘no-
change’ group lost -9.00 kg (SD 18.05). In contrast, patients
who ‘worsened’ had stable weight, with a mean change
of +1.45 kg (SD 6.17) (Table 3 and Fig. S2C).

Emerging markers

In patients who ‘improved’ in NAS, sTREM2 was reduced in
units by -7.1 (-19.2, -0.62) and PRO-C3 by -2.06 (-6.82; -0.18)
(Table 3) and expressed as percentage, sTREM2 by -21.2%
(-38.5, -1.7) and PRO-C3 by -12.4% (-25.4, -0.9) (p <0.001; p
<0.01) (Fig. 2A and Table S4).

PRO-C18L, mainly produced by activated hepatocytes,
showed an opposite pattern and decreased in patients who
‘worsened’ by 13.6% (-25.9, 8.9) (p <0.01) (Fig. 2A and
025. vol. 7 j 101432 3



Soluble TREM2 and PRO-C3 as monitors of MASLD changes
Table S4). We observed that PRO-C4 increased in patients who
‘worsened (p <0.02), but saw no significant changes for PRO-
C6 or PRO-C8 (Table 3, Fig. 2B).

The decreased levels of sTREM2 and PRO-C3 exhibited a
dose–response pattern, correlatingwith changes inNAS points of
-1, -2, and <-2. However, these correlations plateaued for patients
who experienced ’no-change’ or ’worsened’ NAS (Fig. 3).

Biochemistry markers

At the EOS visit, patients who showed improvement had
significantly lower levels of several other NITs, reflecting this
NAS change. These included HbA1c, HOMA-IR (Table 3), ALT,
AST, and GGT (Table S2, Fig. S3B). HOMA-IR levels exhibited a
step-wise change, closely mirroring NAS alterations, with
apparent increases in patients who ’worsened’ by 42.8% and
decreases in patients who ’improved by 39.0% (p
<0.001) (Fig. 2C).

The two composite NIT fibrosis scores, FIB-4 and NFS, did
not change significantly from baseline, nor did these NITs
reflect changes in NAS (p = 0.371) (Fig. 2B).

Imaging-based markers

A smaller sample was used for serial FibroScan measurements
because 16% of the recordings were invalid. Nonetheless, we
observed LSM changes ranging from -1.05 to 0.4 kPa across all
outcome groups (Table 3). LSM values decreased in the
’improved’ group by 17.0% (-33.3, 10.1) and in the ’worsened’
group by 6.1% (-23.7, 10.3). The controlled attenuation
parameter (dB/m), an indirect marker of liver steatosis,
decreased by 12.1% (-24.1, 2.2) in the ’improved’ group, with
minor changes in the other groups (Fig. 2B and C). A notable
reduction in the FAST score of 47.4% (-75.5, -3.1) was
observed in the ’improved’ NAS group compared with the
Table 1. Baseline characteristics by original trial cohort (n = 173).

Esbjerg cohort (n = 64)

Age, years 45.1 (12.8)
Male sex, n (%) 21 (33)
BMI (kg/m2) 43.6 (6.8)
Type 2 diabetes* (yes), n (%) 17 (27)
HOMA-IR† 6.0 (4.0–11.0)
Statins (yes), n (%) 17 (27)
ALT (U/L) 31 (22–55)
AST (U/L) 25 (20–35)†

GGT (U/L) 32 (24–57)†

LDL cholesterol (mmol/L) 3.0 (2.3–3.7)
Triglycerides (mmol/L) 1.5 (1.0–2.0)
TREM2 (ng/ml) 37.4 (22–58)
Liver stiffness by TE (kPa) 7.9 (5.0–14.5)
Fibrosis, F0/F1/F2/F3/F4 (n) 17/33/9/3/2
NAS, 0-2, 3-5, 6-8, (n) 36/24/4
no-MASLD/MASLD/MASH, (n) 16/32/16
GLP-1 (yes), n (%) 6 (9)
Long-acting insulin (yes), n (%) 4 (6)
Short-acting insulin (yes), n (%) 2 (3)
Metformin (yes), n (%) 10 (16)

Categorical data as frequency (%), continuous data as mean (±SD) or median (IQR), depe
Mann–Whitney U test. Values of p in bold indicate statistical significance.
Missing values:
†=<5. ALT, alanine transaminase; AST, aspartate transaminase; Bariatric cohort, patients w
homeostatic model assessment of insulin resistance; LDL, low-density lipoprotein; MASL
associated steatohepatitis; NAS, NAFLD activity score; Statins, including other choleste
cells; T2DM, type 2 diabetes.
*In the Bariatric cohort, T2DM patients were diagnosed or had a fasting glucose >6.9 mm
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others (p <0.001). The FAST score decreased and correlated
with NAS changes of -1, -2, and <-2 points, but levelled off in
patients with ‘no change’ or ‘worsened’ NAS (Fig. 3).
NITs in relation to changes in activity score and
fibrosis stage

The downregulation of NITs observed in patients who
‘improved’ in NAS could be reflective of regression in steatosis.
However, 70% of patients who ‘improved’ >−1 NAS (70/101) had
a change in the activity composite score grade (inflammation
and ballooning). We stratified the cohort based on changes in
the activity composite score. We could verify that sTREM2,
PRO-C3, FAST, HbA1c, HOMA-IR, ALT, AST, GGT, LSM, and
CAP followed the same pattern and direction of relative
changes in the three outcome groups (improved, no-change,
worsened), all with statistically significant differences between
groups (p <0.01) (Table S3). We separately analysed TREM2,
PRO-C3, PRO-C18L, and HOMA-IR in the improvement out-
comes group for steatosis alone vs. activity (composite score),
Fig. S5A and B. sTREM2 were significant in both steatosis and
activity (p <0.001), PRO-C3 change was more strongly linked to
activity improvement, and HOMA-IR to both steatosis and ac-
tivity (p <0.001). PRO-C18L was significant for worsening
steatosis and fibrosis but not activity (Table S3).

Thirty-two patients had at least a one-stage fibrosis
improvement, and 69% (22/32) of these also ‘improved’ in NAS
by >−1 point. Only ALT, FAST-score, and PRO-C18L showed
significant differences between groups with a one-stage
change in fibrosis (Table S2). These changes followed the
same pattern and direction of relative changes as seen in the
box-plot figures for NAS change (Fig. 2A and Fig. S3). Fourteen
percent of participants (24/173) could not improve in the
fibrosis stage, as they had an F0 at baseline.
Odense cohort (n = 109) Total (n = 173) p value

56.5 (9.7) 52.3 (12.2) <0.001
45 (41) 66 (38) 0.268

35.0 (7.0) 38.1 (8.0) <0.001
109 (100) 126 (73) <0.001

6.8 (4.4–10.6) 6.5 (4.3–10.6) 0.422
60 (55) 77 (44.5) <0.001

31 (24–46) 31 (23–48) 0.549
25 (20–32)† 25 (20–33) 0.752
33 (24–51) 33 (24–54) 0.968

2.2 (1.7–2.7) 2.5 (1.7–3.1) <0.001
1.6 (1.2–1.5) 1.5 (1.1–2.2) 0.324
38.4 (28–54) 38.0 (26–56) 0.921
5.9 (4.8–8.7) 6.2 (4.8–9.6) 0.026
8/64/33/3/1 25/97/42/6/3 0.002

47/59/3 83/83/7 0.082
3/83/23 19/115/39 <0.001
22 (20) 28 (16) 0.062
14 (13) 18 (10) 0.170

1 (1) 3 (2) 0.283
93 (85) 103 (60) <0.001

nding on distribution. Differences between cohorts were assessed using the X2 test or

ith severe obesity; BMI, Body Mass Index; GGT, gamma-glutamyl transferase; HOMA-IR,
D, metabolic dysfunction-associated fatty liver disease; MASH, metabolic dysfunction-
rol-lowering medications; sTREM2, soluble triggering receptor expressed on myeloid

ol/L at baseline.
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Table 2. Patient characteristics at baseline by histological NAS change at EOS: ‘Worsened >−1’ (n = 22), ‘No change’ (n = 50), ‘Improved >−1’ (n = 101).

Worsened >−1 NAS (n = 22) Stable in NAS (n = 50) Improved >−1 NAS (n = 101) p value

T2DM cohort, n (%) 11 (50) 30 (60) 68 (67) 0.272
Active intervention, n (%) 2 (9) 30 (60) 68 (67) <0.001
Age, years 52 (38–57) 56 (45–62) 55 (49-59) 0.395
Sex, male, n (%) 7 (32) 24 (48) 35 (35) 0.228
BMI, kg/m2 40 (8) 37 (7) 38 (8) 0.432
Type-2 diabetes, n (%) 13 (60) 33 (66) 80 (79) 0.064
LDL cholesterol (mmol/L) 2.7 (0.8) 2.4 (1.0) 2.5 (1.0) 0.435
HOMA-IR 6.3† (4.5-19.7) 4.6 (3.6–7.1) 7.7† (4.9-11.2) 0.002
Liver stiffness by TE, kPa 8.8 (5.7–14.0) 5.2 (4.1–7.9) 6.2 (5.3–10.8) 0.238
Statins* (yes), n (%) 8 (36) 20 (40) 49 (49) 0.436
GLP-1 (yes), n (%) 5 (23) 5 (10) 18 (18) 0.316
Long-acting insulin (yes), n (%) 4 (8) 4 (8) 10 (10) 0.414
Short-acting insulin (yes), n (%) 0 (0) 1 (2) 2 (2) 0.801
Metformin (yes), n (%) 11 (20) 250 (50) 67 (66) 0.097
Fibrosis stage, F0/F1/F2/F3/F4, n 3/14/4/1/0 13/23/10/2/2 9/60/28/3/1 0.276
NAFLD activity score, 0–2, 3–5, 6–8, n 12/10/0 40/10/0 31/63/7 <0.001
No-MASLD/MASLD/MASH, n 4/16/2 14/32/4 1/67/33 <0.001

Categorical data are presented as frequency (%), continuous data as mean (±SD) or median (IQR). Cohort differences were assessed using ANOVA or the Kruskal–Wallis test. Values
of p in bold indicate statistical significance. Missing values:
†<5. BMI, Body Mass Index; EOS, end-of-study visit; HOMA-IR, homeostatic model assessment of insulin resistance; LDL, low-density lipoprotein; MASLD, metabolic dysfunction-
associated fatty liver disease; MASH, metabolic dysfunction-associated steatohepatitis; NAS, NAFLD activity scores; Statins, includes other cholesterol-lowering medications.

Research article
Biomarker dynamics across distinct study cohorts

Although the length of follow-up differs between the Odense
and Esbjerg cohorts, the biomarker trajectories are shown to
emphasise patterns within each cohort rather than for direct
comparison (Fig. 4A and B and Fig. S4A–E).

We analysed each NIT’s relative mean percentage changes
(95% CI) across the three outcome groups. In the Esbjerg
cohort, sTREM2 and PRO-C3 significantly decreased in pa-
tients who showed improvement in NAS, compared with other
Table 3. Biochemistry and markers at baseline, end-of-trial, and change by hist
>−1’ (n = 101).

Non-invasive test n Baseline,
median (IQR)

Worsened >−1 NAS score (n = 22)
Emerging NIT of NASH and fibrosis
TREM2 (ng/ml) 22 41.0 (27.2, 67.3)
PRO-C3 (ng/ml) 22 23.8 (14.7, 26.4)
PRO-C4 HP (ng/ml) 22 6,874 (5,822, 7,587) 7,6
PRO-C6 (ng/ml) 22 11.9 (9.8, 14.6)
PRO-C8 (ng/ml) 22 3.08 (2.39, 4.10)
PRO-C18L (ng/ml) 22 9.1 (8.1, 12.9)

Composite fibrosis scores
FIB-4 21 0.79 (0.67, 0.96)
NFS 21 -1.20 (-1.80, 0.14) -

Biochemistry
HbA1c (mmol/mol) 22 47 (37, 56)
HOMA-IR (mmol/L) 19 6.3 (4.5, 19.7)

Imaging-based markers
LSM by TE, (kPa) 20 8.3 (5.7, 10.2)
CAP by TE, (db/m) 20 336 (307, 375)
FAST 19 0.36 (0.08, 0.58)

Liver biopsy
Fibrosis stage (mean, SD) 22 1.13 (0.71)

Body composition
Weight, kg (mean, SD) 22 120.4 (27.5)

Stable in NAS, no change (n = 50)
Emerging NIT of NASH and fibrosis
TREM2 (ng/ml) 50 30.8 (22.3, 43.9)
PRO-C3 (ng/ml) 50 21.4 (14.8, 25.5)

JHEP Reports, --- 2
groups (p <0.001). The Odense cohort displayed a decline in
sTREM for all groups, particularly in the ‘improved’ group, but
no significant changes were noted in sTREM2 or PRO-C3
relative to baseline (p >0.05) (Fig. 4A).

In the Odense cohort, a decrease in PRO-C18L levels was
seen in patients who worsened in NAS (p <0.05). In contrast,
the Esbjerg cohort exhibited no significant changes (p >0.05)
(Fig. 4B). Non-valid FAST score measurements were recorded
at either visit for both Odense (n = 16) and Esbjerg (n = 12)
cohorts; however, patients with improved NAS demonstrated a
ologic NAS stage: ‘Worsened >−1’ (n = 22), ‘No change’ (n = 50), and ‘Improved

End-of-study,
median (IQR)

Changes in units from baseline to
end-of-trial, median (IQR)

p value

40.7 (33.9, 65.7) 0.078 (-16.82, 9.34) 0.76
22.5 (15.8, 28.2) 1.27 (-3.4, 4.2) 0.45
33 (1,460, 8,363) 696 (15, 1,512) 0.01
12.0 (9.1, 14.1) 0.077 (-2.00, 1.38) 0.93

3.29 (2.35, 4.07) -0.259 (-0.92, 0.56) 0.28
8.75 (6.8, 12.7) -1.40 (-2.40, 0.60) 0.02

0.84 (0.58, 1.01) 0.002 (-0.17, 0.18) 0.98
0.93 (-1.53, 0.41) 0.152 (-0.153, 0.429) 0.15

49 (40, 59) 2.5 (-4, 4) 0.62
10.4 (6.2, 17.8) 2.2 (-0.3, 6.9) 0.01

7.5 (5.4, 9.6) -0.35 (-2.20, 1,65) 0.52
355 (323, 378) 5 (-5, 28) 0.23
0.3 (0.15, 0.66) 0.072 (-0.058, 0.117) 0.21

1.50 (0.91) 0.36 (0.72) 0.03

121.9 (28.1) 1.45 (6.17) 0.14

28.9 (20.4, 36.5) -1.926 (-6.57, 2.24) 0.13
18.6 (15.0, 26.1) -0.75 (-3.37, 2.98) 0.84

(continued on next page)
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Table 3. (continued)

Non-invasive test n Baseline,
median (IQR)

End-of-study,
median (IQR)

Changes in units from baseline to
end-of-trial, median (IQR)

p value

PRO-C4 (ng/ml) 50 6,134 (5,593, 6,797) 6,715 (2,247, 7,760) 395 (-325, 1,334) 0.06
PRO-C6 (ng/ml) 50 10.7 (9.0, 13.3) 12 (9.4, 15.6) 0.20 (-1.10, 2.26) 0.27
PRO-C8 (ng/ml) 50 2.84 (2.42, 3.71) 2.92 (1.40, 2.26) 0.040 (-0.37, 0.78) 0.58
PRO-C18L (ng/ml) 50 10.3 (6.6, 14.7) 11.1 (8.3, 14.9) 1.10 (-1.20, 3.20) 0.06

Composite fibrosis scores
FIB-4 49 0.88 (0.61, 1.44) 1.02 (0.75, 1.54) 0.078 (-0.10, 0.27) 0.05
NFS 49 -0.47 (-1.23, 0.37) -0.33(-1.54, 0.24) -0.030 (-0.482, 0.350) 0.51

Routine biochemistry
HbA1c (mmol/mol) 49 50 (36, 54) 44 (35, 52) -2 (-11, 1) 0.005
HOMA-IR (mmol/L) 50 4.6 (3.6, 7.1) 3.9 (2.4, 9.3) -1.1 (-2.2, 1.1) 0.23

Imaging-based markers
LSM by TE (kPa) 45 5.2 (4.1, 7.9) 5.7 (4.7, 8.6) 0.4 (-0.70, 1.50) 0.13
CAP by TE (db/m) 45 307 (268, 338) 288 (252, 341) -2 (-42, 21) 0.58
FAST 42 0.13 (0.05, 0.29) 0.17 (0.06, 0.27) 0.005 (-0.043, 0.066) 0.36

Liver biopsy
Fibrosis stage (mean, SD) 50 1.14 (0.99) 1.22 (0.93) 0.08 (0.63) 0.37

Body composition
Weight, kg (mean, SD) 50 109.7 (23.5) 100.7 (23.0) -9.00 (18.05) <0.001

Improved >−1 NAS score (n = 101)
Emerging NIT of NASH and fibrosis
sTREM2 (ng/ml) 101 42.8 (28.1-64.8) 31.5 (23.4, 39.8) -7.070 (-19.12, -0.62) <0.0001
PRO-C3 (ng/ml) 101 18.2 (15.3, 26.5) 16.2 (13.2, 22.9) -2.06 (-6.82, -0.18) <0.0001
PRO-C4 (ng/ml) 101 6,600 (5,845, 7,366) 6,911 (1,849, 7,903) 196 (-565, 1,035) 0.06
PRO-C6 (ng/ml) 101 10.3 (9.1, 12.7) 10.2 (8.85, 11.95) -0.204 (-1.90, 0.23) 0.42
PRO-C8 (ng/ml) 101 3.25 (2.19, 4.70) 2.94 (2.19, 4.16) -0.100 (-0.65, 0.28) 0.06
PRO-C18L (ng/ml) 101 8.9 (7.0, 12.0) 9.5 (7.0, 13.2) 0.60 (-0.80, 2.2) 0.02

Composite NIT of fibrosis
FIB-4 91 0.90 (0.63, 1.22) 0.87 (0.70, 1.26) 0.048 (-0.17, 0.20) 0.41
NFS 97 -0.74 (-1.56, 0.17) -0.95 (-1.67, 0.19) -0.029 (-0.340, 0.357) 0.66

Biochemistry
HbA1c (mmol/mol) 101 52 (45, 58) 44 (35, 52) -7 (-12, -3) <0.0001
HOMA-IR (mmol/L) 97 7.7 (4.9, 11.2) 4.5 (2.3, 7.2) -2.5 (-5.9, -0.5) <0.0001

Imaging-based markers
LSM by TE, (kPa) 94 6.1 (5.2, 9.3) 5.4 (4.3, 8.1) -1.05 (-2.7, 0.70) 0.0001
CAP by TE, (db/m) 94 350 (307, 386) 311 (254, 338) -46 (-83, 8) <0.0001
FAST 84 0.32 (0.13, 0.60) 0.13 (0.06, 0.25) -0.090 (-0.299, -0.002) <0.0001

Liver biopsy
Fibrosis stage (mean, SD) 101 1.28 (0.71) 1.22 (0.81) -0.05 (0.65) 0.50

Body composition
Weight, kg (mean, SD) 111.6 (27.0) 99.5 (23.5) -12.01 (14.70) <0.0001

End-of-trial biopsies were taken 6 months (Odense) or 30 months (Esbjerg) after baseline. Data are presented as medians (IQR) unless otherwise indicated. Statistical analysis:
Wilcoxon matched-pairs signed-rank test, with outliers included. Values of p in bold indicate significance. CAP by TE, Controlled Attenuation Parameter by transient elastography;
FAST, FibroScan-AST; FIB-4, fibrosis-4 score; Fibrosis, Kleiner fibrosis score; HbA1c, haemoglobin A1c; HOMA-IR, homeostatic model assessment of insulin resistance; LSM by
TE, liver stiffness by transient elastography; NASH, non-alcoholic steatohepatitis; NFS, NAFLD fibrosis score; NIT, non-invasive test; PRO-C3-C8, collagen pro-peptides (III, IV, VI,
VII); PRO-C18L, basement membrane collagen (XVIII); sTREM2, soluble triggering receptor expressed on myeloid cells.

Soluble TREM2 and PRO-C3 as monitors of MASLD changes
significant decrease in FAST score across both cohorts (p
<0.01), correlating with fibrosis changes (Table S3). The bio-
markers ALT, AST, HOMA-IR, HbA1c, and GGT produced
similar results in both outcome groups of the Odense and
Esbjerg cohorts (Fig. 4A–E). Notably, HOMA-IR and GGT dis-
played the most defined separation from the other two
outcome groups in both Odense (p <0.01) and Esbjerg cohorts
(p <0.001), unlike ALT, AST, and HbA1c, which showed greater
overlap (Fig. 4A–E).

Additionally, body weight changes for patients who
improved in NAS differed between cohorts, with a median
decrease of 6.5 kg (SD 5.4) in Odense and of 23 kg (SD 20) in
Esbjerg (Fig. 2C).

Logistic regression and composite scores for response

All logistic regression models accounted for treatment arm
(active/intervention vs. placebo/none) and cohort heterogeneity
(Odense vs. Esbjerg). Univariate logistic regression models
JHEP Reports, --- 2
identified significant odds ratios (OR >1, p <0.05), indicating
statistical significance. Multivariable logistic regression showed
that changes in TREM2 and PRO-C3 remained significant. After
adjusting for weight, ALT, and HOMA-IR (Table S5), sTREM2
and PRO-C3 changes continued to be significant, suggesting
these biomarkers may help assess histological change. How-
ever, NAS improvement showed a relatively weak association
with most NITs, as evidenced by an AUROC <0.7 (Fig. 5).
Nevertheless, the AUROC for HOMA-IR (0.76), FAST (0.71),
sTREM2 (0.71), and PRO-C3 (0.70) indicated reasonable
discrimination, which improved in multivariable models incor-
porating multiple NITs, such as sTREM2 + HOMA-IR (AUROC
0.79) and sTREM2 + PRO-C3 (AUROC 0.75) (Fig. 5A and C).

Discussion
Monitoring response to treatment or changes in lifestyle in
patients at risk of MASLD and MASH is an unmet clinical need.
We believe that the biological attributes of markers are critical
025. vol. 7 j 101432 6
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Soluble TREM2 and PRO-C3 as monitors of MASLD changes
for their viability as surrogate endpoints for histological
changes. Our study showed that regardless of treatment, pa-
tients who ‘improved’ at least one NAS point, of which 70%
also ‘improved’ in either inflammation or ballooning (compared
with patients who were stable or progressed), had pronounced
reduction in several NITs, including sTREM, PRO-C3, HOMA-
IR, and FAST. These markers showed a dose–response rela-
tionship. Combining sTREM2 with either PRO-C3 or HOMA-IR
in multivariable regression models could confidently predict
NAS improvement with an AUROC >0.75.

PRO-C3 is a validated marker of collagen formation, fibroblast
activation, and disease activity15,16 and our study could verify
findings from the Resmetirom study concerning reduced levels of
PRO-C3when theNASscore improves.9 sTREM2, althoughmore
recently described, has been localised by spatial transcriptomics
measurement by transient elastography (FibroScan); NAS, NAFLD activity score; N
PRO-C3, collagen type III; sTREM2, soluble, triggering receptor expressed on mye
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to areas of hepatocellular damage and fibrosis in the liver11 and
performs well as a diagnostic marker for MASH.12 This is the first
study where sTREM2 is serially measured to investigate the
marker’s ability to reflect the inflammatory change.

HOMA-IR showed a distinct dose–response linked to NAS
changes, reflecting both regression and worsening. This aligns
with its role in MASH progression, including systemic insulin
resistance and inflammation.30 AlthoughHOMA-IR is evaluated as
a diagnosticmarker forMASHwith reasonable accuracy,31 it has a
low prognostic value.32 In this cohort, HOMA-IR shows potential
as a monitoring marker, but variability in assay methods, intra-
individual differences, and fluctuations with antidiabetic medica-
tions33 may hinder reliable tracking of longitudinal changes.

The FAST score, a composite marker of liver tissue
assessed via elastography and AST, showed significant dose–
FS, NAFLD fibrosis score; PRO-C18L, basement membrane collagen type XVIII;
loid cells type 2.
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Fig. 5. Logistic regression predicting NAS improvement. (A–C) Logistic regression predicting NAS improvement (>−1 point, coded as 1) vs. no improvement (coded
as 0). The models include treatment groups (active vs. placebo), the study cohorts, and unit changes in NITs. (A) AUROC and AIC model prediction. (B) Odds ratio for
univariable models. **The FAST score shows a limited range (min: -0.78 and max: 0.65) compared with other NITs. (C) Multivariable logistic regression models. *Model
based on n = 140 with complete data. AIC, Akaike’s information criterion; FAST, FibroScan-AST; NAS, NAFLD activity score; NIT, non-invasive test.

Soluble TREM2 and PRO-C3 as monitors of MASLD changes
response changes in our study, reflecting NAS improvement.
This is in line with findings from the REGENERATE cohort in
patients receiving obeticholic acid.8 However, 16% of mea-
surements were unreliable in our study, likely as a result of
abdominal obesity, a challenge even with the XL probe.34

We also measured PRO-C18L, a novel biomarker reflecting
levels of the long isotype of type XVIII collagen, known to be
predominantly expressed in liver tissue and a member of the
basement membrane family.19 Preclinical studies have
demonstrated that type XVII collagen constitutes a vital
functional component within the liver matrix
JHEP Reports, --- 20
microenvironment, playing a crucial role in supporting hepa-
tocyte survival during injury and stress35 as observed during
inflammation and fibrogenesis. We found lower levels of PRO-
C18L in patients who ‘worsened’ in NAS in the overall cohort,
driven by the Odense cohort. As the basement membrane
serves as the scaffolding for hepatocytes, and considering the
crucial role of hepatocytes as essential sources of type XVIII
collagen,19,35 a decrease in hepatocyte signalling for regen-
eration becomes a plausible observation. Knowledge of type
XVIII collagen function fits well with our results, where
decreased levels are seen in patients with a progression in
25. vol. 7 j 101432 10
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NAS. This highlights PRO-C18L as an interesting marker. The
clinical implications of reduced levels of PRO-C18L could be
that the regenerative function of the hepatocytes is impaired,
leading to more severe disease.

We observed no significant changes in FIB-4 across
different outcome groups regarding NAS change, composite
inflammatory activity, or fibrosis stage. This contrasts with
findings from the REGENERATE study, where the FIB-4 score
was lower in patients showing at least a one-point improve-
ment in fibrosis stage.8 This discrepancy may stem from dif-
ferences in cohort characteristics and the baseline prevalence
of fibrosis severity, as over 50% of the REGENERATE cohort
had advanced fibrosis (F3). Conversely, our cohort exhibited a
low prevalence of advanced fibrosis at only 5%. Additionally, in
our study, 14% (25/173) had no fibrosis at baseline, and thus
could not improve in fibrosis. However, FIB-4 was primarily
developed as a diagnostic score for fibrosis, and not as a
monitoring marker. The inclusion of markers that may better
predict NAS changes, such as CK1836 and NIS,37 will be
interesting and important to investigate in a monitoring context.

This study focuses exclusively on the changes in biomarkers
related to lifestyle and bariatric surgery interventions. Our anal-
ysis centres on measuring biomarkers repeatedly to evaluate
disease status over time. Unlike predictive or prognostic bio-
markers, which aim to anticipate future disease progression,
monitoring biomarkers reflect current changes in disease state
or treatment response.1 The impact of drug therapy on
biomarker levels is yet to be determined, as these drugs can
influence biomarker levels based on their mechanisms of action.
Although we have noted differences between the two cohorts, it
is important to recognise that variations in the treatments
investigated and follow-up periods (6 months for Odense and
2.5 years for Esbjerg) might influence the differences observed.

A primary distinction between the two groups was that some
patients in the Esbjerg cohort who showed ’improvement’ in
NAS had a more pronounced change, likely attributable to the
well-established impacts of bariatric surgery. Conversely, anti-
diabetic medications were more commonly utilised in the
Odense cohort, particularly GLP-1 analogues (20% vs. 9%) and
metformin (85% vs. 16%). GLP-1 analogues are known to pro-
mote weight loss and lower the density of inflammatory mac-
rophages38 whereas metformin may reduce proinflammatory
cytokines, which could affect biomarker levels.39,40 Notably, at
JHEP Reports, --- 2
least 25% of severely obese patients in the Esbjerg cohort had
diabetes, and a greater proportion was identified as prediabetic.
We saw strong associations in the Esbjerg cohort for biomarkers
such as sTREM2 and PRO-C3. This variation may be attributed
to the extended follow-up period in this cohort. Also, differences
in patient characteristics, such as a higher prevalence of
comorbidities and older age in the Odense cohort, possibly
indicate a longer history of MASLD or MASH. Nonetheless,
these explanations are still speculative. We should also take into
account the previous limitation mentioned, as we did not eval-
uate other specific inflammatory markers such as interleukins,
adiponectin, or leptin that might have offered additional insights.

A limitation is the lack of a more prognostic outcome, such
as MASH resolution; investigating this would have required
substantially reducing the sample size. However, it is crucial to
recognise that the patients in our study reflect real-world
populations affected by MASLD and MASH. Drug-
development cohorts typically feature highly selective pop-
ulations, contrasting with the demographics of our study group,
which must be factored in when interpreting our results. The
lack of consensus histology reading is also a limitation; but the
paired design reduces interobserver variability. Despite the
complexities associated with the heterogeneous cohort,
markers such as HOMA-IR, sTREM2, PRO-C3, and PRO-C18L
showed significant and promising outcomes. This research
marks a progressive step toward identifying potential moni-
toring markers for future validation studies.
Conclusions

This exploratory analysis identified potential biomarkers for
monitoring MASLD activity and treatment response. In patients
with metabolic comorbidity and low to moderate inflammation
and fibrosis, sTREM2 combined with PRO-C3 or HOMA-IR or
HOMA-IR, in combination with other NITs, may reflect NAS
improvement and has potential as a monitoring marker. PRO-
C18L is also promising and warrants further investigation.
FIB-4 and NFS had limited accuracy in detecting fibrosis
response. More extensive studies with longer follow-ups,
aligned to EMA and FDA standards, are needed to validate
these findings, study fibrosis regression, and investigate
biomarker responses across MASLD subtypes.
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