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1  | INTRODUC TION

Sertoli cells (SeC) are major component of the seminiferous tubules 
of the testis where they contribute to the development of germ cells 
and protect germ cells from the attack by the host immune system.1,2 
Indeed, newly synthesized markers on germ cell surface would be 
recognized as non‐self by the immune system, as this latter becomes 
mature before spermatogenesis starts. SeC exert their double role 

(a) by creating a physical barrier (the blood‐testis barrier, BTB) made 
of adjacent SeC linked together with tight junctions, isolating the 
lumen of seminiferous tubules from the interstitial fluid, and (b) by 
secreting a plethora of trophic and immunomodulatory factors.3,4 
This latter ability of SeC has prompted researchers to use them in 
many experimental models of diseases in which supplying trophic 
factors, abating inflammation or modulating the immune system ac‐
tivity might result in reversion or attenuation of the pathology.2,5
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Abstract
Sertoli cells (SeC) are responsible for the immunoprivileged status of the testis thanks 
to which allogeneic or xenogeneic engraftments can survive without pharmacologi‐
cal immune suppression if co‐injected with SeC. This peculiar ability of SeC is de‐
pendent on secretion of a plethora of factors including maturation factors, hormones, 
growth factors, cytokines and immunomodulatory factors. The anti‐inflammatory 
and trophic properties of SeC have been largely exploited in several experimental 
models of diseases, diabetes being the most studied. Duchenne muscular dystrophy 
(DMD) is a lethal X‐linked recessive pathology in which lack of functional dystrophin 
leads to progressive muscle degeneration culminating in loss of locomotion and pre‐
mature death. Despite a huge effort to find a cure, DMD patients are currently 
treated with anti‐inflammatory steroids. Recently, encapsulated porcine SeC (MC‐
SeC) have been injected ip in the absence of immunosuppression in an animal model 
of DMD resulting in reduction of muscle inflammation and amelioration of muscle 
morphology and functionality, thus opening an additional avenue in the treatment of 
DMD. The novel protocol is endowed with the advantage of being potentially appli‐
cable to all the cohort of DMD patients regardless of the mutation. This mini‐review 
addresses several issues linked to the possible use of MC‐SeC injected ip in dys‐
trophic people.
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2  | SERTOLI CELL S

The	immunoprivileged	status	of	the	testis	is	long	known.	In	1767,	dur‐
ing	his	studies	on	transplantation,	John	Hunter	observed	that	rooster	
testes transplanted into the abdominal cavity of a hen maintained 
normal structure over time.6	 Subsequent	 investigation	 identified	
SeC as the cell type mainly responsible for the immunological prop‐
erties of the testis. Indeed, allogeneic and/or xenogeneic pancreatic 
islets,7,8 adrenal chromaffin cells9 and dopaminergic neurons10 were 
successfully protected by SeC in the absence of pharmacological im‐
mune suppression in different experimental models. Similarly, skin11 
and heart12 grafts showed prolonged survival when co‐injected with 
SeC. Moreover, grafts of SeC alone exerted trophic effects in the 
central nervous system in animal models of Huntington’s disease and 
amyotrophic lateral sclerosis.13,14

Intriguing results about SeC derive from their use as encapsu‐
lated	cells	 in	several	pre‐clinical	 studies.	Alginate‐based	microcap‐
sules containing SeC (MC‐SeC) have been successfully employed 
as a single intraperitoneal (ip) injection in experimental models of 
type 1 and type 2 diabetes, acute hepatic failure, skin graft and 
Huntington’s disease.15‐21 In an animal model reproducing the 
human	Laron	syndrome,	in	which	mutations	in	the	growth	hormone	
receptor	(GHR)	lead	to	reduced	production	of	IGF‐1	and	subsequent	
dwarfism, intraperitoneally injected MC‐SeC promoted body growth 
through	the	release	of	IGF‐1	into	the	circulation.22

The trophic and immunomodulatory properties of SeC are de‐
pendent on the complex SeC secretory activity resulting in a cocktail 
of factors whose formulation is difficult to dissect, being affected by 
the biological status of the cells and likely by environmental cues. 
While	the	composition	of	SeC’	secretory	product	still	awaits	to	be	
identified, it includes maturation factors, hormones, growth factors, 
cytokines and immunomodulatory factors (Table 1).

However, the immunomodulatory effect of SeC is obtained 
by a multimodal mechanism. SeC secrete (still unidentified) fac‐
tors	 thatblock	 T	 lymphocyte	 proliferation	 and	 interleukin	 (IL)‐2	

production,23,24 and SeC induce apoptosis of lymphocytes mediated 
by	 the	 interaction	 of	 FasL	 expressed	 on	 their	 surface	 and	 Fas	 re‐
ceptor (CD95) expressed on T cells.25 SeC secrete inhibitors of the 
complement cascade and granzyme, a cytolytic molecule released 
by cytotoxic T cells.26,27 Moreover, the secretion of specific fac‐
tors,	 such	 as	TGF‐β,	 IDO	 (indoleamine	2,3‐dioxygenase),	 activin	A	
and	JAG1,	concurs	to	immunomodulation	favouring	the	emergence	
of tolerogenic cells, including M2 (anti‐inflammatory) macrophages, 
and Th2 and Tregs.15,28,29

3  | DUCHENNE MUSCUL AR DYSTROPHY 
AND REL ATED THER APEUTIC APPROACHES

Duchenne muscular dystrophy (DMD) is an X‐linked recessive dis‐
ease due to mutations in the dystrophin gene (DMD), the biggest 
gene	of	 the	human	genome	for	which	about	4700	different	muta‐
tions have been reported.30‐33 Dystrophin is an essential component 
of	the	dystrophin‐associated	protein	complex	(DAPC),	a	multiprotein	
complex located at the sarcolemma and responsible for the mechani‐
cal link between the intracellular cytoskeleton and the extracellular 
matrix; dystrophin ensures the structural and functional integrity 
of myofibres during contraction. DMD gene mutations translating 
into absence of dystrophin or expression of functionally inefficient 
protein lead to the Duchenne phenotype, in which loss of the in‐
tegrity	 of	 DAPC	 causes	 myofibre	 degeneration	 and	 progressive	
loss of muscle efficiency, wheelchair dependency before teenage 
years, and premature death by cardiac and respiratory failure.31,34 
Morphologically, DMD muscles are characterized by infiltration 
with immune cells and chronic activation of inflammatory signalling 
pathways due to continuous degeneration/regeneration cycles, with 
the final result that fibrous and fatty tissues progressively overtake 
functional myofibres.35

Therapeutic approaches to DMD have been experiencing multi‐
ple	obstacles	against	their	success	(Table	2).	Firstly,	DMD gene is a 

TA B L E  1  Factors	known	to	be	secreted	by	SeC

Maturation factors 
and hormones

Activins116

Dhh117
Oestrogens118

Inhibins116
KL/SCF119,120

MIS/AMH121

Growth factors and 
cytokines

BDNF122

bFGF123

BP4124

EGF125

GDNF126

Heregulin‐β194

IFN‐γ127

IGF‐1128,129

IGF‐2130

IL‐1,	IL‐624,131,132

SCSGF133

NT‐3122,134

PDGF135

SGP‐1/Prosaposin, SGP‐2136,137

TGF‐α,	TGF‐β138,139

VEGF140

Immunomodulatory 
factors

Activin	A116

BCL‐w141

Clusterin142

Complement cascade inhibitors26

FasL143,144

IDO15

IL‐2	suppressor	factors23

JAG129

MIF145

Serpins27

TGF‐β139

Transferrin146,147

AMH,	anti‐Müllerian	hormone;	BDNF,	brain‐derived	neurotrophic	factor;	bFGF,	basic	fibroblast	growth	factor;	BMP4,	bone	morphogenetic	protein	4;	
Dhh,	desert	hedgehog;	EGF,	epidermal	growth	factor;	FasL,	Fas	ligand;	GDNF,	glial	cell–derived	neurotrophic	factor;	IDO,	indoleamine	2,3‐dioxyge‐
nase;	IFN,	interferon;	IGF,	insulin‐like	growth	factor;	IL,	interleukin;	JAG1,	soluble	JAGGED1;	KL,	kit	ligand;	MIF,	macrophage	inhibitory	factor;	MIS,	
Müllerian‐inhibiting	substance;	NT,	neurotrophin;	PDGF,	platelet‐derived	growth	factor;	SCF,	stem	cell	factor;	SCSGF,	SeC‐secreted	growth	factor;	
SGP,	sulphated	glycoprotein;	TGF,	transforming	growth	factor;	VEGF,	vascular	endothelial	growth	factor.
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too	large	gene	(2.4	Mb	and	79	exons,	corresponding	to	about	0.1%	
of the human genome)30 to be delivered using classical recombinant 
adeno‐associated	viruses	(rAAVs),	which	has	led	to	investigation	of	
the use of parts of the gene translating into shorter but still efficient 
proteins, that is, mini‐ and micro‐dystrophins.36‐40	 Although	 AAV	
vectors carrying mini‐dystrophin have given encouraging results in 
mdx mice (the most used experimental model for DMD) and GRMD 
(golden retriever muscular dystrophy) dogs,41‐43 phase I clinical trial 
revealed only a limited dystrophin expression and irrelevant muscle 
improvements due to the host immune response.44

Exon skipping is an approach to overcome specific regions with 
deletions, duplications or small mutations in the DMD gene pointing 
to recovery of the reading frame and production of truncated but 
functional forms of dystrophin, and translating into a switch from 
the DMD pathology to the milder phenotype known as Becker mus‐
cular dystrophy (BMD).45,46 Specifically designed antisense oligonu‐
cleotides	(AON),	which	are	20‐30	nucleotides	in	length,	are	used	to	
obtain skipping of different exons resulting in truncated but in‐frame 
transcripts.47‐49	The	modified	AON,	2′‐O‐methyl‐p phosphorothio‐
ate oligonucleotides (PS) and phosphorodiamidate morpholino oligo‐
mers (PMO) have shown high stability and efficacy, and low toxicity. 
One	major	 limit	of	AON	 is	 that	 they	are	only	useful	 for	DMD	pa‐
tients with specific mutations and not applicable to the remaining 
cohort of patients. The PS, Drisapersen and the more promising 
PMO, Eteplirsen, both of which are in clinical trials, are specific for 
skipping	of	exon	51,	which	applies	 to	14%	of	patients,	 that	 is,	 the	
largest cohort of DMD subjects who may benefit from single exon 
skipping.39,50	Other	limitations	inherent	to	the	use	of	AON	are	rep‐
resented by their scarce tissue uptake and low rescue of dystrophin 
expression in muscles.

Cell therapy represents a second front of therapeutic ap‐
proaches to DMD. It tries to use different cell types (especially, satel‐
lite cells/myoblasts, mesoangioblasts and induced pluripotent stem 
cells [iPSC]) from healthy donors or genetically engineered cells from 
the patients themselves to obtain the re‐expression of dystrophin 
in muscle tissue and recovery of muscle performance.51‐54 Cells ob‐
tained from patients are corrected ex vivo and re‐implanted in the 
donors, whereas cells from healthy donors are used in allogeneic 
transplantations in dystrophic patients.55 This kind of approach is 
finding limits in the low survival of injected cells and their inability 
to migrate for long distances, so that repeated local injections are 
required.56 The reasons why injected cells show low survival and 
scarce ability to migrate are not fully understood, but deficiency of 
specific growth factors might play an important role. Immune rejec‐
tion of transplanted cells is another relevant concern in the case of 
allogeneic	approaches,	which	require	concomitant	pharmacological	
immunosuppression.57

Healthy human satellite cells and myoblasts (ie, muscle precur‐
sor cells) induce dystrophin expression in DMD patients to a cer‐
tain extent when injected intramuscularly58; a phase I/II clinical trial 
(NCT02196467)	is	still	ongoing.	iPSC	are	somatic	cells	(including	fi‐
broblasts, hepatocytes, pancreatic beta cells, lymphocytes and neu‐
ral progenitor cells) reprogrammed in vitro to a pluripotent state by 
ectopic expression of Oct4 and Sox2 in combination with either Klf4 
and	c‐Myc	or	Lin28	and	Nanog.59 iPSC show similarity to embryonic 
stem cells, can be directed to mesenchymal differentiation, and pa‐
tient‐derived iPSC can be genetically engineered for potential autol‐
ogous therapies. However, iPSC have found employment only in up 
to pre‐clinical studies so far.60 Mesoangioblasts (ie, cells associated 
with the walls of large vessels) represent one of the most promising 

TA B L E  2  Advantages	and	disadvantages	of	the	main	therapeutic	approaches	to	DMD

Approach Advantages Disadvantages References

Gene therapy Potential rescue of functional dystrophin in cardiac 
and skeletal muscles

Independent from DMD gene mutation
AAV	vectors	are	already	approved	for	other	

pathologies

Need	to	use	truncated	forms	of	dystrophin	due	to	the	
high size of DMD gene
Requirement	of	high	doses	of	vectors
Possible immune reaction against vectors
Potential need for immunosuppressive therapy

[37‐40]

Exon skipping Restoration of expression of partially functional 
dystrophin
Some	AON	are	well	tolerated
Eteplirsen	received	conditional	approval	by	USA	FDA

DMD gene mutation‐dependent
Scarce tissue uptake
Large	doses	and	repeated	injections	are	required
Significant side effects are reported in some cases
Controversial efficacy

[47‐49]

Cell therapy Restoration of functional dystrophin
Possibility to reprogramme adult somatic cells to 

iPSC
Possibility to correct mutations ex vivo in patient 

cells
Low	risk	of	immune	reaction	in	autologous	

transplantations

Short lifespan and low migration ability of injected cells
Immune reaction when cells come from healthy donors
Requirement	of	immunosuppression	in	allogeneic	

transplantations

[47,55‐57]

Utrophin 
induction

Independent from DMD gene mutation
Oral administration
Well‐tolerated	compounds
No	requirement	of	immunosuppressive	treatment

Ezutromid (SMT C1100) failed to reach its objectives [53,69]

AAV,	adeno‐associated	viruses;	AON,	antisense	oligonucleotides;	FDA,	Food	and	Drug	Administration;	iPSC,	induced	pluripotent	stem	cells.
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cell types for cell therapy in DMD patients. Mesoangioblasts are en‐
dowed with myogenic potential and ability to cross the blood vessel 
wall, and their use has resulted in improvement of muscle morphol‐
ogy in several experimental models of muscular dystrophy.45,61,62 
Intra‐arterial injection of allogeneic human mesoangioblasts isolated 
from adult skeletal muscle is currently under phase I clinical trial 
(EudraCT	#2011‐000176‐33).

The existence of the dystrophin paralogue, utrophin, has fos‐
tered another approach to rescue homeostasis in the muscles of 
DMD	 patients.	 Utrophin	 shares	 a	 very	 high	 degree	 of	 sequence	
identity with dystrophin and even associates with members of the 
DAPC,	 thus	mimicking	 the	 role	 of	 dystrophin	 in	 dystrophin‐nega‐
tive myofibres.30,63 In healthy adult muscle fibres, dystrophin and 
utrophin show different expression patterns, with dystrophin being 
expressed along the entire sarcolemma and utrophin confined to 
the	 myotendinous	 and	 the	 neuromuscular	 junctions	 (NMJs).64,65 
However, utrophin is expressed at high levels at the sarcolemma 
during development, when dystrophin is not expressed yet.66 
Indeed, necrosis of mdx limb muscles begins only when the high 
neonatal levels of utrophin become reduced to adult levels.64 Since 
forced expression of utrophin in dystrophic myofibres can restore 
assembly	 of	 DAPC	 members	 at	 the	 sarcolemma	 and	 prevent	 the	
dystrophic pathology,67,68 up‐regulation of utrophin in muscles rep‐
resents a still active field of investigation in DMD treatment.69 In 
this regard, the small molecule, SMT C1100 (Ezutromid), which has 
shown promising results in a phase I clinical trial,70 was stopped after 
a	phase	II	clinical	trial	(NCT02858362)	since	it	failed	to	reach	its	pri‐
mary and secondary objectives.

Several alternative approaches to treat DMD are currently 
under investigation (Table 3). They include use of the histone 
deacetylase	 (HDAC)	 inhibitor,	 Givinostat71‐73; the phosphodies‐
terase‐5 (PDE5) inhibitors, Tadalafil and Sildenafil74‐76; the benzo‐
quinone,	 Idebenone	 (Catena/Raxone)77‐79; the aminoglycoside, 
Ataluren	 (Translarna,	 former	 PTC124).80,81 The anti‐fibrotic mole‐
cule, Halofuginone (HT‐100),82 and the anti‐myostatin monoclonal 
antibody, Domagrozumab,83,84 have been blocked in phase II clini‐
cal trial due to death of a patient receiving the highest dose and no 
significant	 therapeutic	 effects,	 respectively.	While	 treatment	with	
Ataluren	points	to	re‐expression	of	dystrophin	in	muscles,	the	ma‐
jority of alternative approaches are aimed at restraining pathogenic 
mechanisms secondary to lack of dystrophin, particularly muscle in‐
flammation and fibrosis.

More recently, researchers are trying to useCRISPR/Cas9 ge‐
nome editing system to remove mutated exons from the DMD 
gene.85,86	 This	method	 uses	 small	 guide	 RNAs	 coupled	with	 tar‐
get‐specific	 double‐strand	 DNA	 endonuclease	 making	 possible	
targeted gene disruption, replacement or modification.87 The 
CRISPR/Cas9 approach has shown ability to rescue dystrophin 
expression in DMD patient‐derived iPSC in vitro, and in muscles 
of experimental models of DMD in vivo.88	 Similar	 to	 AON,	 ap‐
plication	 of	 CRISPR/Cas9	 method	 to	 DMD	 patients	 requires	 a	
personalized setting depending on the specific mutation. Other 
limitations for the use of CRISPR/Cas9 as a DMD treatment are TA

B
LE

 3
 

Pr
in

ci
pa

l c
ur

re
nt

ly
 o

ng
oi

ng
 a

lte
rn

at
iv

e 
ap

pr
oa

ch
es

 to
 tr

ea
t D

M
D

D
ru

g
D

es
cr

ip
tio

n/
A

ct
iv

ity
Ef

fe
ct

s
Li

m
ita

tio
ns

Cl
in

ic
al

 tr
ia

l
Re

fe
re

nc
es

A
ta
lu
re
n	
(P
TC
12
4)

PT
C 

Th
er

ap
eu

tic
s

Sm
al

l c
he

m
ic

al
 c

om
po

un
d 

th
at

 in
du

ce
s 

rib
os

om
al

 
re

ad
‐t

hr
ou

gh
 o

f p
re

m
at

ur
e 

st
op

 c
od

on
s

Re
st

or
at

io
n 

of
 e

xp
re

ss
io

n 
of

 fu
ll‐

le
ng

th
 

dy
st

ro
ph

in
U

se
 li

m
ite

d 
to

 p
at

ie
nt

s 
w

ith
 

no
ns

en
se

 m
ut

at
io

ns
 (n

m
D

M
D

)
Ph

as
e 

III
 c

om
pl

et
ed

C
on

di
tio

na
l a

pp
ro

va
l 

in
 E

ur
op

e

[63
,6

4 ]

G
iv

in
os

ta
t

Ita
lfa

rm
ac

o
In
hi
bi
to
r	o
f	H
D
AC
	(e
nz
ym
es
	th
at
	p
re
ve
nt
	g
en
e	

ac
tiv

ity
), 

w
hi

ch
 a

re
 c

on
st

itu
tiv

el
y 

ac
tiv

e 
in

 D
M

D
 

m
us

cl
es

Re
du

ct
io

n 
of

 n
ec

ro
si

s 
an

d 
fib

ro
tic

 a
nd

 
ad

ip
os

e 
tis

su
e 

de
po

si
tio

n
N
o	
re
st
or
at
io
n	
of
	d
ys
tr
op
hi
n	

ex
pr

es
si

on
Ph

as
e 

III
 o

ng
oi

ng
[5
4,
55
,7
3 ]

Id
eb

en
on

e 
(C

at
en

a/
Ra

xo
ne

)
Sa

nt
he

ra
 

Ph
ar

m
ac

eu
tic

al
s

C
he
m
ic
al
	s
ho
rt
‐c
ha
in
	b
en
zo
qu
in
on
e;
	p
ot
en
t	

an
tio

xi
da

nt
 a

nd
 li

pi
d 

pe
ro

xi
da

tio
n 

in
hi

bi
to

r a
t 

m
ito

ch
on

dr
ia

l l
ev

el

Ex
pe

ct
ed

 c
ar

di
op

ro
te

ct
io

n 
an

d 
im

pr
ov

em
en

t o
f m

us
cl

e 
pe

rf
or

m
an

ce
 

an
d 

re
sp

ira
to

ry
 fu

nc
tio

ns

N
o	
re
st
or
at
io
n	
of
	d
ys
tr
op
hi
n	

ex
pr

es
si

on
Ph

as
e 

III
 o

ng
oi

ng
[59

‐6
1 ]

Ta
da

la
fil

 a
nd

 S
ild

en
af

il
El

i L
ill

y 
an

d 
Co

m
pa

ny
PD

E5
 in

hi
bi

to
r i

nd
uc

es
 v

as
od

ila
ta

tio
n 

th
ro

ug
h 

cG
M

P 
si

gn
al

lin
g 

ac
tiv

at
io

n
Ex

pe
ct

ed
 im

pr
ov

em
en

t o
f m

us
cl

e 
bl

oo
d 

flo
w

 d
ur

in
g 

ph
ys

ic
al

 e
xe

rc
is

e
N
o	
re
st
or
at
io
n	
of
	d
ys
tr
op
hi
n	

ex
pr

es
si

on
Li
tt
le
	e
vi
de
nc
e	
of
	b
en
ef
its

Ph
as

e 
III

 c
om

pl
et

ed
[5
6,
57
,7
6 ]

Va
m

or
ol

on
e 

(V
BP

15
)

Re
ve

ra
G

en
 B

io
Ph

ar
m

a
G

lu
co

co
rt

ic
oi

d‐
lik

e 
or

al
 d

ru
g 

w
ith

 a
nt

i‐i
nf

la
m

m
a‐

to
ry

 a
nd

 m
em

br
an

e‐
st

ab
ili

zi
ng

 p
ro

pe
rt

ie
s

Re
du

ct
io

n 
of

 m
us

cl
e 

in
fla

m
m

at
io

n
N
o	
gl
uc
oc
or
tic
oi
d‐
as
so
ci
at
ed
	s
id
e	

ef
fe

ct
s

N
o	
re
st
or
at
io
n	
of
	d
ys
tr
op
hi
n	

ex
pr

es
si

on
Ph

as
e 

II 
on

go
in

g
[7
2 ]

cG
M
P,
	c
yc
lic
	g
ua
no
si
ne
	m
on
op
ho
sp
ha
te
;	H
D
AC
,	h
is
to
ne
	d
ea
ce
ty
la
se
;	n
m
D
M
D
,	n
on
se
ns
e	
m
ut
at
io
n	
D
uc
he
nn
e	
m
us
cu
la
r	d
ys
tr
op
hy
;	P
D
E5
,	p
ho
sp
ho
di
es
te
ra
se
‐5
.



     |  5 of 12CHIAPPALUPI et AL.

represented by possible off‐targeting and activation of the host 
immune response.89

Such an extremely varying scenario in the therapeutic ap‐
proaches to DMD is the result of the difficulty and, at the same 
time, the intense effort to find a cure for this pathology. Thus, the 
current gold standard therapy for DMD patients remains the use of 
anti‐inflammatory steroids (eg, Prednisone and Deflazacort), which 
improve	 the	 quality	 of	 life	 reducing	 loss	 of	 muscle	 strength	 and	
functionality and loss of ambulation, and delaying respiratory fail‐
ure.45,90 However, corticosteroids have shown limited activity and 
cause several adverse effects, including gain of weight, reduction of 
bone mineral density, cushingoid appearance, behavioural changes, 
adrenal suppression, susceptibility to infection, hypertension and 
metabolic disorders,91,92 so that alternative anti‐inflammatory com‐
pounds	such	as	the	NF‐κB inhibitor, VBP15, are also under investi‐
gation93 (Table 3).

5  | DO PORCINE SERTOLI CELL S 
REPRESENT AN OPPORTUNIT Y FOR 
DUCHENNE MUSCUL AR DYSTROPHY?

Having the peculiar secretory properties of SeC in mind, we treated 
acute and chronic dystrophic, mdx mice with a single ip injection of 
porcine	MC‐SeC	 (equivalent	 amount,	 1.0	×	106 SeC/gram of body 
weight) in the absence of any pharmacologic immunosuppression, 

and found a rapid amelioration of muscle morphology and func‐
tionality.94,95	After	3	weeks	from	injection,	muscles	of	treated	mice	
showed	 ~80%	 reduction	 of	 the	 inflammatory	 infiltrate	 (as	 assed	
by	 evaluation	 of	 activated	macrophages	marker,	MAC3;	 Figure	 1),	
~60%‐70%	reduction	of	fibrous	tissue	deposition,	and	over	90%	re‐
duction of necrotic myofibres in Tibialis anterior	muscle.	At	the	same	
time,	MC‐SeC–treated	mdx mice showed increased muscle perfor‐
mance and resistance to exercise‐induced muscle damage. Indeed, 
treated	mice	ran	similar	distances	in	a	similar	time	to	untreated	WT	
mice,	recovering	~80%	of	dystrophic‐dependent	deficit,	and	showed	
a	~70%	reduction	of	damaged	(Evans	blue	dye–positive)	myofibres	
after treadmill exercise tests. The anti‐inflammatory effect of MC‐
SeC	was	observed	already	1	week	after	injection,	when	~70%	reduc‐
tion of macrophages infiltrating muscle tissue could been observed. 
At	 the	 same	 time,	 these	 macrophages	 showed	 a	 tissue‐repairing	
(M2) phenotype, as suggested by their reduced expression of inflam‐
matory	cytokines	(ie,	IL‐6,	IL‐12	and	IFN‐γ) and up‐regulation of the 
anti‐inflammatory	IL‐10	and	the	M2	markers,	arginase	1,	CD163	and	
CD206.94 Interestingly, a single ip injection of MC‐SeC conferred 
benefits (ie, significantly reduced necrosis, inflammatory infiltrate, 
and fibrotic and adipose tissues deposition) in long‐term (5 months) 
analysis to the diaphragm, the muscle that accumulates damage over 
time in the mdx	animal	model.	No	signs	of	immune	response	against	
injected MC‐SeC could be detected at this time.94

Another	important	aspect	of	SeC	treatment	is	that	SeC	release	
heregulin β1, which is a major inducer of the expression of utrophin 

F I G U R E  1   Intraperitoneal injection 
with microencapsulated Sertoli cells 
(MC‐SeC) in dystrophic mice results in 
reduced inflammation and re‐expression 
of utrophin in muscles. Tibialis anterior 
muscles of acute phase (4‐wk‐old) mdx 
mice analysed for the presence of the 
activated	macrophage	marker,	MAC3,	
by	immunohistochemistry	(anti‐MAC3	
antibody, clone M3/84; BD Biosciences) 
(upper panel) and the expression of 
utrophin by immunofluorescence (anti‐
utrophin	antibody,	clone	8A4;	Santa	
Cruz Biotechnology) (lower panel) 3 wk 
after ip injection with MC‐SeC or the 
same amounts of empty microcapsules 
(E‐MC).	Note	the	significant	reduction	of	
inflammatory	infiltrate	(ie,	MAC3‐positive	
areas) and the positivity for utrophin at 
the	sarcolemma	in	muscles	of	MC‐SeC–
treated	mice.	Original	magnification,	20×	
(upper	images)	and	40×	(lower	images)
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in muscle cells.96 Heregulin β1 acts by binding to erbB/HER recep‐
tor,	 resulting	 in	 intracellular	 ERK	 activation	 and	 subsequent	 bind‐
ing of the ets‐related	GABPα/β transcription factor complex to the 
utrophin‐A	promoter.97 Three weeks after ip injection of MC‐SeC, a 
~2.8‐fold increase in utrophin expression was observed in muscles 
of mdx mice,94 which is similar to that reported after 3 months of 
repeated ip injections each other day of the active domain of he‐
regulin β1	(Aa	176‐246)	 in	the	same	experimental	model.98 In both 
cases, utrophin was found localized at the sarcolemma, a condition 
necessary	for	the	protein	to	mimic	the	role	of	dystrophin	(Figure	1).

Microcapsules	 containing	 SeC–based	 protocol	 resulted	 effi‐
cacious also in pre‐symptomatic (2‐week‐old) and in chronic (12‐
month‐old) mdx mice.95 In the diaphragms of these latter mice, a 
significant	reduction	of	adipose	and	fibrous	tissue	deposition	(~43%	
and	~58%	reduction,	respectively),	macrophage	infiltrate	(~70%	re‐
duction	of	MAC3‐positive	areas)	and	damaged	myofibres	(more	than	
80%	reduction	of	EBD‐positive	myofibres)	were	observed	3	weeks	
after ip injection of MC‐SeC.95

The above reported results about the use of MC‐SeC have 
opened an additional avenue in the scenario of DMD treatment. 
Intraperitoneally injected MC‐SeC act as a micro‐biofactory that 
from the peritoneal cavity of dystrophic animals release factors into 
the bloodstream thus being able to reach every muscle where they 
exert a double effect: (a) an anti‐inflammatory effect (as expected) 
due to immunomodulatory factors; and (b) the induction of utrophin 
expression due to the SeC‐secreted heregulin β1.94 These two effects 
are independent from each other but cooperate to ameliorate mus‐
cle morphology activating a positive loop that leads to reduction of 

necrosis, fibrosis and adipose tissue deposition, finally culminating in 
rescue of muscle architecture and performance. Indeed, the use of 
an anti‐heregulin β1 antibody nullified the SeC‐dependent induction 
of utrophin in mdx muscles. However, anti‐heregulin β1 antibody had 
no significant effects on the reduction of the inflammatory infiltrate, 
suggesting that this latter effect is under the control of anti‐inflam‐
matory factors. On the converse, only a partial loss of anti‐necrotic 
effects could be observed on myofibres of mdx mice treated with MC‐
SeC in the presence of anti‐heregulin β1 antibody, due to a balance 
between increased damage extent of (dystrophin‐negative/utrophin‐
negative) myofibres and the effects of anti‐inflammatory factors.94

Several considerations give particular relevance to the porcine 
MC‐SeC–based	therapeutic	approach	(Table	4).	On	the	side	of	the	bio‐
material used, (a) highly biocompatible, clinical grade alginate (endo‐
toxin	content	less	than	0.5	EU/mL,	as	required	for	human	transplants)	
was used for the production of microcapsules15‐22,94,95,101‐103,105; (b) 
alginate‐based microcapsules have shown long‐term survival and ac‐
tivity of entrapped cells22,94,99,100	with	porcine	IGF‐1	being	detected	
in the serum of mice treated with porcine‐derived SeC up to 1 year 
after injection22; and (c) alginate‐based microcapsules containing 
human pancreatic islets have been employed in a phase I clinical trial 
in which they were transplanted ip in non‐immunosuppressed type 
1 diabetic patients with no undesired effects reported.101‐103 On the 
side	of	SeC,	(a)	SeC	were	purified	from	testis	of	SPF	(specific	pathogen	
free) piglets, that is, animals suitable for engraftment in humans; 104 (b) 
MC‐SeC were injected ip in spontaneous type 2 diabetes non‐human 
primates	(rhesus	macaques)	resulting	in	reduction	of	plasma	glucose	
and B lymphocytes, and absence of adverse effects105; (c) neonatal 

TA B L E  4  Advantages	and	disadvantages	of	the	MC‐SeC	approach	to	DMD

Approach Advantages Disadvantages References

Intraperitoneal injection of 
MC‐SeC

Independent from DMD gene 
mutation

Need	for	xenogeneic	source	of	SeC 94,95

All	muscles	interested	thanks	to	the	
systemic release of SeC‐derived 
factors

Caution for PERV presence in 
pig‐derived SeC, especially in 
immunosuppressed patients

[108‐113]

Combinatorial approach (ie, 
anti‐inflammatory effect, induction 
of utrophin expression and release 
of trophic factors)

‐ 94,95

No	need	for	immunosuppression ‐ 15,18‐22,94,95,106

Single	ip	injection	not	requiring	
incision of the abdominal wall

‐ 15,18‐22,94,95,106

No	undesired	effects	reported	in	
several pre‐clinical settings 
(including non‐human primates)

‐ [15,18‐22,94,95,102]

SeC (non‐encapsulated) already used 
in clinical trials; no undesired effects 
reported

‐ [106,107]

Alginate‐based	microcapsules	
(containing cells other than SeC) 
already used in clinical trials; no 
undesired effects reported

[99‐101]

MC‐SeC, microencapsulated Sertoli cells; PERVs, porcine endogenous retroviruses; SeC, Sertoli cells.
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porcine SeC were inserted together with pancreatic islets subcuta‐
neously in a porous chamber in the abdominal wall of young diabetic 
patients, in the absence of immunosuppressive treatment, and half 
patients significantly diminished their insulin doses with no complica‐
tions	reported	in	a	7‐year	follow‐up.106,107

The use of pig cells, tissues and organs meets the general need 
to	 satisfy	 the	 increasing	 request	 for	 transplantation	 by	 humans	
who do not find sufficient availability among members of their 
species. Pigs represent suitable animals for human xenotransplan‐
tation because they share a similar organ physiology and size, for 
the relatively low costs of breeding and for the possibility to be 
genetically modified. One concern in xenotransplantation using 
pigs as a donor species is represented by porcine endogenous ret‐
roviruses (PERVs). This is because PERVs are present in almost all 
strains of pigs and cannot be removed even if pigs are being raised 
in sterile conditions. PERVs are inactive and harmless in pigs; how‐
ever, transplantation into humans could activate the viruses and 
lead to human diseases with the risk of spreading to the entire 
community.108 However, although PERV can infect human cells in 
vitro, (a) transmission of PERV was not observed in animals (includ‐
ing non‐human primates) inoculated with PERV preparations or 
in pre‐clinical xenotransplantations (reviewed in 109); (b) patients 
xenotransplanted with porcine islets and SeC showed no PERV 
infection	in	their	white	blood	cell	DNA	in	long‐term	clinical	follow‐
up110; and (c) studies of around 200 people worldwide who had 
been transplanted with pig tissue or had their blood pass through 
pig cells have shown no evidence of infection of porcine origin, 
and neither antibodies against PERV nor provirus integration in 
patients’ blood cells was observed.111 The reason why PERVs are 
not transmitted is that they probably are not released from the 

transplants or they are neutralized by the host cellular defence 
and immune system.109

However, porcine pancreatic islets were demonstrated to pro‐
duce	PERV	and	infect	NOD/SCID	(non‐obese	diabetic,	severe	com‐
bined immunodeficiency) mice after transplantation, suggesting that 
PERV infection is a risk to take into account when pig xenotransplan‐
tation involves immunocompromised subjects.112 In this regard, it is 
noteworthy that PERV‐inactivated pigs have been recently gener‐
ated via somatic cell nuclear transfer using a cell line in which PERVs 
were inactivated by CRISPR/Cas9 technology.113

Among	the	factors	secreted	by	SeC	are	mitogenic	factors	that	could	
potentially sustain cell growth and induce the formation of tumour 
masses in the recipient. However, this event has not been reported 
in any study involving the use of SeC, including the above‐mentioned 
clinical study.110 Probably, this is because SeC secrete a cocktail of 
molecules whose global effect results from the combination of all fac‐
tors rather than being the sum of each single factor activity.

Another	issue	about	the	use	of	SeC	is	related	to	their	immunosup‐
pressive effect, representing a potential problem in case of lifelong 
clinical applications. However, results from several pre‐clinical and 
clinical studies suggest that SeC have an immunomodulatory rather 
than immunosuppressive effect.2,5 Interestingly, SeC responded to 
viruses and bacteria eliciting an inflammatory response via the re‐
cruitment of Toll‐like receptors expressed on SeC surface and sub‐
sequent	release	of	proinflammatory	cytokines	and	chemokines.114

Although	data	obtained	 in	macaques	105 and data from the ex‐
perimentation in106 support the safety of the use of SeC in humans, 
absence of SeC‐induced tumour formation and the immunomodula‐
tory vs immunosuppressive role of SeC should be addressed defini‐
tively in animal models.

F I G U R E  2   Schematics of the microencapsulated Sertoli cells (MC‐SeC) therapeutic approach. Once injected into the peritoneal cavity 
of dystrophic mice, MC‐SeC release a cocktail of factors including immunomodulatory factors, heregulin β1	and	trophic	factors	(A).	From	
the peritoneum, SeC‐released factors enter the systemic circulation (B) through which they can reach all skeletal muscle compartments 
(including	cardiac	muscle).	At	muscle	tissue	level,	SeC‐released	factors	reduce	the	inflammatory	response,	induce	utrophin	expression	and	
favour muscle trophism (C), thus recovering muscle morphology and functionality. It is noteworthy that thanks to the immunomodulatory 
properties	of	SeC,	the	procedure	does	not	require	pharmacological	immunosuppression
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6  | CONCLUSIONS

Duchenne muscular dystrophy is a lethal muscular dystrophy af‐
fecting 1 in 3600‐5000 male live births worldwide.115 The pro‐
gressive	 muscle	 degeneration	 subsequent	 to	 lack	 of	 dystrophin	
creates a condition of chronic inflammation that culminates in the 
progressive substitution of myofibres with fibrous and adipose tis‐
sues, impaired locomotion and premature death. Several intrinsic 
properties of the DMD pathology have nullified the huge effort to 
find a cure so far. In addition, many suggested therapeutic treat‐
ments have immunosuppression as a necessary co‐treatment, 
which means adding problem to problem, especially in a lifelong 
perspective. Therefore, investigation is still particularly active 
on DMD, and combinatorial therapeutic approaches might be 
envisaged.

Intraperitoneal injection of MC‐SeC translates into the release 
into the bloodstream of a cocktail of factors of which at least two 
components (ie, anti‐inflammatory factors and heregulin β1) are 
independently active on dystrophic muscles,94 representing in this 
sense	a	combinatorial	approach	per	se	(Figure	2).	Interestingly,	both	
mechanisms involved in MC‐SeC treatment are known to be very 
efficacious in DMD patients: the extinction of the inflammatory re‐
sponse and the induction of expression of the dystrophin paralogue, 
utrophin, at the sarcolemma. Based on the biology of SeC, it cannot 
be	excluded	that	other	factors	secreted	by	this	cell	type	(eg,	IGF‐1)	
may additionally concur to the amelioration of dystrophic muscle 
morphology	(Figure	2),	which	deserves	further	investigation.

Encapsulation represents an additional point of force of the 
proposed approach as encapsulation encloses the cells in a de‐
fined space, avoiding cell migration throughout the host body, and 
potentially allowing the recovery of injected cells if the injection is 
performed in a confined region of the body, such as the peritoneal 
cavity.

It is noteworthy that treatment with MC‐SeC has the advantage 
to be a universal approach to treat DMD since it is potentially appli‐
cable to the entire cohort of DMD patients regardless of the kind of 
mutation. Moreover, it is potentially applicable in general to myop‐
athies characterized by chronic inflammation or immune dysregula‐
tion, such as autoimmune myositis.

Elucidation of several aspects in the near future, including the 
biological status of SeC inside the microcapsules over time, the 
dose‐response of MC‐SeC, potential direct effects of SeC on mus‐
cle precursor cells, the analysis of the mechanism(s) underpinning 
the anti‐inflammatory effect of SeC, and the demonstration of the 
safety of MC‐SeC in long‐term treatments will accelerate the appli‐
cation of this novel therapeutic approach to DMD patients.
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