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Bayesian inference 
of the viscoelastic properties 
of a Jeffrey’s fluid using optical 
tweezers
Shuvojit Paul1, N Narinder1, Ayan Banerjee2, K Rajesh Nayak2, Jakob Steindl1 & 
Clemens Bechinger1*

Bayesian inference is a conscientious statistical method which is successfully used in many branches 
of physics and engineering. Compared to conventional approaches, it makes highly efficient use of 
information hidden in a measured quantity by predicting the distribution of future data points based 
on posterior information. Here we apply this method to determine the stress-relaxation time and the 
solvent and polymer contributions to the frequency dependent viscosity of a viscoelastic Jeffrey’s fluid 
by the analysis of the measured trajectory of an optically trapped Brownian particle. When comparing 
the results to those obtained from the auto-correlation function, mean-squared displacement or the 
power spectrum, we find Bayesian inference to be much more accurate and less affected by systematic 
errors.

Several fluctuation dominated physical phenomena, like, Brownian motion in various fluids, radioactive decay 
of sub-atomic particles, current fluctuations in resistors, etc1,2, are modeled by stochastic processes. To obtain 
the relevant parameters characterizing such processes, typically one analyzes a time series of a measured quan-
tity. Examples are the measurement of resistance from the time series of current fluctuations or the inference 
of rheological parameters (viscosity, time constant) of a fluid from the trajectories of Brownian particles. When 
analyzing such data, often one only makes partial use of the information provided by the data, e.g., the correlation 
function, power spectral density in the context of Brownian motion, to an equation which is assumed to describe 
the underlying process, mainly using least-squares fitting routines. Often such technique delicately depends on 
the range of the data used for the comparison, and therefore the estimated results are rather unreliable. Bayes-
ian inference with proper likelihood function added to the prior knowledge about the parameters can provide 
reliable and efficient measurements of the probable values of the parameters with the related uncertainties, for a 
given set of data. This method has been proved more detailed, advanced and reliable compared to least-squares 
fittings or the frequentist approaches3–6. Also, it makes an optimal use of the whole sample path and therefore 
does not require further guidance for the measurements5,6. Note that also model-free methods exist which allow 
to extract relevant microrheological parameters7. Often, however, specific models such as the Jeffrey’s model are 
used because they are based on simple and general mechanical concepts8–15.

Recently, Bayesian probability theory has been used for microrheological measurements, in viscous fluids 
and it has been shown that such methods are less affected by systematic noise present in the data4,16. However, to 
the best of our knowledge, so far, this theory has not been applied to viscoelastic fluids. Because most fluids and 
systems relevant in context of technical and biological entities are viscoelastic17–20, there exists a strong interest 
in the scientific community to efficiently measure the rheological properties of such fluids. In contrast to purely 
viscous fluids, viscoelastic fluids combine viscous and elastic properties which are often quantified by the imagi-
nary and the real parts of the complex shear modulus G∗(ω) respectively21–23. In case of passive microrheology, 
G∗(ω) is calculated by Fourier transforming the mean-squared displacement (MSD) of a micro probe particle 
and using the Stokes-Einstein relation22,23. However, in case of limited data Fourier transformations are not trivial 
since interpolation and extrapolation from data points can easily yield far-reaching artifacts22.

Several models have been developed to describe viscoelastic fluids21–26, e.g., the Maxwell model , the Jeffrey’s 
model or the generalized Maxwell model10,21,27,28. Among these, Jeffrey’s model is extensively and successfully 
employed for understanding a wide class of experimental details8–10,29–31. Contrary to viscous fluids, the motion 
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of a particle in a viscoelastic fluid exhibits memory effects, i.e., it is a non-Markovian process23,24. Nevertheless, 
Markovianity can be regained at the cost of additional degrees of freedom describing a multivariate Ornstein-
Uhlenbeck process32,33. For such stationary, Gaussian and Markovian processes, the likelihood function which 
corresponds to discretely observed sample paths can be exactly calculated in terms of the process parameters. 
Using the Bayes’ theorem, the probable parameter values concealed in given discrete observations can be obtained 
with the corresponding probabilities33,34. Such a Bayesian theory based time domain method is thorough, accurate 
and avoids limitations such as non-trivial Fourier transformations, data range dependent uncertainty observed 
in the measurement from the auto-correlation function (ACF), power spectral density (PSD), mean-squared 
displacement function (MSD) etc.

Here, we demonstrate a Bayesian inference based technique to evaluate the rheological properties of a Jef-
frey’s fluid from the partial observation of the position fluctuation of an optically trapped Brownian particle. We 
calculate the likelihood function related to the probe’s trajectory and estimate the most probable parameter values 
and their standard errors by numerically maximizing the likelihood with respect to the parameters. Further, we 
compare our method with the measurements from the position ACF and show that the estimations obtained 
from the proposed method are more reliable compared to the regular measurements from the ACF. Note that 
PSD and MSD are directly linked to the ACF, and hence for comparison, the analysis of only one among these is 
sufficient. We also show numerically and experimentally that both the methods lead to the same estimations for 
a given time series provided a least-squares fitting is conducted carefully over a certain data range. Furthermore, 
we also investigate how the length of the time series and the sampling time step affects the accuracy of the rheo-
logical parameters, similar to recent work35 where authors quantitatively determine the efficacy of their method.

Finally, we compare our results with macroscopic rheological measurements for various viscoelastic fluids 
and obtain good agreements.

Theory
We describe the one dimensional Brownian motion of a microscopic particle of mass m confined in a harmonic 
potential of stiffness k in a homogeneous and isotropic viscoelastic medium by using the generalized Langevin 
equation (GLE)24,32,34:

where x(t) is the position of the particle at time t, Ŵ(t − t ′) is the friction kernel and η(t) is the stochastic noise 
which represents the thermal agitations of the fluid molecules. Within the Jeffrey’s fluid model (generalized 
Maxwell model with single relaxation time), the memory kernel takes the form9,24,32,36

and to satisfy the fluctuation-dissipation theorem (FDT) (and hence causality), the noise correlation function 
〈

η(t)η(t′)
〉

= kBTŴ(t − t ′) ; kB is the Boltzmann constant and T is the absolute temperature32. The first term in 
the expression of Eq. (2) is due to the purely viscous solvent and the second term corresponds to the polymer 
network present in the fluid. The noise η(t) can be represented as η(t) = η0(t)+ η1(t) , where η0(t) and η1(t) are 
two independent Gaussian random processes with mean zero and correlations 

〈

η0(t)η0(t
′)
〉

= 2kBTγ0δ(t − t ′) 
and 

〈

η1(t)η1(t
′)
〉

= kBT
γ1
τ1
exp

(

−|t−t′|
τ1

)

 , respectively. Note that the dynamics of the particle at time t depends 
on its history and thus the process is non-Markovian. At time scales, where inertia is negligible (overdamped 
limit), Eq. (1) can be written as32,37

In order to model the system as Markovian, we introduce an auxiliary variable

we can write
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and

D0 =
√

2kBT
γ0

 , D1 =
√

2kBT
γ1

 , then Eq. (5) becomes a multivariate Ornstein-Uhlenbeck process33 and the transi-

tion probability density of the state Y =
[

x
X

]

 , i.e., the probability density P1|1(Y ′, t′|Y , t) of a transition from Y  

at time t to Y ′ at time t ′ , follows a Fokker–Planck equation (FP) ∂tP1|1 = LP1|1 , with the Fokker–Planck 
operator

The solution of the FP is a multivariate normal distribution with mean µ(�t) = exp (−��t)Y and covariance 
�(�t) = σ − [exp (−��t)σ exp (−�

T�t)] ; �t = |t ′ − t| . In the limit of �t → ∞ one obtains the stationary 
probability distribution P1(Y) which clearly has a zero mean and covariance σ =

〈

YY
T
〉

 . � , σ and D are related 
by the stationary condition LP1(Y) = 0 , which results into �σ + (�σ )T = DD

T33. A straightforward calcula-
tion yields32

The auto-regressive (AR) representation of the process, thus, can be written as34

where ǫn is a zero mean Gaussian random vector with co-variance �(�t).

Bayesian inference I
If we consider the observations of the time series with N sample points Y ≡ (Y0,Y1,Y2, ...,YN ) being inde-
pendently selected from the stationary distribution P1(Y) , then according to the Bayes’ theorem if � is a set of 
unknown parameters, the conditional probability of the parameters given the observations, P1(�|Y) (posterior 
probability) is proportional to the product of the conditional probability of the observations given the parameters, 
P1(Y |�) (likelihood function) and the prior probability of the parameters P(�)16,33,38, i.e.,

Therefore, for a non-informative prior probability, ln P1(�|Y) ∝ ln P1(Y |�) . Straightforwardly using the 
Gaussian nature of the stationary probability described above16,33,

The maximum a posteriori probability (MAP) estimation is obtained by optimizing ln P1(�|Y) with respect 
to � . The corresponding standard error is obtained from the square root of the inverse of the Hessian matrix, 
H = −∇∇ ln P1(�|Y) . Here, if the parameter � is σ then the MAP estimation is

Clearly, from Eqns. (7) and (11) we conclude

with the corresponding standard error k
∗

√
N

.
However, this method can not provide all rheological parameters involved in the process.

Bayesian inference II
Because of the Markovian property of our process, the conditional probability of the whole sample path given 
a set of unknown parameters � is16,33,38
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and similar to Bayesian inference I, the log posterior probability ( ln P(�|Y) ) for non-informative prior infor-
mation is proportional to the log likelihood function ( ln P(Y |�) ). Nevertheless, the MAP estimation by the 
optimization of ln P(�|Y) depend both on the particle’s position x and the auxiliary variable X33. Therefore, we 
need an appropriate likelihood function which can be calculated only using the partial observation of the process, 
i.e., the trajectory of the particle x ≡ (x0, x1, ..., xN ).

Likelihood function.  We can use the Kalman filter method34,39,40 to calculate the likelihood function from 
the partial observation of the process Y  . For the n-th step, one can write

where C =
[

c 0
]

 ; c is the calibration factor related to the experimental time-series which can be set to unity 
if the data is already in desired units. Using the AR structure (Eq. 8) and the partial observation of the process, 
the Kalman filter algorithm iteratively approaches to the likelihood P(x1, ..., xN |x0,�) for a certain set of the 
unknown parameters � . The log-likelihood function has the form34

where x̂n|n−1 and �n|n−1 are the conditional mean and variance of xn given x1, x2, ..., xn−1 and � . Further, as dis-
cussed above, the optimization of the log-likelihood function with respect to the parameters (we are interested in 
the set of parameters � = (k, η0, η1, τ1) ) can yield the MAP estimations for the parameters. The corresponding 
standard error can be calculated using the Hessian matrix. For convenience, we use the Bayesian I to infer the 
MAP estimation of the trap stiffness, i.e., k∗ (Eq. 12) and further optimize the log-likelihood function (Eq. 14) 
for � = (η0, η1, τ1) . Because of a large amount of literature discussing the Kalman filter34,39,40, we describe it 
briefly in our context.

Kalman filter.  The Kalman filter algorithm for a linear system generally takes an observation model which 
linearly depends on the state of the system. Here, the state variable follows the linear transition equation

where F = exp (−��t) and ǫn ∼ N(0,�(�t)) ; the observable xn depends linearly on the state variable as 
in Eq. (13). Further, it brilliantly utilizes the Bayes’ theorem to recursively approach the likelihood function 
P(x1, ..., xN |x0,�) . According to Bayes’ theorem, the probability of Yn given the observation xn , the previous 
state Yn−1 and the parameter set � is

where P(xn|Yn,Yn−1,�) (n-th iteration for the likelihood function) is the probability of the observation xn given 
Yn , Yn−1 and � ; and P(Yn|Yn−1,�) (n-th iteration of the prior) is the transition probability of the state Yn−1 to 
Yn in the sampling time step �t , given the parameter set � , which is a normal distribution as discussed in the 
previous section. Optimization of P(Yn|xn,Yn−1,�) should infer the expected n-th step of the state given the 
observation xn and parameters � , i.e.,

and the corresponding covariance, i.e.,

Straightforwardly, we can update the prior probability distribution function to another normal distribution of 
mean Ŷn+1|n = FŶn|n and covariance ωn+1|n = Fωn|nFT +� . The updated likelihood probability distribution 
function, i.e., the probability of xn+1 given the previous observations ( xn , xn−1 , xn−2,...x0 ) and � , evidently, is a 
normal distribution of mean x̂n+1|n = CŶn+1|n and variance �n+1|n = Cωn+1|nCT.

Therefore, the implemented Kalman filter algorithm is the following:

P(Y |�) =
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∏

n=1

P1|1(Yn+1|Yn,�)P1(Y1,�)
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To initiate the iterations, we choose Ŷ1|0 =
[

0 0
]T and ω1|0 = �(�t) ; where �(�t) = D

∗
D
∗T�t . Through 

the above described iterations we finally obtain the probability of the observation sample path

Therefore, to implement this method one should use the iterations Eqns. (17) to calculate the log-likelihood 
function Eq. (14) and optimize with respect to the desired set of parameters.

Numerical analysis and comparison
We numerically solve Eq. (5) with input parameters τ in1 = 1 s, ηin0 = 0.001 Pa s, ηin1 = 0.1 Pa s, kin = 0.1× 10−6 
N/m and analyze the simulated data to study the accuracy of the method in comparison to the fitting methods. 
Note that the smallest time scale of the process τS = 1/

(

k
γ0

+ γ1
γ0τ1

)

 and the largest is τ1 . The input parameters 
are chosen so that they are experimentally feasible and τS becomes 0.01 s for convenience. In Fig. 1a–d, we show 
the estimations of the parameters for several sampling time steps (normalized by τS ) with varying total sampling 
time ( Ts ) normalized by τ in1  . We estimate the trap stiffness using the Bayesian I method and use that in Bayesian 
II to evaluate other parameters. Note that for �t/τS ≤ 1 , the MAP estimations of the parameters reach their true 
values with ∼ 1% standard deviation when the normalized sampling time Ts/τ1 crosses ∼ 500 . Further increase 
in Ts/τ1 , indeed, improves the precision of the result. However, if �t/τS > 1 , i.e, if the sampling time step is lower 
than the smallest time scale of the process, Ts/τ1 should be greater than ∼ 2000 for reliable estimations.

Auto‑correlation function.  The position auto-correlation function (ACF) of a Brownian harmonic oscil-
lator in a viscoelastic Jeffrey’s fluid, as described in the theory section, is given by24,32

(18)P(x1, ..., xN |x0,�) =
N
∏

n=2

P(xn|xm,m < n,�, x0).

(19)

f (t) = 1

ν
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Figure 1.   MAP estimations of the parameters using the Bayesian inference from simulated time series of 
various sampling time ( Ts ) and sampling time step ( �t ) normalized by the longest ( τ1 ) and the shortest ( τS ) time 
scales of the process. (a) Estimated trap stiffness normalized by the input in the simulation ( kin = 0.1µN/m) 
using Bayesian I. The inferences of (b) the time constants normalized by the input τ in

1
= 1 s, (c) the polymer 

viscosity divided by the corresponding input ηin
1
= 0.1 Pa s, (d) the solvent viscosity normalized by ηin

0
= 0.001 

Pa s, using Bayesan II and the values of the trap stiffness calculated from Bayesian I. The shaded regions 
correspond to one standard deviations of the estimations. Clearly, when the �t is greater than τS , the standard 
errors of estimations decrease with the increase of Ts . Blue triangles are the calculated parameters from the best 
fit of the ACF.
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where a = 2kBT
γ0τ

2
1
(1+ η1

η0
) , b = 2kBT

γ0
 , ω0 = k

τ1γ0
 , c = k

γ0
+ 1

τ1
(1+ η1

η0
) , ν =

√

c2 − 4ω0 . Ideally, the measured ACF 
from the position time series converges to the functional form (Eq. 19) in the limit Ts → ∞ . However, in practice, 
we can assume that the calculated ACF for each time lag ( ti ) is Gaussian distributed around the trend f (ti) 
(Eq. 19) with variance S, and all the measured ACF data for different time lags are independent of each other. 
Thus, the corresponding likelihood function is

where N(fi(�), S) represents a normal distribution with mean fi and variance S for the i-th time lag, i.e., ti ; Nacf  
is the total number of ACF data points. Optimization of the logarithm of Lacf  with respect to � provides the 
estimation of � with the corresponding standard deviation. Note that the least-squares fitting method also works 
on the same assumption and approaches to same results38. However, we observe that such fitting predominantly 
depends on the range of the data considered. In Tab. 1, we show the estimated parameters with one standard 
deviation by fitting the ACF measured from a simulated data of total sampling time Ts/τ1 = 2000 and sampling 
time step �t/τS = 0.1 with the same parameters as described above as input parameters. We vary the fitting 
range from time lag 0− 0.1 upto 0− 30 and show that the estimated results are closest to the input parameters 
for fitting rang 0–0.5 to 0–1. Note that in this range the standard errors corresponding to all the parameters are 
also the smallest.

To better understand the discrepancies in the obtained parameter values for different fitting ranges, we 
plot the ACF with the corresponding best fit (where the standard deviations are least) and residue in Fig. 2a 
(from simulated data of Ts/τ1 = 2000 and �t/τS = 0.1 ) and Fig. 2b (from simulated data of Ts/τ1 = 10000 
and �t/τS = 0.1 ). Vividly, the central assumptions of the method, i.e., Gaussian distribution around the trend 

(20)Lacf =
Nacf
∏

i=1

N(fi(�), S).

Table 1.   Parameter estimated from simulated time series of Ts/τ1 = 2000 and time step �t/τS = 0.1 by 
fitting the corresponding ACF over various range of time lags. Clearly, the estimations are close to all the input 
parameters when the fitting range lies in between from 0–0.5 to 0–1 s. The input parameters in the simulation 
are the same as in Fig. 1.

Fitting range (s) η∗
0
± 1σ (mPa s) η∗

1
± 1σ (mPa s) τ∗

1
± 1σ (s)

0–0.1 1.0± 0.0 440.0± 0.1 4.6± 2.0× 10
−3

0–0.5 1.0± 1.0× 10
−3

100± 130× 10
−3

1.0± 0.8× 10
−3

0–1 1.1± 2.4× 10
−3

110± 15.0× 10
−3

1.1± 0.8× 10
−3

0–5 5.0± 0.1 110.0± 0.1 1.1± 0.2× 10
−3

0–10 2.5± 0.0 100.0± 0.0 1.1± 1.0× 10
−3

0–20 30.0± 0.1 70.0± 0.1 1.3± 5.0× 10
−3

0–30 50.0± 0.1 60.0± 0.1 1.9± 13.0× 10
−3
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Figure 2.   ACF for simulated time series of time step �t/τS = 0.1 and (a) Ts/τ1 = 2000 , (b) Ts/τ1 = 10000 
with the corresponding best fit and residue in the insets. Upper inset in each figure concentrates on the initial 
regions of the residuals which shows that the variance S of the model increases after a certain time lag.
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and the constant variance of the residue (S) are not valid over the whole range of time lag. After a certain time 
lag the variance of the residue increases exceedingly. The best fitting range increases with the increase in the 
total sampling time. Therefore, to make this process consistent, further processing of the data, such as careful 
binning is required41. Note that binning may lose information hidden in short times. If the sampling time step 
is much smaller compared to the smallest time scale τS of the system then the binning can improve the fitting 
significantly. The parameter values obtained from the best fitting of the ACF are very close to those calculated 
using the Bayesian method developed in this paper (as shown in Fig. 1b–d).

Experiment
As viscoelastic fluids, we use an aqueous solution of polyacrylamide (Polysciences, PAAM, Mw = 18× 106 gm 
mol−1 ) at different concentrations. Note that the concentrations of the PAAM strongly dictates the viscoelastic 
parameters of the solution25,42. A very small volume fraction ( ∼ 0.01 ) of spherical polystyrene particles (radius 
1.95µ m) are added to the PAAM-water solution as probes. For sample making, we seal the suspension between 
two glass slides with a spacing of 100 µ m. We kept this sample cell in contact with a thermal bath kept at 25◦ C. 
We trap one of the spherical probe particles in the sample fluid far away from any glass surface (to avoid wall 
effects) using an optical tweezers built by tightly focused a Gaussian infra red (IR, � = 1064 nm) laser beam with 
a high numerical aperture ( N .A. = 1.3 ) oil immersion microscope objective. We use a CMOS camera to record 
videos for the thermal position fluctuation of the probe particle at a frequency of 500 Hz. The position of the 
particle are tracked from the videos using MATLAB by standard particle tracking algorithm. For optimization 
of the log-likelihood function, we use an inbuilt MATLAB optimization tool. In Fig. 3a, we show a schematic 
of the setup, and Fig. 3b–c represent a typical position time series of the probe particle and the corresponding 
probability distribution respectively.

Data and analysis
For all measurements in this work, we maintain the trapping laser power fixed which results in trap stiffness 
k = (1− 1.6) µN/m. Note that, the PAAM concentration may slightly change the refractive index of the fluid, 
which can bring a small modification to the trap stiffness. The trap stiffness is kept relatively lower to avoid any 
potential coupling of the trap with the fluid43. To experimentally check the dependency of the Bayesian method 
on the data length and the sampling time step, we analyze data for sampling times ranging from 100 to 4000 s 
and sampling time steps �t = 0.002 s and 0.02 s. We show representative data ( 0.06 % w/w PAAM-water) in 
Fig. 4a–d for the estimations of η1 τ1, η0 and k respectively. Clearly, after Ts = 200 s, the estimations are saturating 
for both the values of �t . However, the precision and accuracy of the measurements are higher for �t = 0.002 s. 
The standard error of the estimations, as expected, decreases with increasing Ts . Interestingly, the best fittings of 
the auto-correlation functions evaluate approximately the same values as obtained from the Bayesian method, 
and exhibits similar behavior.

As expected, the experimental data also shows the same strong dependence of the ACF fitting method on 
the range of data used for the fitting, as observed for numerically obtained ACFs. This verifies our theoretical 
understandings about the fitting method as described in the theory section. In Fig. 5d, we show the residue 

Figure 3.   (a) Schematic diagram of a trapped spherical probe using optical tweezers in a viscoelastic medium. 
Arrow shows the direction of the trapping laser beam. (b) Representative experimental trajectory of Ts = 200 s 
and �t = 0.002 s of a confined particle (radius 1.95 μm) in an optical trap of trap stiffness k = 1.4± 0.1 µ N/m 
in 0.02 %w/w PAAM to water mixture and, (c) the corresponding probability distribution.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2023  | https://doi.org/10.1038/s41598-021-81094-x

www.nature.com/scientificreports/

(inset) of the best fitting which clarifies that the assumption of the Gaussian distribution around the trend and 
the constant variance is only valid over the initial range of time lags.

In order to verify the estimated results obtained from the Bayesian method, we perform the experiments 
with various (0.02–0.08% w/w) PAAM-water solutions and compare with the parameters obtained from the bulk 
rheology using a commercial rheometer (DHR-2-TA Instruments). We fit the frequency dependent viscosity 
measured using the rheometer with the corresponding theoretical expression for Jeffrey’s fluid24 to estimate the 
parameters. We observe (Fig. 5a–c) a very good agreement for all the three methods (Bayesian, best fitting of the 
ACF and rheometer measurements). The η0 remains close to the viscosity of water at 25◦ C and approximately 
independent of the concentrations, however, τ1 and η1 increases with the increase of the PAAM concentration. 
The similar trend is also observed previously in several works25,42. The standard errors are calculated over several 
independent measurements.

Conclusion
In conclusion, we present a Bayesian inference based technique to measure the rheological parameters of a 
Jeffrey’s fluid. We show that the estimations from the proposed technique are more reliable compared to that 
obtained from the auto-correlation function. The parameter estimations from the ACF depend very sensitively 
on the range over which the data is fitted. We define the best fitting when the standard deviations corresponding 
to the estimations are minimum. At the best fitting, the estimations from the fitting method and the proposed 
method are approximately same. Further, to verify our method, we compare our inferred parameter values for 
various viscoelastic fluids prepared by mixing PAAM into water in different concentrations, with that measured 
using a commercial rheometer and obtain a strong agreement. We also observe that for a reliable measurement, 
the data should have sampling time step comparable to the shortest time scale of the system and total sampling 
time larger than ∼ 200 times the time constant of the fluid. The established method is comparatively fast (as it 
does not need further processing of the data), advanced, more reliable, and less affected by systematic noises. It 
uses less inputs from the user than any other least-squares fitting methods as it efficiently utilizes the information 
hidden in the data. Even though the Jeffrey’s fluid model is a particular simple description of viscoelastic fluids, 
there exist many examples where such approach has been experimentally confirmed8–15. It should be mentioned, 
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however, that the concept of Bayesian inference can be also applied to more complex models involving more 
than a single stress relaxation time (even though the accuracy of the method generally becomes worse progres-
sively with the introduction of additional parameters). The standard Bayesian model comparison techniques 
can be used to choose an appropriate model for a given data to avoid unnecessary generalization. Also, it can be 
extended for free Brownian probes and active Brownian particles.
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