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Abstract: Hierarchies can be modeled by a set of exponential functions, from which we can derive a
set of power laws indicative of scaling. The solution to a scaling relation equation is always a power
law. The scaling laws are followed by many natural and social phenomena such as cities, earthquakes,
and rivers. This paper reveals the power law behaviors in systems of natural cities by reconstructing
the urban hierarchy with cascade structure. Cities of the U.S.A., Britain, France, and Germany are
taken as examples to perform empirical analyses. The hierarchical scaling relations can be well
fitted to the data points within the scaling ranges of the number, size and area of the natural cities.
The size-number and area-number scaling exponents are close to 1, and the size-area allometric
scaling exponent is slightly less than 1. The results show that natural cities follow hierarchical scaling
laws very well. The principle of entropy maximization of urban evolution is then employed to explain
the hierarchical scaling laws, and differences entropy maximizing processes are used to interpret the
scaling exponents. This study is helpful for scientists to understand the power law behavior in the
development of cities and systems of cities.
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1. Introduction

Hierarchy is one of the basic characters of complex systems such as cities and networks of
cities. A hierarchy can be mathematically described with a power law or a pair of exponential laws.
In recent years, many scientists have been interested in the hierarchical structures of natural and social
systems [1]. A fractal object is a self-similar hierarchy [2,3]. According to the ideas from fractal cities,
a city or a system of cities can be treated as a hierarchy with a cascade structure [4,5]. A finding is that a
self-similar hierarchy can be described with two or three exponential functions, from which it follows a
set of power functions indicative of scaling [6,7]. This suggests that although the scaling in cities can be
described with power laws, it can be understood through exponential laws. Scaling is a transformation
that dilates (enlarges, increases) or contract (shrinks, diminishes) an object by a given scale factor. If the
transformed result based on any scale factor bear the same structure with the original object, we will
say that the process obeys scaling law [3,8]. The idea from scaling is very important to model scale-free
phenomena. More and more scientists become aware of the importance of scaling analysis in urban
studies [2,4,6,9–14]. Meanwhile, a number of puzzling issues arise from the research on scaling of
cities [15,16]. Many questions are still pending and require much more studies before finding satisfying
answers to them. Anyway, scaling laws often reveal the general principles underlying the structure
of a physical problem [17]. Scaling analysis is an effective approach to urban spatio-temporal and
hierarchical modeling. Scaling relations take on power laws, and a power law can be decomposed into
two exponential laws based on hierarchical structure. Exponential laws can be derived by using the
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method of entropy maximizing [7], and this implies that the principle of entropy maximization can be
utilized to interpret the power laws and thus explain the scaling behaviors of cities.

The hierarchical scaling laws are associated with many mathematical laws of cities. The models
are found and reconstructed by Chen [6], who once explored the relationships between Zipf’s
law [18], Christaller’s central place hierarchy [19], Beckmann’s city hierarchy model [20], Davis’
2n rule [21], and Berry-Woldenberg’s analogy between rivers and central places [22]. Hierarchical
scaling analysis can be employed to de-noise city rank-size distributions and reveal the regularity
of urban evolution. This paper is devoted to revealing and describing the deep structure of systems
of natural cities using the hierarchical scaling relations. We agree with Pumain [1] who once argued
that the analysis of the hierarchical organization of complex systems such as cities can provide new
insight for understanding systems’ evolution and emergence of order. The main contents of this
paper are arranged as follows. In Section 2, to make it easier for readers to understand this work,
the mathematical expressions of exponential laws and power laws for hierarchical structure are
illuminated. In particular, the principle of entropy maximization is employed to explain the power
law behaviors of natural cities. In Section 3, three hierarchical scaling laws are applied to the data sets
of natural cities from the U.S.A., Britain, France, and Germany, and the results are illustrated with
the ideas from hierarchical scaling. In Section 4, the main points are summarized, and the related
questions are discussed. Finally, we reach the chief conclusions of this study.

2. Theoretical Models

2.1. Hierarchical Exponential Laws

The urban hierarchy with cascade structure can be described from two complementary angles of
view. The longitudinal distributions can be described with exponential functions, and the latitudinal
relationships can be described with power functions [7,23]. Considering a geographical region with n
cities, we can organize the cities into a hierarchy comprising M classes according to the generalized 2n

rule [7,24]. Based on the top-down order, the cascade structure of the urban hierarchy can be modeled
by a set of exponential functions such as:

Nm = N1rm−1
n , (1)

Sm = S1r1−m
s , (2)

Am = A1r1−m
a , (3)

where m refers to the order number of city class (m = 1, 2, ..., M), Nm denotes the number of cities of
order m, correspondingly, Sm and Am represent the average population size and average urban area at
the mth class. The parameters are as below: N1 denotes the number of the top-class cities, S1 and A1 are
the mean size and mean area of the first-class cities, rn = Nm+1/Nm refers to the interclass number ratio
of cities, rs = Sm/Sm+1 to the city size ratio, and ra = Am/Am+1 to the urban area ratio. Generally speaking,
N1 = 1, but for the three-parameter Zipf’s distribution, N1 > 1 [25]. Equations (1)–(3) compose the
mathematical expressions of the generalized 2n principle [7], which is based on Beckmann-Davis
models [20,21]. Davis find the 2n rule that says that if the cities in a geographical region are organized
into a hierarchy by means of a fixed size ratio rs = 2, the number ratio of the cities at different levels
will be 2, that is, rn = 2 [21]. This principle can be generalized to the following statement: if the cities
in a region are organized into a hierarchy with cascade structure by means of a fixed number ratio
rn = 2, the size and area ratio of the cities at different levels will range from 1 to 3, respectively, that is,
1 < rs < 3, 1 < ra < 3. The is called generalized 2n rule of hierarchies of cities [7,24].

Among this set of exponential functions, the first equation represents the number law, the second
equation represents the size law, and the third equation represents the area law of urban hierarchies [6].
The three exponential laws can be derived by using the method of entropy maximizing [7]. For a
self-similar hierarchy, if rn = 2 as given, then it will follow that rs→2, and if rs = 2 as given, then it will
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follow that rn→2, where the arrow denotes “approach”. If rn = rs = 2, the generalized 2n principle will
return to Davis’ standard 2n principle. In this instance, we will have Tm = NmSm = N1S1 = S1, where Tm

denotes the total population at the mth level. This suggests a property of hierarchical conservation
of size distributions, which is consistent with the standard 2n rule of cities. If a hierarchy of cities
complies with Davis’ 2n rule, the total population size at each level of the hierarchy is theoretically
a constant.

A set of Zipf’s models is hidden behind the three exponential laws. This suggests that Zipf’s
distributions can act as an indication of the self-similar hierarchy. From Equations (1)–(3) we can derive
Zipf’s laws of population size distribution and area size distribution. The city size can be measured by
both population quantity and urbanized area. The former is termed population size, and the latter
is called area size of a city. Where population size distribution is concerned, three types of Zipf’s
models can be derived [26]. If rn = rs, we can derive a one-parameter Zipf’s model, S(k) = S1/k, where k
refers to rank, and S1 is a parameter indicative of the largest city [27,28]. The one-parameter Zipf’s
model is termed pure Zipf’s law in literature [29]. If rn 6= rs, we can derive a two-parameter Zipf’s
model, S(k) = S1/kq, where q is the second parameter indicating scaling exponent. If rn 6= rs and the
largest city cannot influence the whole geographical region, we can derive a three-parameter Zipf’s
model, S(k) = C/(k + h)q, where h is the third parameter indicating translational factor, and C denotes
proportionality coefficient [26]. Where there are rank-size distributions of cities which follows Zipf’s
law, there is a hierarchy of cities with cascade structure, and vice versa [6,7].

2.2. Hierarchical Power Laws

The relationships between exponential laws and power laws suggest the relationships between
simplicity and complexity. Especially, these relationships suggest the links between characteristic
scales and scaling. Exponential laws indicate the conventional growth, distributions, and processes
with characteristic scales, while power laws indicate the allometric growth, fractals, and patterns
without characteristic scales. The former suggests simplicity, and the latter suggests complexity.
The exponential laws and power laws can be integrated into the same framework with the hierarchical
scaling concept. The hierarchical scaling in cities performs power law behaviors and can be expressed
with the three power functions [7,30]. From the above exponential laws based on longitudinal
distributions, it follows a set of power-law equations for latitudinal relationships as follows [7]:

Nm = µS−D
m , (4)

Nm = ηA−d
m , (5)

Am = aSb
m, (6)

where the parameters can be expressed as µ = N1P1
D, D = lnrn/lnrs, η = N1A1

d, d = lnrn/lnra, a = A1P1
−b,

and b = lnra/lnrs. Among these parameters, D denotes the fractal dimension of city population size
distributions, d denotes the fractal dimension of urban area size distributions, and b is the allometric
scaling exponent of urban hierarchy. In fact, b is the ratio of the fractal dimension D to the dimension d,
that is, b = D/d = (lnrn/lnrs)/(lnrn/lnra) = lnra/lnrs. Apparently, from Equations (1) and (2), we can
derive Equation (4); from Equations (1) and (3), we can derive Equation (5); from Equations (2) and (3),
or from Equations (4) and (5), we can derive Equation (6). This implies that, for the cascade structure
of a hierarchy of cities, exponential laws and power laws represent two different sides of the same
coin. The exponential laws can be directly derived from the principle of entropy maximization, and
thus entropy maximization can be employed to indirectly explain the power laws of cities.

The above-shown power laws represent three typical aspects of scaling behaviour of cities.
Equation (4) suggests the size-number scaling in a hierarchy of cities. It is equivalent to the Pareto law
of population size distribution, and D is the fractal dimension of urban hierarchies measured with
city size such as population [26]. Equation (5) suggests the area-number scaling of cities. It is equivalent
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to the Pareto law of city-area distribution, and d can be regarded as the fractal dimension of urban
hierarchies measured with urbanized area [30]. Equation (6) suggests the hierarchical allometric scaling
relation between urban area and size, and b is the allometric scaling exponent of urban hierarchy [31].
The inverse functions of Equations (4) and (5) are equivalent to the Zipf’s laws of population size
distribution and area size distribution. This once again implies that Zipf’s distribution is just a signature
of hierarchical scaling. In scientific research, one of difficult problems of mathematical modeling rests
with spatial dimension [25]. Hierarchy and network represent two different sides of the same coin [4].
Network structure is associated with spatial recursive subdivision [32]. By hierarchical scaling analysis,
we are able to find new way of modeling spatial distribution and network organization (Figure 1).
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distribution of cities can be organized into a self-similar hierarchy, which corresponds to a cascade
network. The network structure is based on strict recursive subdivision of geographical space [4,32].
(a) Spatial subdivision; (b) Hierarchy; (c) Network.

2.3. Entropy Maximization and Power Laws

The power law behaviors of hierarchical scaling in city development can be explained by the
principle of entropy maximization. In urban hierarchies, a power law is based on two exponential laws,
and the relationships between the power laws and exponential laws can be revealed by the self-similar
hierarchy. In fact, exponential distributions can be directly derived by using entropy-maximizing
methods [7,33–37], and a power law can be directly derived from a pair of exponential laws [6,7,35,37].
Thus, the power laws can be indirectly derived from the principle of entropy maximization of urban
evolution. Exponential functions bear the property of mirror symmetry, that is, changing the direction
of the independent variable will not change the functional structure, but the exponential function will
change to negative exponential function and vice versa [6]. Based on this property, Equations (1)–(3)
can be derived by means of the entropy maximization principle [7]. As indicated above, city size can be
measured by both urban population and urbanized area. The three exponential models represent three
different but related processes of entropy maximization of city development (Table 1). Equation (1) is
based on the entropy maximization process of the frequency distribution of city numbers, Equation (2)
is based on the entropy maximization of the size distribution of city population, and Equation (3) is
based on the entropy maximization of the size distribution of urbanized area.

Table 1. Two types of entropy maximization processes in the evolution of city size distributions.

Entropy Process Law Formula Equation Complexity

Entropy maximization of
frequency distribution City number law Nm = N1rm−1

n (1) External complexity

Entropy maximization of
size distribution

Population size law Sm = S1r1−m
s (2) Internal complexity

Area size law Am = A1r1−m
a (3) Internal complexity
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Now, the principle of entropy maximization can be employed to explain the emergence of power
law behaviors of cities. In the hierarchy with cascade structure, power laws and exponential laws are
compatible with each other. A pairs of exponential laws indicative of longitudinal distributions support
a power law reflecting the latitudinal relation between two measurements. In this work, the power
laws, Equations (4)–(6), are derivable from the exponential laws, Equations (1)–(3). This suggests
that a power law is based on two dual processes of entropy maximization (Figure 2). Concretely
speaking, the city size-number scaling, Equation (4), is based on the entropy maximization process of
city population size distribution and that of city frequency distribution; the city area-number scaling,
Equation (5), is based on the entropy maximization process of urban area size distribution and that of
city frequency distribution; and the allometric scaling relation between city population and urbanized
area, Equation (6), is based on the entropy maximization process of city population size distribution
and that of urban area size distribution.

Entropy 2018, 20, x FOR PEER REVIEW  5 of 18 

 

Now, the principle of entropy maximization can be employed to explain the emergence of power 
law behaviors of cities. In the hierarchy with cascade structure, power laws and exponential laws are 
compatible with each other. A pairs of exponential laws indicative of longitudinal distributions 
support a power law reflecting the latitudinal relation between two measurements. In this work, the 
power laws, Equations (4)–(6), are derivable from the exponential laws, Equations (1)–(3). This 
suggests that a power law is based on two dual processes of entropy maximization (Figure 2). 
Concretely speaking, the city size-number scaling, Equation (4), is based on the entropy maximization 
process of city population size distribution and that of city frequency distribution; the city area-
number scaling, Equation (5), is based on the entropy maximization process of urban area size 
distribution and that of city frequency distribution; and the allometric scaling relation between city 
population and urbanized area, Equation (6), is based on the entropy maximization process of city 
population size distribution and that of urban area size distribution. 
 

 
Figure 2. The relationships between the principle of entropy maximization and the hierarchical 
scaling laws of cities. Note: Using the method of entropy maximizing, we can derive three exponential 
laws on the longitudinal distributions of urban hierarchies, but we cannot derive the three power 
laws for the latitudinal relationships of cities. By the hierarchical structure, we can derive the power 
laws indirectly with the entropy maximizing method through the exponential laws of cities. 

Moreover, the principle of entropy maximization can also be utilized to interpret the scaling 
exponent values of power laws of cities. If the two dual processes of entropy maximization are of 
synchronization and in a state of balance, the scaling exponent will be close to 1, or else, the exponent 
value will departure from 1 (greater than or less than 1). Generally speaking: (1) if the entropy 
maximization process of the frequency distribution of cities numbers and that of the city population 
size distribution keep in step with each other and fall in the state of balance, the scaling exponent D 
in Equation (4) approaches to 1, i.e., D→1, otherwise, D > 1 or D < 1; (2) if the entropy maximization 
process of the frequency distribution of cities numbers and that of the urban area size distribution 
keep in step with each other and fall in the state of balance, the scaling exponent d in Equation (5) 
approaches to 1, i.e., d→1, otherwise, d > 1 or d < 1; (3) if the entropy maximization process of the city 

Entropy 
maximization 

Entropy of city 
frequency 

distribution 

Entropy of city 
population size 

distribution 

Entropy of urban 
area size 

distribution 

City size law 
Equation (2) 

City number law 
Equation (1) 

City area law 
Equation (3) 

City number-size 
scaling 

Equation (4) 

City number-area 
scaling 

Equation (5) 

City size-area 
allometric scaling 

Equation (6) 

Figure 2. The relationships between the principle of entropy maximization and the hierarchical scaling
laws of cities. Note: Using the method of entropy maximizing, we can derive three exponential laws on
the longitudinal distributions of urban hierarchies, but we cannot derive the three power laws for the
latitudinal relationships of cities. By the hierarchical structure, we can derive the power laws indirectly
with the entropy maximizing method through the exponential laws of cities.

Moreover, the principle of entropy maximization can also be utilized to interpret the scaling
exponent values of power laws of cities. If the two dual processes of entropy maximization are of
synchronization and in a state of balance, the scaling exponent will be close to 1, or else, the exponent
value will departure from 1 (greater than or less than 1). Generally speaking: (1) if the entropy
maximization process of the frequency distribution of cities numbers and that of the city population
size distribution keep in step with each other and fall in the state of balance, the scaling exponent D
in Equation (4) approaches to 1, i.e., D→1, otherwise, D > 1 or D < 1; (2) if the entropy maximization
process of the frequency distribution of cities numbers and that of the urban area size distribution
keep in step with each other and fall in the state of balance, the scaling exponent d in Equation (5)
approaches to 1, i.e., d→1, otherwise, d > 1 or d < 1; (3) if the entropy maximization process of the
city population size distribution and that of the urban area size distribution keep in step with one
another and fall in the state of balance, the scaling exponent b in Equation (6) approaches to 1, i.e.,
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b→1, otherwise, b > 1 or b < 1. Using the power law relations and scaling exponents based on the
entropy maximization, we can make evaluation on city development in a geographical region.

3. Empirical Analysis

3.1. Study Area, Data, and Methods

The validity and rationality of the mathematical models can be verified and evaluated through
empirical observation data. In fact, the success of natural sciences just rests heavily with their great
emphasis on the role of interplay between quantifiable data and models [16]. Four systems of cities in
Europe and the U.S.A. can be employed to testify the hierarchical scaling laws and the related models
about cities. Jiang and his coworkers [38,39] proposed a concept of natural city and developed a new
approach to measuring objective city sizes using street nodes or blocks. In urban geography, a city
can be defined as a large settlement that has some kind of service functions to the surrounding areas.
However, a natural city is the human settlement based on landscape rather than service functions.
Natural cities proposed by Jiang and his co-workers [38,39] can be understood by two basic principles
of geography: one is the man-land relations, and the other, the distance-decay effect. For urban form
and growth, the man-land relations can be expressed by the allometric scaling relations between urban
population and land [6]. Human activities and city population size can be reflected on the urban land
use. On the other hand, human population activity density of an urban region decreases from center to
periphery with distance [4,6]. Thus, according to the distance decay law, we can identify the boundary
lines of urban population activities by using some methods. The urban boundary can be termed
“urban envelope” [4,40]. In terms of the man-land allometric relations, an urban envelope represents
an urban place and reflects the city size. So, each envelope can be treated as a boundary of natural
city. The key rests with how to identify urban boundaries. Based on remote sensing images or digital
maps, at least three approaches have been developed to determine urban envelopes for cities. The first
is the city clustering algorithm (CCA) proposed by Rozenfeld and his co-workers [41,42], the second
is the method of clustering street nodes/blocks advanced by Jiang and Jia [38], and the third is the
fractal-based method presented by Tannier and his co-workers [43]. In this paper, the natural cities are
extracted by means of the method proposed by Jiang and Jia [38]. Using this approach, we can obtain
large datasets of natural cities. Compared with the cities in the usual sense, the rank-size distributions
of natural cities are very robust and bear a longer scaling range. Recent years, Jiang and his co-workers
developed new approach such as head-tail index to identify natural cities [44,45].

Urban block is an ordinary concept, and the street nodes are defined as street intersections
and ends. Using an identification algorithm of urban boundary, Jiang’s research group was able to
delineate boundaries of natural cities and yield city areal extents. Thus urban area can be determined
by a city’s areal extent containing a large number of street blocks or nodes. The number of street
nodes is significantly correlated with the population size of cities. The city data are extracted from
massive volunteered geographic information OpenStreetMap databases through some data-intensive
computing processes, and four datasets on the cities of the U.S.A., Britain (UK), France, and Germany
are available. The process of identifying natural cities is actually an approach of spatial search,
and the number of cities is automatically determined through spatial search technique. By the same
technical criterion of spatial search, the numbers of natural cities extracted from different countries
may be very different. The reason lies in the different geographical conditions, which result in great
differences in the spatial patterns of urban development. In Britain and France, natural cities have
better correspondence with the usual cities, while in Germany, natural cities are significantly different
from traditional ones.

The empirical analysis can start from investigating Zipf’s distribution, which, as pointed out
above, can be regarded as a signature of the hierarchies with cascade structure. If cities in a region
follow Zipf’s law, they can be organized into a self-similar hierarchy [7,30]. It has been shown that
the cities in the four countries follow Zipf’s law [38,39]. Applying the generalized 2n rule to the
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above-mentioned datasets, we can create four self-similar hierarchies of European and U.S. cities.
Suppose that these systems of cities follow the pure Zipf’s law. Then the cities in each country can
be reorganized into a hierarchy with cascade structure. The Zipf’s law cannot be directly derived by
using the method of entropy maximizing, but the hierarchical scaling laws can be derived by means of
this approach. Curry once tried to derive Zipf’s law using the idea from entropy maximization [33],
but his result is actually a three-parameter exponential function rather than a power function [7].
Table 2 is presented for understanding the operational process of hierarchical reconstruction (two
Supplementary Material files are provided to show how to process the data and estimate the scaling
exponents, see Files S1 and S2).

Table 2. A standard hierarchy with cascade structure based on the pure rank-size distribution of cities
(the first four classes and the Mth class).

Level
m

Number
Nm

Total
Tm

Hierarchical Reconstruction of the Rank-Size Distribution (Sm = ln2/2m−1)

1 1 1 P1 = 1
2 2 0.833 P2 = 1/2 P3 = 1/3
3 4 0.760 P4 = 1/4 P5 = 1/5 P6 = 1/6 P7 = 1/7
4 8 0.725 P8 = 1/8 P9 = 1/9 P10 = 1/10 P11 = 1/11 P12 = 1/12 P13 = 1/13 P14 = 1/14 P15 = 1/15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M 2M−1 ln(2) 1/2M−1 . . . . . . . . . . . . . . . . . . 1/(2M−1)

Note: The theoretical foundation was given by Chen [7]. At each level of the hierarchy, the city number is Nm,
the total population is Tm, thus the average population size is Sm = Tm/Nm. The notion of the average size will be
applied to Figures 3–7.

Entropy 2018, 20, x FOR PEER REVIEW    7 of 18 

 

the cities in the four countries follow Zipf’s law [38,39]. Applying the generalized 2n rule to the above‐

mentioned datasets, we can create four self‐similar hierarchies of European and U.S. cities. Suppose 

that  these  systems  of  cities  follow  the  pure  Zipf’s  law.  Then  the  cities  in  each  country  can  be 

reorganized  into a hierarchy with cascade structure. The Zipf’s  law cannot be directly derived by 

using the method of entropy maximizing, but the hierarchical scaling laws can be derived by means 

of this approach. Curry once tried to derive Zipf’s law using the idea from entropy maximization [33], 

but his result is actually a three‐parameter exponential function rather than a power function [7]. Table 2 

is  presented  for  understanding  the  operational  process  of  hierarchical  reconstruction  (two 

Supplementary Material files are provided to show how to process the data and estimate the scaling 

exponents, see Files S1 and S2). 

Table 2. A standard hierarchy with cascade structure based on the pure rank‐size distribution of cities 

(the first four classes and the Mth class). 

Level m  Number Nm  Total Tm  Hierarchical Reconstruction of the Rank‐Size Distribution (Sm = ln2/2m−1) 

1  1  1  P1 = 1 

2  2  0.833  P2 = 1/2  P3 = 1/3 

3  4  0.760  P4 = 1/4  P5 = 1/5  P6 = 1/6  P7 = 1/7 

4  8  0.725  P8 = 1/8  P9 = 1/9  P10 = 1/10  P11 = 1/11  P12 = 1/12  P13 = 1/13  P14 = 1/14  P15 = 1/15 

…  …  …  …  …  …  …  …  …  …  … 

M  2M−1  ln(2)  1/2M−1  …  …  …  …  …  …  1/(2M−1) 

Note: The  theoretical  foundation was  given  by Chen  [7]. At  each  level  of  the hierarchy,  the  city 

number is Nm, the total population is Tm, thus the average population size is Sm = Tm/Nm. The notion of 

the average size will be applied to Figures 3–7. 

 

   
(a)  (b) 

Figure 3. The hierarchical scaling relationships between size  (block/street node quantity) and area 

(physical extent) of U.S. cities. Note: The small circles represent top classes and the lame‐duck classes, 

respectively. Removing the first and last classes yields a scaling range. The slopes based on the scaling 

ranges  indicate  the  fractal  parameters  of  city  size  and  area  distributions.  The  ratio  of  the  size 

dimension D to the area dimension d is close to the allometric scaling exponent b, i.e., b ≈ D/d. Similarly 

hereinafter. (a) City size; (b) Urban area. 

Nm= 1980802.8431Sm-1.0827

R² = 0.9954
1

10

100

1000

10000

100000

1 100 10000 1000000

C
it

y 
nu

m
be

r 
N
m

Average size Sm

Nm= 19465464.8532Am-1.1416

R² = 0.9942
1

10

100

1000

10000

100000

10 1000 100000 10000000

C
it

y 
nu

m
be

r 
N
m

Average area Am

Figure 3. The hierarchical scaling relationships between size (block/street node quantity) and area
(physical extent) of U.S. cities. Note: The small circles represent top classes and the lame-duck classes,
respectively. Removing the first and last classes yields a scaling range. The slopes based on the scaling
ranges indicate the fractal parameters of city size and area distributions. The ratio of the size dimension
D to the area dimension d is close to the allometric scaling exponent b, i.e., b≈D/d. Similarly hereinafter.
(a) City size; (b) Urban area.
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Figure 4. The hierarchical scaling relationships between size (block/street node quantity) and area
(physical extent) of British cities. (a) City size; (b) Urban area.
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Figure 5. The hierarchical scaling relationships between size (block/street node quantity) and area
(physical extent) of French cities. (a) City size; (b) Urban area.
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Figure 6. The hierarchical scaling relationships between size (block/street node quantity) and area
(physical extent) of German cities. (a) City size; (b) Urban area.
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Figure 7. The hierarchical allometric scaling patterns of four systems of natural cities (U.S.A., Britain,
France, and Germany). Note: The small circles represent the top class indicative of the largest city and
the bottom class indicative of the small towns. The trend lines are based on the data points within the
scaling ranges. (a) U.S.A.; (b) Britain; (c) France; (d) Germany.

Several algorithms can be adopted to evaluate the scaling exponents. The most common ones
include the least squares method (LSM) [37], maximum likelihood method (MLM) [46,47], and major
axis method (MAM) [26,48]. Recent years, the MLM is often used to identify power-law distributions,
and it is treated as the most available approach to estimating power exponents. In fact, the power-law
relations of this work are based on exponential functions, and are converted into logarithmic linear
relations. It was demonstrated that if the observations come from an exponential family and
mild conditions are satisfied, the least-squares estimates are identical to the maximum-likelihood
estimates [49]. What is more, if the errors of a linear model belong to the normal distribution, the least
squares estimators are also identical to the maximum likelihood estimators. All in all, the function of
an algorithm is to estimate the parameter values of a mathematical model rather than judge the form
of a model’s expression. Any algorithm has its advantages and disadvantages, sphere of application,
and applicative conditions. The precondition of applying the MLM to observational data is that
the variables satisfy the joint normal distribution. Unfortunately, for human systems such as cities,
the observational data do not always meet the joint normal distribution. In this case, the LSM is
an advisable approach to estimating power exponent values [23,37]. The models’ parameters are
evaluated by using the least squares calculations.

3.2. Results and Findings

The systems of cities in the U.S.A., U.K., France, and Germany can be well described with hierarchical
scaling equations. In light of the generalized 2n principle expressed by Equations (1) and (2), we can
organize the cities in each country into a hierarchy with cascade structure. The city number in the mth
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level is Nm = 1, 2, 4, ..., 2m−1, ... The numbers of levels in the urban hierarchies in the four countries
are 15, 11, 11, and 13, respectively. The last levels are lame-duck classes because that city numbers are
not big enough. Based on the hierarchical structure, we can calculate the average city size Pm and the
corresponding average urban area Am at each level (Table 3). The city numbers in different classes are
designed according to the 2n rule and satisfy Equation (1). It is easy to testify that city size Pm and
urban area Am follow exponential distribution and meet Equations (2) and (3), respectively, but the
lame-duck classes are two outliers due to lack of adequate cities. Strictly speaking, the first class is
usually an outlier because the largest city is often an exception [7]. In fact, a mathematical law always
becomes ineffective when the scale of measurement is too large or too small.

Table 3. The reconstructed hierarchical systems of natural cities with cascade structure for the U.S.A.,
Britain, France, and Germany (2010).

Class America Britain France Germany

m Nm Sm Am Nm Sm Am Nm Sm Am Nm Sm Am

1 1 290,503.000 1,194,500.000 1 462,99.000 91,938.879 1 62,242.000 13,3817.492 1 28,866.000 40,265.780
2 2 213,517.000 783,975.000 2 10,993.500 20,368.164 2 10,877.000 21,812.770 2 25,354.500 36,563.584
3 4 176,132.500 746,975.000 4 5230.250 8434.331 4 6972.250 17,203.731 4 19,394.000 25,766.545
4 8 115,663.500 501,678.125 8 3946.375 6340.649 8 3541.875 9044.170 8 10,758.875 12,169.475
5 16 60,697.125 236,468.750 16 2034.188 2925.685 16 2097.688 5529.493 16 5168.750 6245.420
6 32 31,127.938 134,110.156 32 1059.219 1802.168 32 1179.563 3175.526 32 2528.500 2940.365
7 64 15,077.375 71,724.609 64 530.453 1000.051 64 483.063 1622.074 64 1131.203 1541.896
8 128 7804.250 3,6437.695 128 246.094 457.709 128 220.945 728.457 128 588.867 836.570
9 256 3992.852 19,124.316 256 96.258 204.449 256 105.547 319.176 256 309.762 455.393

10 512 2068.379 10,039.502 512 38.986 77.708 512 44.010 102.194 512 164.701 248.410
11 1024 1072.855 5235.742 228 21.311 19.792 217 24.249 22.879 1024 82.616 128.013
12 2048 560.370 2922.583 2048 36.726 55.571
13 4096 288.579 1593.188 1065 20.488 18.542
14 8192 145.798 903.534
15 14,922 75.202 530.333

Note: The original city datasets of the U.S.A., Britain (U.K.), France, and Germany is available, and the link is as
follow: http://giscience.hig.se/binjiang/scalingdata/. The unit of area (Am) is “square meter (m2)”, and the unit of
size (Sm) of European cities is “block” and that of American cities is “junction”. Population size cannot be directly
measured for natural cities.

The exponential distributions of city size and urban area result in the power-law relations between
city number, size, and area. The exceptional values in the exponential laws often manifest themselves
on the log-log plots for power laws. In fact, if the scale is too large or too small, a power-law relation
always breaks down [6,50]. Thus the extreme classes always form exceptional points, and there exists
a scaling range between the two extremes. For U.S. cities, the last class of cities is out of trend lines and
forms outliers, but the first class of cities is normal (Figure 3). For the British, French, and German
cities, both the first and last classes are exceptional values (Figures 4–6). For comparability, the first
class of U.S. hierarchy of cities is treated as an outlier, which does not influence the results and
conclusions significantly. Removing the first and last data points as outliers yields the ranges for
the scaling relations between city number and city size or urban area. All the data points within the
scaling range follow power law and take on double logarithmic linear relationships. In particular,
the influence of primate distribution of city sizes on the hierarchical scaling patterns is weak. In urban
geography, city size distributions are divided into two different groups: rank-size distribution and
primate distribution [6]. In short, without considering the first and last classes, the relation between
city size and number can be described with Equation (4), and the relation between urban area and city
number can be described with Equation (5). Fitting Equations (4) and (5) to the datasets in Table 3,
we can evaluate the parameters by the least squares calculation. The scaling exponent values are
close to 1, and the d value (area exponent) is slightly greater than the D values (size exponent). The
ratio of D to d can be termed fractal dimension quotient of urban hierarchies. As indicated above, if
D approaches 1, the total “population” of the mth level approaches a constant S1. Despite the fact
that there are always many smaller cities than larger ones [29,38,45], the product of average size and
city number at each class seems to be invariable. This reminds us of the work of Auerbach, who
asserted the product of the population size of city class i, Pi, and the rank of class i within all classes

http://giscience.hig.se/binjiang/scalingdata/
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when ordered by population size, Ri, approaches a constant K, i.e., PiRi = K [51]. The difference
rests with that Auerbach’s finding is a special case of Zipf’s formula, which represents the restrictive
rank-size rule rather than the hierarchy with cascade structure. In our context, the total size in the
mth level of the self-similar hierarchy, Tm = NmSm, approaches to a constant, i.e., Tm→constant, which
suggests a conversation law. The conversation law implies some type of symmetry [6,52]. In this study,
the conversation is associated with hierarchical scaling symmetry.

Since Zipf’s law is a signature of the self-similar hierarchy of cities, two distributions related to
the rank-size distributions should be discussed here. First, the relationship between Zipf’s distribution
and the lognormal distribution. Where city-size distributions are concerned, if we do not identify the
scaling range, the rank-size relation often satisfy a lognormal distribution rather than a power-law
distribution; however, if the scaling range is taken into consideration, the power-law relation is always
clearer than the lognormal relation. In order to reveal the power-law relations of urban hierarchies,
the data points at the two extremes should be removed as outlier. Second, the rank-size distribution
and the primate distribution. Both the city size distributions of Britain and France are regarded as
primate distribution. However, according to Figures 4 and 5, the primate distribution seems not to
represent an independent type. The large cities in Britain and France take on the character of primate
distribution because London and Paris are two global cities [6]. The primate distribution has impact
on the log-log relations between city number, size, and urban area. However, this influence is not
significant to the hierarchical scaling relations based on large datasets. This seems to suggest that,
compared with the rank-size law, the primate law represents a local rule rather than a global principle
of city size distributions.

The relationships between city number and city size or urban area are a pair of fractal dimension
relations, from which it follows an allometric scaling relation between city size and urban area.
Using the data displayed in Table 3, we can estimate the allometric scaling exponent values.
Corresponding to the exponential models and fractal models above mentioned, the first and last
classes are treated as outliers so that the allometric parameters and fractal parameters are more
comparable with one another. The allometric scaling of the hierarchies of cities in the four European
and American countries is clear and significantly convincing. For U.S. cities, all the data points
follow the allometric scaling law; for the cities of the U.K., France, and Germany, the last levels, i.e.,
the lame-duck classes, are exceptional points (Figure 7). The main results are shown in Table 4, in
which we can see the way and effect of data processing.

Table 4. The allometric scaling exponents and related parameters and statistics of four self-similar
hierarchies of U.S., British, French, and German natural cities (2010).

Type Parameter and Statistic U.S.A. Britain France Germany

Size distribution
Fractal dimension (D) 1.0827 0.9899 0.9907 1.0247

Standard error (σ) 0.0222 0.0438 0.0344 0.0203
Goodness of fit (R2) 0.9954 0.9865 0.9916 0.9965

Area distribution
Fractal dimension (d) 1.1416 1.0342 1.0228 1.0596

Standard error (σ) 0.0263 0.0415 0.0609 0.0147
Goodness of fit (R2) 0.9942 0.9888 0.9758 0.9983

Size-area allometry
Allometric exponent (b) 0.9476 0.9571 0.9578 0.9672

Standard error (σ) 0.0063 0.0179 0.0289 0.0124
Goodness of fit (R2) 0.9995 0.9976 0.9937 0.9985

Fractal dimension quotient D/d 0.9484 0.9571 0.9686 0.9671

Related quantity

City number (n) 31,305 1251 1240 5160
Level number (M) 15 11 11 13

Scaling range 2~14 2~10 2~10 2~12
Degree of freedom 11 7 7 9

Note: For significance level α = 0.01 and degree of freedom df = 7, the threshold value of Pearson correlation
coefficient is R0.01, 7 = 0.7977. The minimum correlation coefficient values of the four cases is R = 0.9968.
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The four study areas, U.S.A., U.K., France, and Germany, are all developed countries, and the
levels of urbanization are near their respective capacity values, i.e., the upper limit values.
The allometric scaling properties of these urban hierarchies are as below: First, the allometric scaling
exponent is close to but less than 1. This suggests that the relative growth rate of city size is slightly
less than that of urban area. When a city is small, its population density is low, the per capita land
use quantity is large, and the city expands fast in the two-dimensional space. With the growth of the
city, the population distribution is becoming more and more concentrated, and the urban buildings
begin to develop to the higher level, thus the per capita land consumption become smaller and smaller,
and intensification of urban land use emerges. As a result, the allometric scaling exponent b≤ 1. Second,
the allometric scaling exponent is equivalent to the fractal dimension quotient. In theory, the allometric
exponent is the ratio of the fractal dimension of urban population size distribution to that of urban
area size distribution. Where empirical analysis is concerned, the allometric exponent is close to the
fractal dimension ratio. Generally speaking, for the developing systems of cities, the fractal dimension
of population size distribution is significantly less than that of area size distribution. The allometric
scaling exponent values come between 2/3 and 1, and always approach to 0.85 [6,31,53]. However,
for the developed cities, population growth and land use expansion reach the final equilibrium,
and the difference between the two types of size distribution dimension is not significant. Therefore,
the allometric scaling exponent is close to 1. Otherwise, a system will lose its balance [54]. The state of
maximizing entropy balance indicates the suitablest scaling exponent value, for example, the Zipf’s
exponent is q = 1 [7,27,28], and the urban area-population allometric scaling exponent is b = 1 or
0.85 [31,53]. If the two maximum entropy processes are seriously misaligned, the scaling exponent
values will be abnormal. For instance, the Zipf’s exponent q must fall between 1/2 and 2, i.e.,
1/2≤ q ≤ 2 [55], and the allometric scaling exponent exponent b must come between 2/3 and 1, i.e.,
2/3 ≤ b ≤ 1 [31], or else, it suggests that the state of entropy balance of city size distribution and city
frequency distribution is seriously damaged. According to the calculation results, for the natural cities
in the developed countries, the three entropy maximization processes are approximately in step with
each other and fall in the state of balance.

4. Discussion

The applications and functions of the self-similar hierarchy lie mainly in the following four aspects.
First, it can be employed to reveal the physical foundations of power law behaviors of cities using the
principle of entropy maximization [7]. Second, it can be used to integrated various related theories
and models of cities such as central place theory, the rank-size rule, the 2n rule, gravity model, and so
on into a logic framework [6,7,26,30]. Third, it can be utilized to make a bridge between temporal
analysis, network analysis, and spatial analysis of cities [37]. Fourth, it can be used to bring to light
the similarities and differences between the mathematical laws of human systems (e.g., cities) and
those of natural systems (e.g., rivers) [6,31]. The empirical analysis shows that the natural cities of the
three European and one North American countries follow hierarchical scaling laws. Taking scaling
ranges into account, we can fit the size-number scaling and area-number scaling relations into the
observational data very well. The two scaling relations are equivalent to the Zipf’s law of distributions
of urban population and area [7]. The size-number scaling analysis gives the fractal dimension of
population-size distribution D, and the area-number scaling analysis yields the fractal dimension
of area-size distribution d. From the above-mentioned scaling relations, we can derive the size-area
allometric scaling relation, and the allometric exponent b is equal to the ratio of D to d. All these
results support the judgment that the evolution of natural cities conforms to the principle of entropy
maximization. Entropy maximization means an optimal and coordinated relationships between the
efficiency of the whole and the equity among individuals in a self-organized system [7,37]. In a sense,
it is the competition and coordination between equality and the efficiency that lead to power law
distribution of urban systems.
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Hierarchical allometry is one of urban allometric scaling relations. Allometric scaling includes
longitudinal allometry (temporal allometry), transversal allometry [56], and spatial allometry [6],
and transversal allometry includes cross-sectional allometry based on rank-size distribution and
hierarchical allometry based on cascade structure. The longitudinal allometry is based on exponential
growth, or logistic growth [57], while the transversal allometry is based on rank-size distribution,
exponential distribution, or hierarchical power-law distribution [6,58]. The hierarchical allometry
is equivalent in mathematics to the cross-sectional allometry, and form a connection between
transversal allometry and longitudinal allometry (Table 5). A hierarchy makes a link between spatial
disaggregation and network structure [4]. In fact, the cities of different sizes at a hierarchy corresponds
to the cities at different phases of development [4]. By researching allometric scaling in hierarchies of
cities, we will be able to find the inherent correlations between spatial patterns, temporal processes,
and dynamic mechanisms of urban evolution. The allometric scaling has been applied to urban studies
based on census data and statistical data [7,23,30,31,57]. However, the observational data of natural
cities provide better evidences for the hierarchical allometric scaling laws. This comparison is based on
statistical analysis instead of city concepts. The natural city is not always consistent with the usual city.
The comparison in the sense of statistics is based on the degrees of freedom and the corresponding
confidence levels (or significance levels). For different sampling results, the number of elements
(e.g., cities) are different, and thus the degrees of freedom are different. However, the different degrees
of freedoms can be converted into comparable confidence levels (e.g., 95% or 99%).

Table 5. The longitudinal and transversal allometric scaling relations of cities and the related growth
or distribution functions.

Type Sub-Type Basic Models Main Model Parameters

Longitudinal
allometry

Exponential allometry St = S0eut

At = A0evt At = aSb
t

a = A0S−b
0

b = v/u

Logistic allometry
St =

Smax
1+(Smax/S0−1)e−vt

At =
Amax

1+(Amax/A0−1)e−ut

At
Amax−At

= a( St
Smax−St

)
b

a = A0
Amax−A0

÷( S0
Smax−S0

)
b

b = v/u

Crosssectional
allometry Power allometry Sk = S1k−q

Ak = A1k−p Ak = aSb
k

a = A1S−b
1

b = p/q

Hierarchical
allometry

Exponential allometry Sm = S1r1−m
s

Am = A1r1−m
a

Am = aSb
m

a = A1S−b
1

b = ln ra/ ln rs

Power allometry Sm = S1N−q
m

Am = A1N−p
m

Am = aSb
m

a = A1S−b
1

b = p/q

Note: The symbols are as follows: t—time; k—rank; m—level; S—(population) size; A—urban area; a, b, p, q, u, v, ra,
rp, A0, A1, Amax, S0, S1, Smax are all parameters (proportionality coefficient, scaling exponent, ratio, capacity, etc.).

Allometric scaling indicates a power-law relation, which suggests a proportional relation between
two measures. Therefore, allometry is involved with two concepts of modern mathematical modeling.
One is spatial dimension, and the other is scaling range. Spatial dimension is one of the conundrums
in mathematical description. A measure is proportional to another measure, if and only if the two
measures bear the same spatial dimension. So a length is in proportion to the square root of an area,
or to the cubic root of a volume. This principle has long been discovered by the ancient Greeks. In this
sense, the allometric scaling exponent of size-area indicates the ratio of two spatial dimension values
such as b = D/d = Da/Ds, where D and d refer to the fractal dimensions of population and area size
distributions, and Ds and Da denote the fractal dimension of the spatial distributions of city population
size and land use form [58]. In fact, D and d proved to be paradimension according to the relationships
between Zipf’s law and hierarchical scaling law [30]. The concept of paradimension was sublated by
Mandelbrot [3], but it is useful in the studies on fractal cities. Scaling range indicates an effective range
for scale-free analysis of cities. The hierarchical allometry is based on Zipf’s distributions. The largest
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city and the very small towns may violate Zipf’s law and take on outliers on a double logarithmic
plot. If the largest city (e.g., London) is a world city, and the area of its country (Great Britain) is
not large, then the sphere of influence of the largest city will go far beyond the national area. As a
result, the largest city becomes an outlier and the primate distribution will replace Zipf’s distribution
of cities [6]. Meanwhile, the small towns may form outliers and go beyond the scaling range in a
log-log plot due to undergrowth of city sizes [7,30]. In China, improper government intervention in
urbanization often gives rise to urban structure abnormalities, which takes on outliers in datasets [37].
Sometimes, small cities or towns are developed in relative size, but the city number does not reach
2M, where M is a positive integer (See Table 2). Thus the bottom level of urban hierarchy forms a
lame-duck class [21].

The merits of this study rest with data quality, dataset size, and mathematical models. On the
one hand, all the observational data are based on the concept of natural cities and bear high quality.
On the other, the size of datasets are very large compared with the traditional sample sizes for the
rank-size analyses. Compared with the studies on urban hierarchies and rank-size distributions based
on census data or statistical data, the datasets of natural cities are more suitable for hierarchical scaling
analysis of cities. What is more, the models have performance of anti-disturbance of random noises.
The main drawbacks of the work lie in two aspects. First, the city size is measured by numbers of
block or traffic nodes rather than urban population. A city is a human settlement, and population
size belongs to the first order dynamic models of cities [59]. Two central variables can be employed to
research spatial dynamics of urban development: population and wealth [60]. If the relation between
urban population and block/node number is linear, the number of blocks or traffic nodes can be used
to replace urban population, otherwise, the real relation should be revealed. Second, the temporal
dimension does not be considered. Only one year datasets are available, and we cannot examine the
dynamic change of hierarchies of natural cities. Despite these shortcomings, the contribution of the
paper is clear: we use four big datasets of high quality to verify the hierarchical scaling laws from
urban angle of view, and the results can be explained by the principle of entropy maximization.

5. Conclusions

In this paper, we investigate the systems of natural cities in three European and one North
American counties. Two measures are employed to reflect city size, one is the number of blocks, and the
other is number of streets nodes. Different urban systems based on different size measurements lead
to the same direction: all these systems of cities can be organized into hierarchies with cascade
structure. The self-similar hierarchy can be described with a set of exponential laws based on
longitudinal direction distributions: number law, population size law, and urban area law. The three
exponential Equations can be equivalently transformed into a set of power functions for latitudinal
(transversal) direction relations, the first one reflect the size-number scaling relation, the second one
reflect the area-number scaling relation, and third one reflect the size-area allometric scaling relation.
The self-similar hierarchy indicates a kind of deep structure of systems of cities and latent spatial
order in urban evolution, which can be understood from the perspective of entropy maximization.
The contribution of this work to the studies on scaling of cities rests with the following aspects. First,
the principle of entropy maximization is employed to explain the power law behaviors of urban
hierarchies from new angles of view. Three processes of entropy maximizing are used to interpret
the emergence of power laws and the related scaling exponents. Second, a series of allometric scaling
models are divided into three groups and put in order in a logic framework. The framework includes
longitudinal allometry, crosssectional allometry, and hierarchical allometry. Third, an entire case study
on hierarchies of natural cities are presented. The case may be helpful for readers to understand power
law behaviors in hierarchies from a new angle of view.

The main conclusions of this study can be drawn as follows. First, the natural cities provide a
new way of understanding the hierarchical scaling laws, which can be represented by a set of power
functions. The three hierarchical models can be well fitted to the datasets of natural city size and
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urban area of the U.S.A., Britain, France, and Germany by taking the scaling range into consideration.
In a sense, the natural city is a concept of cities based on geographical landscape, which differs from
the traditional city concept based on human administration. Compared with the census data or
statistic data of common cities, the observational data of natural cities show better effect of hierarchical
scaling analysis. Moreover, the allometric scaling relation comes from a pair of rank-size scaling
relations. In theory, the allometric scaling exponent is equal to the ratio of the fractal dimension of
population size distribution to that of area size distribution; in practice, the allometric exponent is
very close to the quotient of the two fractal dimension values of size distributions (esp. Britain and
Germany). Second, the principle of entropy maximization can be employed to explain the emergence
of power law behaviors in hierarchies of natural cities. A power law is based on a pair of exponential
laws on city number and sizes. An exponential law can be derived by means of the method of
entropy maximizing. Thus a power law is determined by two dual entropy maximization processes:
the entropy maximization of city frequency distribution and that of city size distribution. An urban
hierarchy is involved two types of entropy maximization: the frequency distribution of cities and
size distributions of urban population and urbanized area. The fractal models are controlled by
an entropy maximization process of frequency distribution and that of size distribution, while an
allometric scaling relation is dominated by two entropy maximization processes of size distributions
such as population size distribution and area size distribution. Entropy maximization can explain the
power law behaviors of traditional city size distribution, but this principle seems to be more suitable
for explaining the evolution and power law emergence of natural cities. What is more, the entropy
maximization principle can also be used to interpret the scaling exponent values of urban power laws.
If the two correlated entropy maximization processes are in step with each other and in a state of
balance, the scaling exponent will approach 1, otherwise, the exponent values will deviate from 1 or
even exceed the reasonable range.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/20/6/432/s1,
File S1: Zipf’s law, hierarchy, and power law (XLSX). This MS Excel file is used to show how to transform a
Zipf’s rank-size distribution into a self-similar hierarchy. According to the pure Zipf’s distribution, we generate
a standard rank-size sequence such as 1, 1/2, 1/3, ... Then according to the generalized 2n rule, we organize
the rank-size sequence into a hierarchy with cascade structure. From the results, we can obtain three geometric
sequences: the number of cities at the mth class, Nm, the total population of cities at the mth class, Tm, and thus the
average population size at the mth class is Pm = Tm /Nm. The power law relation between Pm and Nm represents
one of the hierarchical scaling laws. File S2: Datasets processed for hierarchies of natural cities (XLSX). This MS
Excel file is used to show the original datasets on the natural cities of U.S.A., Britain, France, and Germany, and to
illustrate how to organize the city size and urban area sequences into hierarchies with cascade structure. Using the
results, we can verify the size-number scaling relation, area-number scaling relation, and the size-area allometric
scaling relation.
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