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Abstract: 

Virtual screening is a widely used tool for drug discovery, but its predictive power can 
vary dramatically depending on how much structural data is available. In the best case, 
crystal structures of a ligand-bound protein can help find more potent ligands. However, 
virtual screens tend to be less predictive when only ligand-free crystal structures are 
available, and even less predictive if a homology model or other predicted structure 
must be used. Here, we explore the possibility that this situation can be improved by 
better accounting for protein dynamics, as simulations started from a single structure 
have a reasonable chance of sampling nearby structures that are more compatible with 
ligand binding. As a specific example, we consider the cancer drug target PPM1D/Wip1 
phosphatase, a protein that lacks crystal structures. High-throughput screens have led 
to the discovery of several allosteric inhibitors of PPM1D, but their binding mode 
remains unknown. To enable further drug discovery efforts, we assessed the predictive 
power of an AlphaFold-predicted structure of PPM1D and a Markov state model (MSM) 
built from molecular dynamics simulations initiated from that structure. Our simulations 
reveal a cryptic pocket at the interface between two important structural elements, the 
flap and hinge regions. Using deep learning to predict the pose quality of each docked 
compound for the active site and cryptic pocket suggests that the inhibitors strongly 
prefer binding to the cryptic pocket, consistent with their allosteric effect. The predicted 
affinities for the dynamically uncovered cryptic pocket also recapitulate the relative 
potencies of the compounds (tb=0.70) better than the predicted affinities for the static 
AlphaFold-predicted structure (tb=0.42). Taken together, these results suggest that 
targeting the cryptic pocket is a good strategy for drugging PPM1D and, more generally, 
that conformations selected from simulation can improve virtual screening when limited 
structural data is available. 
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Introduction: 

Virtual screening is a common tool for identifying novel inhibitors of proteins with 
known structures.(Wallach et al., 2015; Lyu et al., 2019; Bender et al., 2021) 
Conventional, structure-based virtual high throughput screening approaches use an 
empirical- or force-field-based scoring function to dock ligands to mostly rigid receptors 
and rank compounds.(Trott and Olson, 2010) Docking to structures that deviate from 
the ligand-bound state can result in inaccurate predictions of the bound complex and 
poor compound ranking. For example, it is often difficult to recover active compounds 
when docking against ligand-free experimental structures (e.g., an apo state), or when 
the cognate ligand is small.(Abagyan et al., 2010) Even worse, experimentally derived 
structures are unavailable for many targets with disordered or flexible domains. 
AlphaFold (AF) has the potential to accelerate drug discovery thanks to accurate 
structure prediction for such proteins.(Jumper et al., 2021) However, these are still just 
rigid structures, and their utility will be limited if they do not represent bound-like 
structures.(Vijayan et al., 2015; Wankowicz et al., 2022) 

Phosphatases are a protein family with many potential therapeutic targets, but few 
are currently drugged (Mullard, 2018; Köhn, 2020) owing to a highly conserved and 
charged active site. Phosphatases are distinguished by different functional domains that 
can be exploited for the design of selective therapeutics (e.g., SH2 domain in 
SHP2(Chen et al., 2016)). Often, these domains are highly flexible.(Miller et al., 2022) 
Human protein phosphatase, Mg2+/Mn2+ dependent 1D PPM1D, also known as Wip1, 
is an important therapeutic target in oncology.(Pecháčková et al., 2017) PPM1D 
negatively regulates p53 and other components of the DNA damage response 
pathway.(Lu et al., 2008) Overactivation of PPM1D, either through duplication or loss of 
its degradation domain, is present in several human cancers, including breast cancer (Li 
et al., 2002), ovarian clear cell carcinoma (Tan et al., 2009), and brain cancers 
(Castellino et al., 2008). 

Several allosteric inhibitors of PPM1D have been discovered through experimental 
screens(Gilmartin et al., 2014), but they remain difficult to improve upon because 
PPM1D has defied structure determination. A dual biophysical and biochemical screen 
targeting PPM1D revealed a novel class of inhibitors called the capped amino acids 
(CAA).(Gilmartin et al., 2014) These compounds selectively and non-competitively 
inhibit the phosphatase activity of PPM1D towards FDP and natural substrates. Efforts 
to crystallize PPM1D alone or PPM1D in complex with these inhibitors were repeatedly 
unsuccessful, likely due to a highly disordered loop or a flexible flap domain. 

In the absence of this structural information, two distinct binding modes have been 
proposed based on indirect evidence. Photoaffinity labeling experiments suggested that 
the allosteric compounds bind at the PPM1D flap domain, in the vicinity of P219 and 
M236 (Fig. 1). (Gilmartin et al., 2014) In support of this model, the authors 
demonstrated that swapping the flap domain of PPM1D into another phosphatase 
rendered that protein sensitive to the PPM1D inhibitors. However, this finding was later 
disputed by several experiments that implicated the hinge domain in the binding of the 
allosteric compounds.(Miller et al., 2022) Deletion of the flap domain did not have an 
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impact on the thermal shift, binding affinity, or the deuterium exchange profile caused by 
one of the allosteric compounds. Conversely, deletion of the hinge contributed to a 
substantial decrease in binding affinity and inhibition (i.e., an increase in IC50). Thus, 
the lack of experimental structures as well as competing binding modes makes PPM1D 
a uniquely challenging target for computational drug design. 

Here, we use AlphaFold, molecular dynamics simulations (Karplus and McCammon, 
2002; Hollingsworth and Dror, 2018), and machine learning to generate distinct 
conformations of PPM1D to investigate the molecular mechanisms of allosteric 
inhibition. 

 

 
Figure 1: PPM1D phosphatase is allosterically inhibited by the capped amino acid 
(CAA) compounds, but the precise binding site is unknown. A) The capped amino 
acid compounds have a common amino acid-like substructure, and small differences in 
their chemical structure (i.e., the absence of a carbonyl) can contribute to very large 
differences in their potency. B) The AlphaFold-predicted structure of PPM1D highlights 
key regions that have been implicated in the binding of the capped amino acid 
compounds. The active site is shown in salmon sticks while two residues identified as 
proximal to the binding site based on photolabeling experiments are shown in blue 
sticks. The flap domain, a region hypothesized to be the primary CAA compound 
binding site, is shown in cyan. Another region hypothesized to be the primary CAA 
compound binding site, the hinge, is shown in orange.  
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Results: 
 
PPM1D’s AlphaFold structure lacks high scoring pockets at the flap and the hinge 
 

Given the lack of available PPM1D experimental structures, we first tested if a 
structure predicted by AlphaFold (AF) could help determine the preferred binding site for 
its allosteric inhibitors. The high accuracy of AF predictions(Jumper et al., 2021) 
suggests that structures predicted by AF can be used for determining binding sites and 
conducting virtual high throughput screening campaigns. Therefore, we analyzed the 
PPM1D AF structure to determine if there were binding sites with a high probability of 
ligand binding. 
 

The PPM1D AlphaFold structure lacks clear pockets at the flap and the hinge, which 
are the two binding sites proposed in the literature. In contrast to previous homology 
models constructed for PPM1D, the AF structure of PPM1D includes a structured flap 
domain. The predicted local distance difference test (pLDDT) score, a useful proxy for 
how ordered a region is (Wilson et al., 2022), is high in the flap domain (Fig S1). 
Despite the structured nature of the flap domain, there are few obvious pockets for an 
allosteric inhibitor to bind. Using the P2rank algorithm (Krivák and Hoksza, 2018), we 
evaluated pockets on the protein surface and found two pockets with high scores (Fig 
S2). One is at the active site, which cannot be the preferred binding mode for the 
capped amino acid compounds given the non-competitive nature of PPM1D inhibition. 
The second high scoring pocket is found opposite the flap domain where helix 323-326 
and helix 347-360 interface with one of the b-strands in the PPM1D b-sandwich (Fig 
S1). This pocket has no overlap with either of the proposed binding sites found in the 
literature for the PPM1D allosteric compounds. Both the flap and the hinge lack high 
scoring pockets in their vicinity. Similarly, when we searched for pockets using the 
LIGSITE algorithm (Hendlich et al., 1997), we do not find pockets at either of the 
proposed binding sites (Fig S3). These findings suggest that the binding site of the 
allosteric inhibitors is possibly cryptic or transient, or simply not captured by the 
AlphaFold structure – thus posing a challenge for a successful docking campaign. 
Hence, we decided to investigate whether molecular dynamics simulations might reveal 
cryptic pockets at the flap or the hinge.   
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PPM1D apo simulations reveal a cryptic pocket at the flap-hinge interface 
 

Next, inspired by recent success in capturing cryptic pocket formation in molecular 
dynamics simulations,(Hollingsworth et al., 2019; Sztain et al., 2021; Zimmerman et al., 
2021; Cruz et al., 2022; Meller et al., 2022b, 2023) we tested whether simulations 
launched from the AF structure could reveal cryptic pockets that encompass the flap or 
the hinge. We used an adaptive sampling algorithm FAST (Zimmerman and Bowman, 
2015) to search for cryptic pockets. FAST balances exploration with exploitation to 
efficiently search conformational space for conformations with desired traits. FAST does 
this by launching swarms of simulations and then selecting the most promising states as 
evaluated by an objective function for further simulations. In our case, we defined an 
objective function that included LIGSITE pocket volume to favor states with large 
pockets and another term to reward conformations which had been rarely observed 
(see Methods). Following each round of simulations, we created Markov State Models 
(MSMs) (Pande et al., 2010; Bowman et al., 2015) of the protein’s conformational 
ensemble after clustering conformations using C-a RMSD as a distance metric. 
 

In our simulations, the flap domain is extremely dynamic, sampling closed and highly 
open conformations (Fig. 2A). An MSM-weighted distribution of flap domain to active 
site distances reveals two modes, one centered roughly on the distance found in the AF 
starting structure (~23 Å) and another around 27 Å (Fig. 2A). In the closed 
conformations with a small active site-flap distance, the flap domain approaches a helix 
(residues 346-361) whose minimum distance to the flap domain in the AF structure is 11 
Å (structure I in Fig. 2B, Fig. S4). This behavior is consistent with experiments which 
showed that flap deletion leads to an increase in deuterium incorporation, implying an 
increase in backbone solvent exposure, at peptides spanning residues 328-362.(Miller 
et al., 2022) Not only can the flap close in on the active site, it can also dissociate 
dramatically as seen in the long tail on the right of the active site-flap distance 
distribution (structure iii in Fig. 2B). In this extended conformation, K218 and other 
residues involved in substrate recognition are far from the active site (i.e., the distance 
between K218’s sidechain to D105’s sidechain grows from 9 Å in the AF structure to as 
much as 29 Å in simulations). The two peaks seen in the flap domain to active site 
distance distribution are consistent with both hydrogen deuterium exchange mass 
spectrometry and sedimentation velocity ultracentrifugation experiments(Miller et al., 
2022), which showed that PPM1D exists in an equilibrium between two different flap 
domain conformations.  
 

The highly dynamic nature of the flap domain is not captured in the AlphaFold 
predictions. As predicted by the high pLDDT estimates for the flap domain, the b-
strands in the flap remain structured as b-strands throughout the simulations (Fig. S5). 
However, neither AF’s pLDDT nor the predicted aligned error for the flap domain 
suggest that flap domain dissociation is possible or likely. We speculate that AF 
underestimates flap domain flexibility because it is trained with static structures from the 
Protein Databank (PDB), and thus simulations are a useful means to identify 
functionally important excited states. 
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Our simulations revealed a cryptic pocket at the flap-hinge interface between the two 
proposed binding sites. We calculated pockets for each structure in the MSM using 
P2Rank (see Methods). We then found the difference in each residue’s maximum 
ligand-binding probability in the ensemble and its ligand-binding probability in the 
AlphaFold structure. This analysis revealed that the flap domain, especially a flap 
domain loop (residues 276-290), is enriched for residues with large increases in ligand-
binding probability (Fig S6, S7). To visualize this flap domain cryptic pocket, we found 
the simulation structure with the largest increase in predicted ligand-binding probability 
relative to the AlphaFold structure. This structure shows conformational changes in the 
orientation of the central b-strand in the flap as well as the loop spanning residues 269-
295 (Fig 3A). Collectively, these lead to the formation of a deep pocket (Fig 3B, D) with 
a P2Rank-predicted ligand-binding probability of 0.87. There are other regions of the 
protein with increases in predicted ligand-binding probability, including the hinge (Fig 
S8) and the photoaffinity labeling sites, (Fig S9) but these increases are not as 
substantial as those in the flap domain loop. Taken together, these results suggested 
that relevant binding modes for the PPM1D allosteric compounds may be hidden in the 
ground state AlphaFold structure. 
 

 
Figure 2: The distribution of flap domain to active site distances from MD 
simulations highlights that the flap is a highly flexible domain that can adopt 
more open conformations than seen in the AlphaFold-predicted structure. A) The 
MSM-weighted distribution of average distances between the flap domain (defined as 
residue 219-295) and the active site (residues 105, 192, 314, and 366) backbones 
shows two peaks as well as long tails that highlight low probability highly closed and 
highly open conformations. The dashed red line indicates the same distance measured 
for the AlphaFold-predicted structure. B) These structures depict a highly closed, an 
intermediate, and a highly open MSM cluster center. The flap domain is colored in cyan. 
Circles with Roman numerals indicate where these structures fall in the distribution.   
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Figure 3: PPM1D apo simulations reveal a cryptic pocket at the flap-hinge 
interface. A) The AlphaFold-predicted PPM1D structure and a simulation structure 
where each residue is colored by its P2Rank-predicted ligand-binding probabilities show 
an increase in ligand-binding probability at the flap domain near the hinge. This 
simulation structure was selected because it had the largest increases in ligand-binding 
probability relative to the starting structure across the ensemble of states. Active site 
residues are shown in sticks. Arrow indicates the backbone motion that is required to 
form the cryptic pocket. B) Mesh representation of the cryptic pocket shows that it forms 
between a flap domain loop (residues 276-279), two of the b-strands in the flap 
(residues 243-247 and 268-271), and a flap domain helix (residues 227-234). C) 
Surface representation looking onto the AlphaFold structure and the open simulation 
structure highlights that a deep trench forms between the flap domain and hinge.The 
surface is colored by P2Rank-predicted ligand-binding probability. D) A zoom-in of the 
surface representation of the open state reveals that the cryptic pocket lies in a deep 
groove. The orange spheres are the pocket grid points identified by P2Rank. 
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The AtomNet PoseRanker neural network predicts a single preferred cryptic 
binding site between the flap and hinge 
 

To help determine which cryptic site was the most likely binding site, we docked the 
PPM1D allosteric compounds across the ensemble of structures in our MSMs. 
Traditional rigid body docking can often produce high quality poses (root mean square 
deviation from a crystal pose less than 2 Å), but these methods struggle to rank the 
poses correctly (Su et al., 2019); the highest quality poses rarely correspond to the 
highest scoring poses. To circumvent this limitation, deep learning methods often re-
rank conventional docking poses and achieve improved performance. We used one of 
these methods, AtomNet PoseRanker (ANPR), to re-rank the poses from molecular 
docking. (Stafford et al., 2022) ANPR was trained on existing data on the PDB and 
demonstrated to have an implicit understanding of physical interactions and protein 
dynamics. ANPR is trained as a binary classifier, and outputs a probability score 
between 0 and 1 (scores greater than 0.5 are usually indicative that ANPR has 
confidence that the pose in question is of high quality). We hypothesized that correctly 
assigned binding sites for ligands would admit better poses than incorrect sites. We 
therefore used ANPR scores to evaluate and identify the most likely binding site of the 
PPM1D allosteric inhibitors. We expected the most likely binding site to have higher 
ANPR scores across the simulated conformations with a relevant cryptic pocket. 

 
We docked compounds to all states from the PPM1D MSMs using CUina (Gniewek 

et al., n.d.; Stafford et al., 2022), a GPU-efficient implementation of smina (Koes et al., 
2013), and evaluated the quality of the resulting docked poses with ANPR. For every 
state from the MSM, we used P2Rank to identify possible binding sites in that state’s 
representative structure. A significant number of conformations presented a cryptic 
pocket between the hinge and the flap. A smaller number of conformations presented a 
pocket almost exclusively at the hinge. We used the pockets identified by P2Rank to 
design a box centered around these pockets. We padded the box by 5 Å on each 
dimension, and we used that box to define the search space of our molecular docking 
runs. As a control, two additional bounding boxes were created for the active site and 
photolabeling site described in the Gilmartin publication by defining the boundaries 
based on the catalytic residues or the photo labeling residues respectively. These boxes 
were also padded by 5 Å in each dimension (see Methods). In total, we docked nine 
capped amino acid compounds against four possible sites (two proposed sites around 
the hinge, the photolabeling site, and the active site as a negative control). These 
compounds were docked against all MSM states where the relevant cryptic pocket was 
detected by P2Rank. For each compound + binding site pair, we re-ranked the top 64 
poses (as ranked by the vina scoring function) using ANPR. The pose for each 
compound and binding site with the highest ANPR ranking was selected for subsequent 
analyses. Interestingly, none of the poses where PPM1D allosteric compounds were 
docked to the AF structure scored above 0.5, indicating that these were unfavorable 
poses (Table S1). This corroborates our pocket assessment results, suggesting that the 
static AF structure is not amenable to docking of the PPM1D allosteric inhibitors. 
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Across the PPM1D MSM ensemble, we found that ANPR assigns the highest scores 
to poses where the compounds bind between the flap and hinge. For each compound, 
we assessed which poses were given a ANPR probability score greater than 0.5. We 
defined those as predicted high-quality poses. We found that residues found at the 
interface of the hinge and flap domain are most likely to make contacts with high-quality 
poses (Fig. 4A). Specifically, residues in the flap domain loop from D277 to V289 are 
most likely to form contacts with these poses. When we overlayed all high-quality poses 
of the compounds onto the AF starting structure, we found that they cluster in a single 
region between the flap and hinge (Fig S10). Next, we classified poses by the protein 
contacts that they form into the following categories: flap domain only, hinge only, flap-
domain interface, and active site (see “Pose classification” in Methods). There are no 
high-quality poses that form contacts only with the hinge and rarely did any high-quality 
poses form contacts with the active site. This is true across all compounds. Considering 
that the PPM1D allosteric inhibitors are non-competitive, our negative control results 
(docking against the active site) bolster our confidence that the ANPR probability scores 
can distinguish between correct and incorrect sites. We used the equilibrium 
probabilities from the MSM to calculate a weighted average of the ANPR score across 
the PPM1D ensemble (Fig. S12). We find that the ensemble-weighted ANPR probability 
is highest at the flap domain and flap-hinge interface (Fig. 4B, S13). Thus, these ANPR 
predictions strongly suggest that PPM1D allosteric compounds bind between the flap 
and hinge.   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533829doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.22.533829
http://creativecommons.org/licenses/by-nd/4.0/


 
 
Figure 4: The AtomNet PoseRanker neural network predicts that poses found at 
the flap-hinge interface are more crystal-like. A) A PPM1D AlphaFold structure 
colored by the frequency with which residues participate in high-quality poses indicates 
that residues needed for high-quality poses are found at the flap-hinge interface. 
Residues in dark red most frequently contact the GSK2830371 compound in its high-
quality poses. High-quality poses were those poses that received a PoseRanker score 
of 0.5 or higher. A contact was defined when a ligand heavy atom was within 4 Å of a 
protein heavy atom. B) The MSM-weighted AtomNet PoseRanker (ANPR) predictions 
across different binding sites show that the flap-hinge interface receives higher ANPR 
scores. Each point represents a different CAA compound. When there were multiple 
poses in one of the binding site categories, we selected the pose with the highest ANPR 
score. We defined the hinge as residues 150-166 and the flap as residues 219-295.   
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Combining MSM-docking with pKi predictions from a neural network accurately 
ranks compounds 
 
While an estimate of pose quality might be helpful in virtual screening, the decision to 
select compounds for synthesis and testing with in vitro assays relies on an estimate of 
a compound’s bioactivity or affinity. The deep learning-based pKi predictor AtomNet has 
been shown to be physics-aware and to be sensitive to pose perturbations.(Gniewek et 
al., n.d.; Wallach et al., 2015) Considering that the CAA compounds have known 
affinities, we can assess whether MSM-docking (Meller et al., 2023) can have an impact 
on the retrospective performance of the AtomNet pKi predictor. 
 

We applied the AtomNet pKi predictor to each of the docked poses in our MSM 
ensemble. The AtomNet pKi predictor was trained using a combination of public and 
proprietary structural data. It outputs a value for the predicted pKi of a compound for a 
particular target given a particular pose provided as input. We docked each compound 
to several sites for each structure in the ensemble. We used the ANPR score to select 
the highest scoring pose per compound-structure pair in the ensemble (Fig. 5A). We 
then passed that compound-state pair as input to the AtomNet pKi predictor, resulting in 
one prediction of the compound’s potency per MSM state. 
 

We find that taking an ensemble perspective that accounts for cryptic pockets 
outperforms results for the static AF structure. We first established a baseline by 
evaluating how well docking scores rank PPM1D allosteric compounds by potency. 
Docking scores for the AF structure alone and MSM-weighted docking scores for the 
ensemble (see Methods) generated very poor predictions of compound potency, 
demonstrating that ranking these compounds is a non-trivial task. In fact, compounds 
with better docking scores were less potent in general (Kendall tb=-0.59, Fig 5B); we 
noticed negative correlation between docking scores and their measured potency. On 
the other hand, the AtomNet pKi predictor ranks more potent compounds higher using 
docked poses against the AF structure alone (tb=0.42, Fig. 5B). The ability to rank 
compounds based on their predicted affinity further improves when we dock to all MSM 
states and weight the pKi predictions based on the equilibrium probability of each state 
(see Methods). Indeed, we achieve an impressive tb of 0.70 when using MSM-weighted 
pKi predictions (Fig. 5B). Thus, combining MSMs with the AtomNet pKi predictor may 
improve the performance of virtual screening.   
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Figure 5: A neural network trained to predict pKi accurately ranks allosteric 
compounds by potency when applied to structures from a PPM1D ensemble. A) 
Schematic highlighting the procedure that was used for selecting a single pose for each 
PPM1D cluster center in the MSM. For each MSM cluster center, we defined multiple 
docking boxes based on the active site, residues involved in photolabeling experiments, 
and P2Rank pockets at the flap and hinge. After performing docking, we selected a best 
pose per MSM state using the PoseRanker neural network. Finally, we fed this best 
docked pose to the AtomNet pKi predictor. B) MSM-weighting of the pKi predictions 
from the AtomNet pKi predictor outperforms docking-based methods as well as a single 
pKi prediction based on the AlphaFold-predicted structure. For each scatter plot, we 
show the line of best fit in black as well as the 95% confidence interval based on 
bootstrapping in translucent grey bands. We report the Kendall rank correlation 
coefficient, a statistic that measures the ordinal association between the predited pKi 
and the measured pKi and whose maximum value is 1.   
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Discussion 
 

Protein phosphatases are a challenging class of drug targets that broadly illustrate 
the advantages of using allosteric compounds.(Köhn, 2020) There are nearly 200 
phosphatases in the human genome, and many are implicated in human diseases, 
including diabetes (Krishnan et al., 2018), neurodegeneration (Vieira et al., 2017), and 
multiple cancers (Pecháčková et al., 2017). Phosphatases are downstream targets of 
several signaling pathways that integrate various cellular signals.(Lu et al., 2008) This 
suggests that targeting of phosphatases may be useful across numerous cancer 
subtypes caused by mutations of upstream proteins or in cases where tumors develop 
resistance to upstream therapies. However, to the best of our knowledge, there are no 
approved therapies that target phosphatases. Previous drug discovery efforts have 
focused on active site inhibitors. Targeting the active site has proved challenging 
because high sequence conservation limits the selectivity of compounds. Furthermore, 
compounds targeting the active site need to be highly charged, limiting their 
bioavailability. Hence, allosteric compounds, like the CAA compounds that target 
PPM1D and novel allosteric inhibitors of SHP2 (Chen et al., 2016), may be needed to 
successfully inhibit phosphatases in clinical settings. 

Definitively establishing the binding site of the PPM1D allosteric compounds remains 
challenging, but our results predict a plausible binding site that agrees with most 
previous experiments. Photoaffinity labeling experiments and flap swap experiments, 
which showed that introducing the PPM1D flap domain can sensitize other 
phosphatases to the PPM1D allosteric inhibitors, strongly implicate the flap domain as 
the primary compound binding site. Our proposed binding site at the flap-hinge interface 
is consistent with these results. Though our proposed binding mode does not directly 
involve the points of covalent attachment (i.e., P219 and M236), we speculate that the 
large photoactivatable benzophenone groups that were added to the compound scaffold 
enable compounds with these groups to bind at our proposed site but still reach these 
residues. Furthermore, Gilmartin et. al. showed that residues 247-268 in the flap are not 
essential for PPM1D allosteric compound binding.(Gilmartin et al., 2014) Consistent 
with these results, our proposed binding site does not involve these residues with the 
minor exception of K247. On the other hand, Miller et. al. demonstrated that deletion of 
the hinge causes a ~1000-fold decrease in binding affinity and a 100-fold increase in 
IC50 for one of the allosteric compounds. Our proposed binding site has substantial 
involvement from hinge residue L157 and an adjacent residue W154. As a result, our 
proposed binding site is consistent with the hinge deletion experiments. However, given 
that residues in the flap, especially residues D277 to V289, are commonly involved in 
high-quality poses, we cannot explain why Miller et. al. report that flap deletion 
(specifically residues 219-287) has no effect on binding affinity or binding kinetics. We 
speculate that it may be possible for the allosteric inhibitors to bind even when most of 
the flap is deleted, but our analysis suggests further experiments are needed to 
disentangle the relative contributions of the flap and hinge to compound binding. 

Furthermore, our results highlight the advantages of explicitly accounting for protein 
conformational heterogeneity when using deep learning methods for predicting 
compound affinity. The AtomNet pKi predictor is designed and trained to be pose-
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sensitive.(Gniewek et al., n.d.; Wallach et al., 2015; Stafford et al., 2022) Its 
performance at ranking compounds varies widely between target structures in the MSM 
(Fig S14). We noticed that even when the poses are likely of poor quality (e.g., the AF 
structure where the cryptic pocket is not present), we still often see relatively good 
predictive performance for the pKis. While some of the predictive power of the AtomNet 
pKi predictor is driven by the pose, we hypothesize that the ligand features might also 
play a part in and influence the predicted pKis that AtomNet pKi predictor outputs. For 
the cases where the pose is poor (e.g., docking against AF structure), we get a baseline 
for how well a ligand-based model would perform. The boost in performance seen with 
MSM-docking is likely due to better poses resulting from docking to structures with open 
cryptic pockets. 
 

Our results also show that MSMs can address some of the limitations of rigid 
docking against AlphaFold predicted protein structures. Rigid docking has lower 
performance when the protein structure(s) being used for docking corresponds to an 
apo or unbound state.(Abagyan et al., 2010) Deep learning-based (DL-based) protein 
structure prediction methods like AlphaFold, are trained using all available data on the 
PDB, and there is data to support that output structures are somewhere in between apo 
and holo.(Saldanõ et al., 2022) Docking efforts against AlphaFold structures show lower 
performance than against holo structures available on the PDB.(Díaz-Rovira et al., 
2022; Wong et al., 2022) Here, we show that this can be mitigated by considering 
conformational heterogeneity using MSMs. Using a highly flexible system, we can 
sample conformations and identify cryptic pockets that can be successfully used in 
downstream virtual screening applications. While our work was based off a single AF 
structure as a starting point, we are aware of efforts to use these DL protein structure 
prediction tools to sample multiple conformations, thus better capturing protein 
flexibility.(Meller et al., 2022a; Saldanõ et al., 2022) To our knowledge, these methods 
have not been compared against MSM approaches and more research would be 
needed before conducting a similar analysis as described herein with a DL-generated 
structural ensemble. 
 

Despite these encouraging results, there are notable limitations to our approach. 
Firstly, most of our pKi analyses included nine capped amino acid compounds. This is 
not a particularly large dataset, and we acknowledge that this is somewhat restrictive in 
terms of establishing robust statistical significance for our results. Ranking based on 
docking scores output by CUina does suggest that this is not a trivial ranking problem, 
and that achieving good predictive performance at random, despite the small data set 
size, is statistically unlikely. While in an ideal scenario we would hope to have a larger 
number of data points to validate our findings, affinity data is often relatively sparse at 
early stages of the pharmaceutical pipeline, so estimating the performance of virtual 
screening can be difficult. Secondly, our data suggests that the AtomNet pKi predictor 
tends to regress to the mean. Even though the ranking metrics are good, the dynamic 
range of predicted vs. observed pKis differ significantly. We hypothesize that this is 
likely due to a data imbalance in the training data of the AtomNet pKi predictor, as data 
points in the extremes of the pKi distribution (either very high or very low) are rare, and 
our sampling strategy during training does not stratify on that property. Still, given that 
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model accurately ranks compounds by potency, our approach represents a promising 
strategy for novel virtual screening campaigns.   
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Conclusions 
 
In summary, we have uncovered a cryptic pocket at the PPM1D flap-hinge interface that 
improves the ability to predict the potency of PPM1D inhibitors. AlphaFold predicts a 
PPM1D structure that lacks high scoring allosteric pockets at proposed binding sites 
based on an analysis conducted using the P2Rank and LIGSITE pocket detection 
algorithms. Though the AF-predicted structure lacks allosteric pockets, molecular 
dynamics simulations of ligand-free PPM1D capture a cryptic pocket at the flap-hinge 
interface. A neural network trained to evaluate the quality of docked poses predicts that 
this site is the most likely binding mode for the PPM1D allosteric inhibitors. Finally, by 
docking compounds to this pocket and using a structure-based pKi predictor, we 
demonstrate that aggregating pKi predictions across a MSM is superior at ranking 
compounds than using docking scores or using the single predicted AlphaFold 
structure. Thus, our methodology provides a promising template for structure-based 
drug discovery and in silico binding site prediction.   
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Methods: 
 
Molecular Dynamics Simulations 
 
The AlphaFold predicted structure (AF-O15297) was used as an initial structure for 
PPM1D simulations since no structures were available in the PDB. However, because 
several PPM1D domains (C-terminus domain and an internal loop stretching from 
residue 39 to 92) are predicted to be disordered (pLDDT < 70) and because we were 
primarily interested in flap domain dynamics, we removed residues 39-92 and truncated 
the C-terminus (residue 396-end).  
 
GROMACS (Abraham et al., 2015) was used to prepare and to simulate PPM1D using 
the CHARMM36m force fields(Huang et al., 2016). The protein structure was solvated in 
a dodecahedral box of TIP3P water (Jorgensen et al., 1983) that extended 1 nm beyond 
the protein in every dimension. Thereafter, sodium and chloride ions were added to the 
system to maintain charge neutrality and 0.1 M NaCl concentration. The system was 
minimized using steepest descents until the maximum force on any atom decreased 
below 1000 kJ/(mol x nm). The system was then equilibrated with all atoms restrained in 
place at 310°K maintained by the Bussi-Parinello thermostat (Bussi et al., 2007) and the 
Parrinello-Rahman barostat (Parrinello and Rahman, 1998). 
 
Production simulations were performed in the CHARMM36m forcefield. Simulations 
were run in the NPT ensemble at 310°K using the leapfrog integrator, Bussi-Parinello 
thermostat, and the Parrinello-Rahman barostat. A 12 Å cutoff distance was utilized with 
a force-based switching function starting at 10 Å. Periodic boundary conditions and the 
PME method were utilized to calculate the long-range electrostatic interactions with a 
grid density greater than 1.2 Å-3. Hydrogen bonds were constrained with the LINCS 
algorithm (Hess et al., 1997) to enable the use of a constant integration timestep of 2 fs.  
 
Adaptive Sampling 
 
We used the Fluctuation Amplification of Specific Traits (FAST) algorithm (Zimmerman 
and Bowman, 2015) to explore a diverse ensemble of states with cryptic pockets. We 
used an objective function that rewarded states based on their total pocket volume as 
measured by LIGSITE.(Hendlich et al., 1997) The following LIGSITE parameters were 
used: a minimum rank of 7, a minimum cluster size of 3, and a probe radius of 0.14 nm. 
Our ranking function also included a term that penalizes states conformationally similar 
to others already selected (the width parameter for this term was 1.5 times the cluster 
radius)(Zimmerman et al., 2017). K-centers clustering was performed after each round 
with the RMSD of C-alpha positions of the entire protein as the distance metric. We set 
a cluster radius of 0.2 nm RMSD as a cutoff. 
 
P2Rank Pocket Detection 
 
We used P2Rank v2.4 (Krivák and Hoksza, 2018) with default parameters to identify 
pockets across all of the representative states (cluster centroids) from our simulations. 
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For subsequent analyses, we consider only pockets with a permissive pocket probability 
(as output by P2Rank) greater than 0.2. 
 
Docking 
 
We docked compounds using a proprietary GPU-enabled docking engine, CUina. 
CUina(Stafford et al., 2022) is a proprietary implementation of smina (Koes et al., 2013), 
which has been parallelized and refactored to operate more efficiently on a GPU. The 
scoring function (Vina scoring function) and sampling routines of CUina are analogous 
to those in smina.  
 
CUina requires a bounding box to restrict its search space. We defined four bounding 
boxes representing each of the three proposes binding sites for CAA compounds, and 
one negative control (active site). For the first two boxes, we used the coordinates of the 
pockets identified by P2Rank in the vicinity of the flap or the hinge of PPM1D (where 
available). The minimum and maximum coordinates of the voxels output by P2Rank 
were used to define the box, and we padded these coordinates by 5 Å along each 
dimension. A third box was defined using the coordinates of the two residues (P219 and 
M236) that were part of the photolabeling experiment described by Gilmartin et al. The 
fourth and final boxed was defined based on the active site: we used the coordinates of 
all the catalytic residues to define the box. The box boundaries were calculated by 
taking the minimum and maximum coordinates of all photolabeling or catalytic residues 
and padding by 5 Å along each dimension. 
 
We docked nine CAA compounds to all states (i.e., a representative structure for each 
MSM state) resulting from the MSM effort described above. For each compound, we 
dock the best (minimized) ligand conformation against all four proposed binding sites. In 
the MSM states where P2Rank failed to identify one of the pockets, docking against that 
pocket was omitted.  
 
For each docking operation corresponding to a binding site + MSM representative 
structure + compound, we output 64 poses and imposed a 1 Å RMSD similarity cutoff, 
thus ensuring that the poses output are sufficiently different from one another. 
 
Pose classification 
 
Following docking, poses were classified based on the contacts that they formed. 
Specifically, we found residues whose heavy atoms were within 4 Å of a ligand heavy 
atom. Next, we classified poses into the following categories based on their list of 
contact residues: flap domain only, hinge only, flap-domain interface, and active site. 
The active site was defined as residues 18, 22, 23, 105, 106, 192, 218, 314, and 366 
based on the annotation in (Gilmartin et al., 2014); the flap domain was defined as 
residues 219-288; and the hinge domain was defined as residues 150-167, which 
includes both a loop and half the helix spanning residues 136-158. If the compound 
made contacts with both a hinge domain and a flap domain residue, it was classified as 
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binding in the flap-hinge interface. 
 
pKi Model Predictions 
 
We used AtomNet’s pKi predictor to perform pKi predictions using the poses generated 
and selected by our pose generation pipeline (CUina + ANPR). AtomNet’s global pKi 
model uses a graph-based convolutional neural network to regress over pKi. 
 
Data: This model was trained using a combination of public and proprietary data, 
spanning more than 4,000 targets for which activity measurements were available. In 
total, several million activity data points were used to train the model. PPM1D was not 
part of the training data for the model, but the training set did include a number of other 
phosphatases.  
 
Architecture: AtomNet’s global pKi model uses the GRAPHite architecture (previously 
described in (Stafford et al., 2022). The GRAPHite architecture is a directed Graph 
Convolutional Network (GCN) comprised of four graph convolutional layers. The first 
two layers include both ligand and receptor features, whereas the last two layers are 
ligand-only. Nodes in the graph represent ligand and receptor atoms. Only receptor 
atoms within 7 Å of any ligand atom were used as part of the graph. Edges were 
defined by atoms within 4 Å of each other and edge weights were distance-dependent. 
The final layer is sum-pooled into an embedding. This embedding is then passed 
through two (independent) multilayer perceptrons to predict two outputs: the ANPR 
pose quality score, and the Vina docking score. Those outputs are then concatenated to 
the embedding and passed through a third multilayer perceptron which outputs the 
predicted pKi.  
 
More details about the method and parameters can be found in (Gniewek et al., n.d.; 
Stafford et al., 2022). 
 
MSM-Weighting of Docking and pKi Predictions 
 
To determine an overall MSM-weighted pKi prediction from pKi predictions for each 
MSM state, we first selected a single highest scoring pose for each state based on the 
AtomNet PoseRanker predictions. Next, we converted the predicted pKi value to an 
association constant. Then, we found a macro-association constant from the individual 
mico-association constants: 

𝐾! =#𝜋"
"

𝐾!! 

 
We use association constants because this ensures that large contributions to the sum 
come from states with either a high equilibrium probability, a large association constant 
(i.e., favor ligand binding), or both. States that have small association constants or low 
equilibrium probabilities will have a minimal contribution to the overall association 
constant. Finally, we convert the overall association constant to a pKi by taking the -
log10 of its inverse. 
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For docking scores which are in units of kcal/mol, we follow a similar procedure. Given 
there were multiple poses for each MSM state, we selected the pose with the highest 
ANPR prediction for that state. Docking scores are then converted to association 
constants: 

𝐾! =	𝑒
#∆%"#$%!&'

&'  
 
Then we follow the same aggregation procedure: 
 

𝐾! =#𝜋"
"

𝐾!! 

Finally, we convert this overall association constant into a pKi by taking the -log10 of its 
inverse. 
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