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Introduction: Gestational diabetes mellitus (GDM), heart disease (HD) and high body
mass index (BMI) are strongly related to Alzheimer’s disease (AD) dementia in pregnant
women. Therefore, we aimed to determine the total effects of GDM, heart disease, and
high BMI on maternal AD dementia.

Methods: We used data from the genome-wide association studies of European
populations including more than 30,000 participants. We performed two-sample
Mendelian randomization (MR) and multivariable MR (MVMR) to systematically estimate
the direct effects of GDM, HD, and high BMI on maternal AD and dementia. Multiple
sensitivity analyses involving classical MR approaches and expanded MR-pleiotropy
residual sum and outlier analysis.

Results: In two-sample MR analysis, the inverse-variance weighted method in our study
demonstrated no significant causality between GDM andmaternal dementia (β = −0.006 ±
0.0026, p = 0.82). This method also revealed no significant causality between high BMI and
maternal dementia (β = 0.0024 ± 0.0043, p = 0.57), and it was supported by the MR-Egger
regression results, which showed no causal effect of high BMI on maternal Alzheimer’s
disease and dementia (β = 0.0027 ± 0.0096, p = 0.78). The IVW method showed no
significant causal relationship between maternal HD and maternal Alzheimer’s disease and
dementia (β = −0.05 ± 0.0042, p = 0.117) and MR-Egger regression analysis gave a similar
result (β = −0.12 ± 0.0060, p = 0.079). In MVMR analysis, we found no significant causal
relationship between GDM, high BMI, or HD and maternal Alzheimer’s disease and
dementia (p = 0.94, 0.82, and 0.13, respectively). Thus, the MVMR estimates were
consistent with our results from the two-sample MR analysis. We confirmed that these
results showed no horizontal pleiotropy and enhanced the robustness of our results
through multiple sensitivity analyses.
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Conclusion: In two-sample MR analysis, we found no significant causal relationship
between GDM, HD, high BMI and maternal AD and dementia. These results differed from
previous observational studies showing HD is a significant predictor of dementia. MVMR
analysis supported no significant causal relationship between GDM, HD, high BMI and
maternal AD and dementia. Sensitivity analysis broadly increased the robustness of two-
sample MR and MVMR analysis results.

Keywords: gestational diabetes mellitus (GDM), heart disease (HD), high body mass index, maternal alzheimer’s
disease and dementia, multivariable mendelian randomization (MVMR)

INTRODUCTION

Gestational diabetes mellitus (GDM) is a heterogeneous disease
with intricate factors both from genetic and environmental risks.
GDM is prone to double from 2016 to 2030 (Koivusalo et al.,
2016) globally. GDM generally occurs in pregnant women
diagnosed with insulin resistance, and GDM women are more
likely to develop type 2 diabetes (T2D) after delivery
(Vounzoulaki et al., 2020). Instead of T2D, GDM with obesity
not only posed a significant threat to pregnant women, but
developed a deteriorated risk to the next generation, which is
urgent to establish a comprehensive investigation for GDM
prevention (Koivusalo et al., 2016). Current studies found
complex associations between GDM, HD, high BMI and AD/
dementia (Deckers et al., 2017; Vacínová et al., 2017; Anjum et al.,
2018). For instance, population-based cohort studies reported
that GDM might induce dementia, and conducted a follow-up
survey among 550 GDM women with T2D and AD. Through
extracting the genetic variants of GDM, T2D and AD by
genotyping analysis, one gene, PICALM (rs3851179) related to
AD, was significantly associated with a higher risk of GDM
(Vounzoulaki et al., 2020). Observational studies have further
reported that GDM is associated with cognitive dysfunction and
dementia (Keskin et al., 2015). In detail, the Montreal Cognitive
Assessment (MoCA) and Symbol Digit Modalities Test (SDMT)
scores have been shown to be significantly lower in GDM patients
than in normal subjects, indicating that (p = 0.003 and 0.004,
respectively) (Keskin et al., 2015). Similarly, obesity is usually
associated with a high body mass index (BMI), and BMI greater
than 30 has been shown to exacerbate GDM (p < 0.001).
Moreover, an increase in adjusted BMI by one standard
deviation due to genetic factors increased the risk of HD
(odds ratio: 1.46, 95% confidence interval: 1.32, 1.02) (Emdin
et al., 2017). From another perspective, a longitudinal cohort
study in 2021 showed that HD and HD-related factors might alter
the risk of dementia (Grande et al., 2020). Furthermore, a high
BMI (≥30 kg/m2) combined with metabolic syndrome increased
the risk of GDM in pregnant women.

Observational studies have reported multiple associations
between GDM, HD, obesity and AD/dementia, but these
studies are susceptible to potential confounding effects. The
associations did not stand for the causality between GDM,
HD, high BMI and dementia, moreover, the causality
demonstrated in observational studies might lack statistical
validity due to confounding factors such as inconsistent

designs, conflicting results and high heterogeneity in the
settings of observational studies. The meta-analysis in 2017
(Deckers et al., 2017) emphasized the correlations between
coronary heart disease, and cognitive disorders. However,
significant heterogeneity and inconsistent results were found
in this analysis. The meta-analysis included 11 cohort studies,
one study showed heart disease might significantly induce
vascular dementia. But other four cross-sectional studies found
no significant evidence that HD could increase the high risk of
dementia. High heterogeneity was detected in these statistical
results, making the results controversial among these
observational studies. Observational findings provided
enriching evidence towards the associations between HD, high
BMI and AD/dementia, but still could not overcome the influence
of confounding factors, meaning that unknown or artificial
intervention rooted in observational studies may lead to biased
estimation towards the relationship or the causality between
exposure(s) and outcome. The latest study published in 2021
(Sana et al., 2021) used statistical analysis to further assess the
association between GDM and Alzheimer’s disease from
pathological mechanisms and Montreal Cognitive Assessment
(MoCA). In this study, Alzheimer’s disease is the most common
cause of dementia (Vacínová et al., 2017), and MoCA assessment
could effectively evaluate the level of cognitive decline in GDM
women. This study investigated 80 GDM women and used
statistical analysis to decipher the association between GDM
and Alzheimer’s disease. The MoCA’s result displayed a
significant decline compared with other control groups in
terms of attention, executive, memory and visuospatial
function (P< 0.05). From the perspective of pathological
mechanisms, the study also found the serum dipeptidyl
peptidase-4 (DPP4) related to GDM also could significantly
alter the risk of dementia in pregnant women (P< 0.05).
What we need to dig further from this study is that, besides
expanding the sample size, considering GDM involves other
complex complications, not limited to risk factors of DPP4,
how to systematically further investigate the relationship
between GDM with other related complications that is the
central point in our study.

To solve the problems mentioned above, we decided to use
Mendelian randomization (MR) to overcome the biased
estimation and reverse causation towards the relationship
between GDM, HD, high BMI and AD/dementia due to
confounding factors. Besides, MR analysis combines
bioinformatics, statistics with genetics, using genetic variants
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[single nucleotide polymorphisms (SNPs)] as the instrumental
variables to estimate whether a causal relationship existed
between exposure(s) and outcome by statistical methods.
Genetic variants are almost impossible to be influenced by
confounders because they are distributed randomly at
conception throughout life, indicating that if genetic variants
are randomly distributed in the population, the causality between
exposure(s) and outcome will be due to genetic inheritance, not
other confounding factors such as environmental risks, lifestyle,
social status and so on (Bowden et al., 2015). Simultaneously, MR
analysis introduces the concept of instrumental variables (IVs)
from statistics, through applying the classical least-squares
principle, to achieve the unbiased estimation towards the
causal relationship between exposure(s) and outcome, and
eliminate the influence from confounding factors. Generally,
MR analysis is based on three essential assumptions: 1) The
genetic variants are instrumental variables (IVs) highly related to
the exposure; 2) IVs are not related to confounders (Katan, 2004);
and 3) the genetic variants have a specific effect on the targeted
outcome, but only via independent exposure factors and not via
other factors (Bowden et al., 2015). Besides, MR has a conceptual
resemblance to randomized controlled trials (RCTs), with
randomization occurring at meiosis. When RCTs are
impractical or unethical, MR analysis can effectively overcome
these intractable problems in RCT (George D. Smith and
Ebrahim, 2003). Recently, databases from genome-wide
association studies (GWASs) have provided flexible, strong
support for MR analysis to identify causal relationships
between specific exposure factors and outcomes.

Multivariable MR (MVMR) is an advanced approach that
allows for the simultaneous evaluation of the effects of separate,
but potentially relevant exposure factors on specific outcomes

(Katan, 2004). In MVMR, genetic variants are permitted to be
relevant to more than one reliable exposure factor, provided that
they are not associated with confounding factors that exist in any
of the exposure–outcome relationships and do not affect those
outcomes directly. The IV assumptions in MVMR are similar to
those in the two-sample MR analysis, except that a series of IVs
are permitted.

This study had two aims. First, we used a two-sample MR
design to investigate the causal effect of each exposure factor on
maternal dementia, using publicly available large GWAS
databases with data on genetic variants related to each
exposure factor and outcome. Second, we used MVMR
analysis to disentangle the overall causal relationship between
exposure factors (GDM, HD, and high BMI) and the outcome
(maternal AD/dementia). The total and direct causal effects of
GDM, HD, and high BMI on AD/dementia were further
delineated in this study.

MATERIALS AND METHODS

We used two-sample MR and MVMR analyses to determine the
independent and total causal effects of GDM, high BMI, and HD
on dementia endpoints in European female populations from a
GWAS summary database (Figure 1). All participants in studies
included in the review provided informed consent to participate
in the original studies. Specific ethical approval was not required
for this study, as it reported summary-level data.

GDM-Related Instrumental Variables
GDM data was predominantly extracted from GWAS summary
data from the European populations in 2020. The data included

FIGURE 1 | Research framework. GDM, gestational diabetes mellitus; BMI, body mass index; HD, heart disease; GWAS, genome-wide association study; IVW,
inverse-variance weighted; MR-PRESSO, pleiotropy residual sum and outlier.
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16,152,119 SNPs related to GDM and 2,062 identified GDM cases
were used in our MR analysis (https://storage.googleapis.com/
finngen-public-data-r2/summary_stats/finngen_r2_GEST_
DIABETES.gz). In the Finnish Gestational Diabetes Study, GDM
was defined as the GDM status at 75 g OGTT during
12–16 weeks, or at 24–28 weeks of gestation stage. Fasting
plasma glucose ≥5.3 mmol/L, 1-hour glucose ≥10.0 mmol/L or
2-hour glucose ≥8.6 mmol/L (Keikkala et al., 2020). The basic
criteria for IVs that were significantly associated with exposure
factors were: 1) Meeting the genome-wide significant threshold
(P = 5e−8) (Lawlor et al., 2008) and 2) no linkage disequilibrium
(LD) with other SNPs to ensure that we obtained genetically
independent SNPs (Lawlor et al., 2008). In our study, we used the
“TwoSampleMR” package of R 4.1.0 version to extract IVs that
were significantly related to GDM, HD and high BMI and prune
SNPs with potential LD among exposures via a moderate screen
criterion (r2 � 0.05, kb � 1000), the scale of r2 is 0~1, r2 � 1
means SNPs with entire LD, thus the smaller r2 indicates the less
likely to occur LD among SNPs. kb represents the region where
SNPs appear LD at their genetic loci. Generally, the scale of kb is
500~50,000, the more distant among SNPs, the less likely to occur
LD among SNPs (Hemani et al., 2018). After data extraction, two
SNPs that met these requirements were included in the
subsequent harmonizing step to perform two-sample MR and
MVMR analyses.

BMI-Related Instrumental Variables
We identified SNPs strongly related (p < 5e−8) to a high BMI (
BMI≥ 30kg/m2) from GWAS data of European ancestry that
were published in 2015 (Locke et al., 2015) and screened these
SNPs using a moderate linkage disequilibrium (LD) criterion
(r2 � 0.05, kb � 1000). For data from this database, a two-stage
meta-analysis was used to identify BMI-related loci in the
European population. In stage one, 234,069 subjects from 80
GWASs of BMI were used, and an additional 34 BMI-related
findings involving 88,137 subjects were accepted. These subjects
were used for secondary meta-analyses and divided into: 1) The
total European population, 2) European men, 3) European
women, and 4) subjects of all ancestries. This database was
supported by the Genetic Investigation Anthropometric Traits
(GIANT) consortium. After reviewing 2,494,613 BMI-related
SNPs, 171,997 female cases were identified and eventually
included in our MR analysis. After extracting the data, 52
SNPs met the requirements and were incorporated into the
subsequent harmonizing procedure to complete the two-
sample MR analysis, and 31 targeted SNPs were used for the
MVMR analysis.

HD-Related Instrumental Variables
We identified SNPs from a large-scale GWAS meta-analysis of
the European population in 2018 (https://gwas.mrcieu.ac.uk/
datasets/ukb-b-12477/) that were closely associated with HD
(p < 5e−8) and screened them via a moderate LD criterion
(r2 � 0.05, kb � 1000). This database was supported by the
United Kingdom biobank study, participants in this study
were enquired about “How did your mother ever suffer from
heart disease,” and heart disease was classified as one of the

chronic diseases investigated in the United Kingdom Biobank
(Trehearne, 2016). This database collected 9,851,867 HD-related
SNPs and 85,620 female HD cases, and we used 85,620 female HD
cases for MR analyses. After extracting the data, ten SNPs that
met the requirements were included in the subsequent
harmonizing step to implement the two-sample MR and
MVMR analyses.

Genetic Information Related to Maternal
Alzheimer’s Disease/Dementia
Maternal Alzheimer’s disease (AD)/dementia data was derived
from a 2017 GWAS summary database of the European
population supported by the United Kingdom biobank
(https://gwas.mrcieu.ac.uk/datasets/ukb-a-210/). This database
comprised data on 10,894,596 dementia-associated SNPs from
26,757 maternal AD dementia cases. In this data, the AD/
dementia was mainly defined as the AD dementia syndrome,
which belongs to the anamnestic syndrome of hippocampal type,
with the relevant decline in memory, executive function,
attention, word-finding, spatial cognition (Karantzoulis and
Galvin, 2011); (Klinedinst et al., 2020). Besides, the
United Kingdom biobank study reported the genetic risk
factor rooted in AD dementia, such as apolipoprotein E ε4
allele (APOE4), and a parental family history of AD dementia.
We used these 26,757 maternal AD dementia cases for
harmonizing SNPs related to GDM, HD, and high BMI to
perform the two-sample MR and MVMR analyses. All
databases used for the two-sample MR and MVMR analyses
are included in Supplementary Datas S1–S3.

Statistical Approaches and Sensitivity
Analyses
First, we used two-sample MR analysis to assess the significance
level of the causal effect of each exposure factor on maternal
dementia. We mainly performed inverse-variance weighted
(IVW) meta-analysis and MR-Egger regression analysis, along
with weighted median, simple mode, and weighted mode
approaches, to determine whether existed a causal effect of
each exposure factor on maternal dementia (Hemani et al.,
2018); (Bowden et al., 2015); (Bowden et al., 2016). IVW is an
integral approach used to realize unbiased estimations, and it
ensures the appropriate statistical power to detect a causal
relationship between an exposure factor and an outcome. MR-
Egger regression is similar to IVW, except it includes an intercept
term for the average pleiotropic effect. The intercept in the MR-
Egger regression can be used to test the IV hypothesis. When an
average pleiotropic effect exists, the intercept is not zero,
indicating that the IV assumptions are invalid. As a type of
sensitivity analysis, the heterogeneity test was primarily used to
detect significant outliers in each IV and thus guarantee the
validity of the IV assumptions. We used IVW, multiple random-
effects modeling, and the MR-Egger intercept to perform a
heterogeneity test. We then used the pleiotropy test (mainly
the MR-Egger intercept) to identify significant outliers in
multiple IVs. Our sensitivity analysis also included a “leave-
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one-out” sensitivity test to monitor significant differences in our
models before and after excluding each IV (Zheng et al., 2017).
Scatter plots and funnel plots were also used to visualize and
detect outliers to draw consistent conclusions with the sensitivity
analysis described above.

Second, we used MVMR analysis to perform a multivariable
linear regression, combining the exposure factors (GDM, high
BMI, and HD) with maternal dementia. We mainly used the
multivariable IVW method for MVMR analysis (Katan, 2004) to
calculate the causal effects of GDM, high BMI, and HD on
maternal dementia. To enhance the robustness of the model,
we performed a sensitivity analysis using the MR-pleiotropy
residual sum and outlier (MR-PRESSO) method (Verbanck
et al., 2018), and we used a global test to detect horizontal
pleiotropy in our multivariable linear regression model. After
correcting for pleiotropy, we used an outlier test to detect outliers.
Moreover, we used a distortion test to determine significant
differences before and after correcting pleiotropy.

Additional sensitivity analyses were necessary to enhance the
robustness of two-sample MR and MVMR models. In the two-
sample MR analysis, a heterogeneity test, a pleiotropy test, and a
“leave-one-out” sensitivity test were used to detect heterogeneity,
rectify horizontal pleiotropy, and remove outlier variants,
respectively. In the MVMR model, MR-PRESSO global tests
were mainly used to detect potential outliers, correct for
horizontal pleiotropy, and resolve heterogeneity. All analyses
were performed using R software version 4.0.4, with “two-
sample MR” R package version 3.5.3 and MR-PRESSO version
1.0 (https://www.r-project.org/).

RESULTS

Results of Two-Sample MR Analysis of
Exposure Factors and Maternal Dementia
Table 1 show the results of two-sampleMR analysis regarding the
effects of exposures on maternal AD/dementia, as determined
through multiple methods. First, we identified two SNPs strongly
associated with GDM (p = 5e−8, Supplementary Data S1), and
the maternal AD/dementia-related information was
independently extracted (r2 � 0.05, kb � 1000, Supplementary

Data S2). By harmonizing these SNPs, we could calculate their
causal effects on GDM and maternal dementia. As shown in
Table 1, there was no causal relationship between GDM and
maternal dementia using IVWmethod (β = −0.0006 ± 0.0026, p =
0.82). We then analyzed 52 SNPs strongly associated with high
BMI (p = 5e−8, Supplementary Data S1), and those SNPs were
independently extracted (r2 � 0.05, kb � 1000) from genetic
information related to maternal AD/dementia (Supplementary
Data S2). By harmonizing these SNPs, we could detect the causal
effect of high BMI on maternal dementia. As shown in Table 1,
no significant causal relationship between high BMI andmaternal
dementia was identified using the IVW method (β = 0.0024 ±
0.0043, p = 0.57). The MR-Egger method also showed no support
for a causal relationship between high BMI and maternal
dementia (β = 0.0027 ± 0.0096, p = 0.78). The effect direction
was consistent across all MR methods (weighted median, simple
mode, and weighted mode).

Additionally, we identified 10 SNPs strongly associated
with HD (P = 5e−8, Supplementary Data S1), and those SNPs
were independently extracted (r2 � 0.05, kb � 1000) from
genetic information related to maternal dementia
(Supplementary Data S2). By harmonizing the data on
these SNPs, we further evaluated the causal relationship
between HD and maternal dementia. As shown in Table 1,
there was no significant causal relationship between maternal
HD and dementia using the IVW approach (β = −0.05 ±
0.0042, p = 0.117). Similarly, the MR-Egger method did not
support the causal relationship between BMI and maternal
dementia (β = −0.12 ± 0.0060, p = 0.079). The effect direction
was consistent across all MR methods (simple mode and
weighted mode).

Sensitivity Analyses of the Effects of
Exposure Factors on Maternal Dementia
The results of sensitivity analyses regarding the effects of
exposure factors on dementia are shown in Supplementary
Tables S2–S7 in Supplementary Data S3. As shown in
Supplementary Table S2, there was no significant
heterogeneity between GDM and maternal dementia (p =
0.11). However, the data presented in Supplementary Table

TABLE 1 | | Two-sample MR result: the causal effect of GDM, high BMI, HD on maternal AD/dementia.

Exposure Method N(SNPs) β Standard deviation p-Value Outcome

GDM Inverse-variance weighted 2 −0.0006 0.0026 0.82 Alzheimer’s disease and Dementia
High BMI Inverse-variance weighted 52 0.0024 0.0043 0.57 Alzheimer’s disease and Dementia
High BMI MR-Egger intercept 52 0.0027 0.0096 0.78 Alzheimer’s disease and Dementia
High BMI Simple mode 52 0.000068 0.0033 0.98 Alzheimer’s disease and Dementia
High BMI Simple mode 52 0.0065 0.0092 0.49 Alzheimer’s disease and Dementia
High BMI Weighted mode 52 0.0033 0.0070 0.64 Alzheimer’s disease and Dementia
HD Inverse-variance weighted 10 −0.05 0.0042 0.117 Alzheimer’s disease and Dementia
HD MR-Egger intercept 10 −0.12 0.0060 0.079 Alzheimer’s disease and Dementia
HD Simple mode 10 0.08 0.0035 0.157 Alzheimer’s disease and Dementia
HD Simple mode 10 0.08 0.0090 0.423 Alzheimer’s disease and Dementia
HD Weighted mode 10 −0.10 0.0050 0.063 Alzheimer’s disease and Dementia

N (SNPs) stands for the number of SNPs in GDM, high BMI and HD. β stands for the estimated coefficient calculated by multiple methods, including inverse-variance weighted, MR-Egger
intercept, simple mode, weighted mode methods in our two-sample MR analysis.
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S3 show significant heterogeneity between BMI and maternal
dementia using the IVW (p = 0.034) and MR-Egger (p = 0.028)
methods. Therefore, we corrected heterogeneity using multiple
random-effects modeling (Supplementary Table S4). As shown
in Supplementary Table S5, there was no significant pleiotropy
between BMI and maternal dementia via an MR-intercept test

(p = 0.77). The data presented in Supplementary Table S6
demonstrate no significant heterogeneity between HD and
maternal dementia (p = 0.15), and those presented in
Supplementary Table S7 show no significant pleiotropy
between HD and maternal dementia using the MR-intercept
test (p = 0.17).

FIGURE 2 | Results of “leave-one-out” sensitivity analysis of the association between high BMI, HD, andmaternal dementia in two-sample MR analysis. (A) Results
for the association between high BMI and maternal dementia. (B) Results for the association between HD and maternal dementia. Each black line represents the MR
effect after eliminating each SNP at a 95% confidence interval. Each black point represents the median value (that is, the β value) across each black line. The red line at the
bottom represents the total MR effect in the sensitivity analysis.

FIGURE 3 | Visualization of the MR analysis results for GDM, high BMI, HD, and maternal dementia. (A) Scatter plot for MR analyses of the causal association
between GDM andmaternal dementia mainly via IVWmethod. The slope of the blue line in the middle indicates the MR effect using the IVW estimation. (B) Funnel plot of
the causal association between high BMI and maternal dementia. We performed analyses by the classical IVW and MR-Egger tests. The two vertical lines (from left to
right) in the middle represent the MR effect using IVW method and MR Egger methods, respectively. (C) Scatter plot of the MR effect of HD on maternal dementia
determined using multiple methods. Analyses include the IVW and MR-Egger methods, the simple mode, and the weighted median and weighted mode. The slope of
each line in the middle indicates the MR effect for each method.
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Furthermore, we performed “leave-one-out” sensitivity
analysis to test the robustness of our MR results related to
high BMI, HD, and maternal dementia. The “leave-one-out”
sensitivity analysis could not be applied to GDM and maternal
dementia due to insufficient SNPs. As shown in Figures 2A,B,
each red line is to the left of zero, and each black point in the
middle of each black line is to the left of zero, indicating that our
fitted results are robust, with no outliers, and thus will not be
influenced by the removal of each SNP.

Visualization of the Exposure Factors and
Maternal Dementia
Figure 3 shows the visualization results for GDM, high BMI, HD,
and maternal dementia. First, we visualized the causal link
between GDM and maternal dementia. In Figure 3A, the blue
line in the middle is flat, indicating no MR effect of GDM on
maternal dementia. Figure 3B shows a funnel plot to visualize the
MR effect of BMI on maternal dementia, as determined by IVW
and MR-Egger regression analyses. All SNPs (black points) were
distributed symmetrically and evenly on both sides of the central
axis (IVW and MR-Egger regression estimation). No outliers
deviated significantly from the central axis, indicating that our
fitted effect was robust. Figure 3C shows a scatter plot to visualize
the MR effect of HD on maternal dementia, assessed using
multiple methods. The slope of each line in the middle
indicates the MR effect per method. The MR effect of simple
mode method was positive, while the other four approaches were
negative.

Results of MVMR and MRPRESSO
Sensitivity Test for the Effects of Exposure
Factors on Maternal Dementia
In MVMR analysis, we mainly used the multivariable IVW
method to calculate the total causal effects of GDM, high
BMI, and HD on maternal dementia. Table 2 shows the
overall MVMR result using the multivariable IVW method,
which showed no significant causal effects of GDM (p = 0.94),
high BMI (p = 0.82), or HD (p = 0.13) on maternal AD/dementia.

We then performed an MVMR sensitivity test based on MR-
PRESSO analysis as shown in Supplementary Tables S9–S11 in
Supplementary Data S3. Supplementary Table S9 shows the
significant pleiotropy revealed by our multivariable linear
regression modeling (p = 0.004). Hence, we used the MR-
PRESSO outlier test to eliminate horizontal pleiotropy and
determine whether outliers still existed. As shown in
Supplementary Table S10, after eliminating horizontal

pleiotropy, no significant outliers existed in the MVMR effect
of each exposure on maternal dementia (p = 0.43, 0.53, and 0.10
for GDM, high BMI, and HD, respectively) . To confirm the
robustness of our multivariable linear regression model, we also
used the MR-PRESSO distortion test to detect significant
differences across the causal estimations of our MVMR
analysis before and after outlier removal. Finally, as shown in
Supplementary Table S11, there were no significant differences
in our MVMR results before and after eliminating outliers,
further indicating the overall robustness of our MVMR results
for the causality between GDM, high BMI, and HD and maternal
dementia. All tables are presented in the Supplementary
Material, and all data used for MVMR analysis are presented
in Supplementary Data S4.

DISCUSSION

The aim of this study was to systematically estimate the gender-
specific causal effects of GDM, HD, and high BMI on maternal
dementia from large-scale GWASs databases of female European
populations. Our MR design allowed us to disentangle the
independent and total effects of genetically predicted GDM,
HD, and high BMI on maternal dementia. GDM, HD, and
high BMI due to genetic variants were not causally related to
the risk of maternal dementia when using two-sample MR
analysis, whose databases from the GIANT and MRC-IEU
(included 259,679 female participants). These non-significant
findings were consistent among various sensitivity analyses
(IVW, MR-intercept test, multiple random-effects modeling,
and “leave-one-out” sensitivity test) used to assess
heterogeneity, pleiotropy, and no-bias estimations.
Additionally, we found no significant total causal effect of
GDM, HD, high BMI on maternal dementia in multivariable
Mendelian randomization. The results of the sensitivity analysis
(MR-PRESSO test) were broadly consistent with the MVMR
results, which also supported our causal inference.

A previous study investigated the association between GDM
and dementia, but it lacked sufficient evidence and multiple
sensitivity tests to confirm the validity of these results
(Vacínová et al., 2017). Vacínová et al. investigated 550 GDM
women, Alzheimer’s disease (AD), and type 2 diabetes mellitus
(T2D) over a period of 20 years. Genetic variants related to AD
and T2D were included in the statistical analysis (mainly chi-
square tests) to assess the relationship between GDM and AD.
There were no statistically significant associations between
candidate genes related to AD (rs381361 in CR1, rs744373 in
BIN1, rs11136000 in CLU) and GDM, but one gene, PICALM

TABLE 2 | | Results of MVMR analysis regarding the overall causality between GDM, high BMI, HD and maternal AD/dementia.

Exposure Method N (SNPs) β Standard deviation p-Value Outcome

GDM Inverse-variance weighted 2 −0.0001 0.0018 0.94 Alzheimer’s disease and Dementia
High BMI Inverse-variance weighted 31 −0.001 0.0046 0.83 Alzheimer’s disease and Dementia
HD Inverse-variance weighted 5 −0.078 0.051 0.13 Alzheimer’s disease and Dementia

N (SNPs) stands for the number of SNPs in GDM, high BMI and HD. β stands for the estimated coefficient calculated by inverse-variance weighted in our MVMR analysis.
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(rs3851179), was significantly associated with a high risk of GDM.
Moreover, the study of Vacínová et al. only used chi-square tests
with small sample sizes to perform statistical analyses related to
GDM and AD, and no sensitivity analysis was performed. In our
study, we expanded the sample size of GDM- (n = 2062) and
dementia-related (n = 26,757) database from the GWASs
database, which will provide solid data support for our MR
analysis results compared to previous studies.

Moreover, we used two-sample Mendelian randomization and
MVMR analysis, including sensitivity analyses, to systematically
assess the causal effects of GDM, HD, and high BMI on maternal
dementia. Our sensitivity analysis results were all consistent with
the results obtained by MR. We also found one previous MR
study that showed no causal relationship between T2D and
dementia in a European population (Thomassen et al., 2020).
As T2D and GDM have a similar pathogenesis (Vounzoulaki
et al., 2020), this finding supports our MR result regarding GDM
and dementia.

A previous systematic review and meta-analysis published in
2017 (Deckers et al., 2017) reported associations between HD,
coronary heart disease, and cognitive dysfunction, but there were
inconsistent results and a high level of heterogeneity among the
studies included in the analysis. In the 11 prospective cohort
studies included in that meta-analysis, one study concluded that
HD has a significant role in the development of vascular
dementia. Four cross-sectional studies that included 623,588
participants found no significant evidence of a relationship
between HD and dementia. However, in the meta-analysis that
included 10 studies involving 24,801 participants, HD was found
to significantly increase the risk of developing dementia. These
studies were large-scale population-based investigations with
multiple study designs, but major conclusions were drawn
from these studies. Moreover, a high level of heterogeneity was
detected due to inconsistent methods among the cross-sectional
studies. Inconsistent results for the relationship between HD and
dementia have also been reported due to different study designs
in cross-sectional studies (Anjum et al., 2018). We used MR
analysis to ensure consistent results regarding the causal
relationship between HD and dementia. In two-sample MR
analysis, we found no significant causal effect of HD on
maternal dementia using the IVW method and MR-Egger
intercept test. This was consistent with the results of our two-
sample MR analysis.

A literature review published in 2018 (Anjum et al., 2018),
including 15 prospective studies, found that obesity is associated
with a higher risk of dementia. In obese individuals, long-term
food overconsumption may significantly influence cerebral
glucose metabolism and exacerbate the potential risk of
developing dementia. However, these observational studies did
not account for reverse causation and confounders, leading to
potentially inaccurate correlations between BMI and dementia.

For instance, epidemiological studies have found that elevated
BMI later in life has a lower impact on dementia. However, MR
analysis as the core methodology in current study effectively
overcomes the influence of reverse causation and confounders.
Moreover, our two-sample MR analysis showed no significant
causal effect of maternal HD on dementia. The lack of a causal

relationship between GDM and maternal dementia in MVMR
analysis was consistent with our two-sample MR analysis results.
A previous MR study reporting no significant relationship
between BMI and dementia in a European population also
supports our results (Nordestgaard et al., 2017).

Our study has three main strengths. First, using data from
previous studies, we expanded the sample size of large-scale
GWASs of GDM and dementia and systematically studied the
causal effects of GDM-related exposure factors (HD, high BMI)
on maternal dementia. Second, to the best of our knowledge,
there was no measurement bias in our gender-specific MR
analysis. After detecting potential pleiotropy between BMI and
maternal dementia in two-sample MR analysis, we used multiple
random-effects modeling to correct for pleiotropy and ensure the
robustness of our model. Similarly, when assessing pleiotropy in
MVMR analysis, we used the MR-PRESSO outlier test, effectively
guaranteeing the validity of IV assumptions in MR modeling.
Thirdly, we also found consistent results both in two-sample MR
and MVMR analyses. The non-significant findings in MVMR
estimates of GDM, high BMI, HD, and maternal dementia were
consistent with the magnitude and direction of the causal genetic
effect seen in two-sample MR analysis, broadly confirming the
credibility of our conclusion.

Our study also has some limitations that should be noted. First,
we focused on clinical diagnoses of maternal dementia rather than
neuropathological diagnoses, and our MR results may have been
influenced by different diagnoses. Discrepancies between clinical and
neuropathological diagnoses of dementia have been reported
(Sutherland et al., 2017). Another previous study found that
vascular dementia and AD may exacerbate vascular damage,
diabetes, and hypertension, based on clinical diagnoses and
pathological findings (Arvanitakis et al., 2006). We found that
T2D was not causally linked to AD, which is consistent with
studies involving neuropathological findings (Abner et al., 2016).
Therefore, clinical diagnoses could reasonably be used in our study.
Given the similar pathogenic mechanisms of T2D and GDM
(Vounzoulaki et al., 2020), these clinical and neuropathological
findings support our MR results concerning maternal AD/
dementia and GDM. Second, we need to further collect more
information regarding how HD was diagnosed in the
United Kingdom Biobank study. Third, we acknowledged the
lack of power in the GWAS database of GDM. Compared with
the current GWAS database of GDM (Pervjakova et al., 2022), the
GDM database we collected only included 2062 GDM women,
which might influence the statistical power of our MR results as we
just extracted only two independent SNPs of GDM. We hope to
include more GWAS studies with this complications in the future.
Fourth, we will adopt advanced methods such as non-linear
Mendelian randomization (Zhou et al., 2021), limited information
maximum likelihood (Davies et al., 2015) methods to ensure the
validity of SNPs selection in MR analysis. Although genetic variants
are likely to be regarded as valid IVs due to their genetic advantages
inMR analysis, Mendel’s second law is not applicable for all diseases
(Smith and Ebrahim, 2003), especially in those diseases with intricate
factors. For instance, in our study, GDM and AD dementia are both
with a wide range of risk factors (including environmental risks and
genetic inheritance), so besides traditional method of selecting SNPs,
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it is necessary for us to adopt advanced techniques to ensure the
validity of SNPs selection regarding GDM and AD dementia in the
future.

CONCLUSION

We used MR to evaluate the causal relationship between GDM,
maternal HD, or high BMI and maternal dementia. In the two-
sample MR analysis, we found no significant causal relationship
between GDM, HD, or high BMI and maternal AD/dementia,
which differs from the results of previous observational studies
showing that HD is a significant predictor of dementia. This
discrepancy may be due to confounding factors and reverse
causation in previous studies. Our MVMR analysis gave
consistent results, revealing no significant causal effect of
GDM, HD, or high BMI on maternal AD/dementia. Then we
used multiple sensitivity tests to detect potential outliers, correct
for horizontal pleiotropy, and resolve heterogeneity, but due to
the limited samples of GDM, our robustness of sensitivity tests
still needs to be verified in the future. Future investigations of the
potential risks of GDM, heart disease, high BMI and other
relevant complications in maternal AD/dementia are necessary
when larger datasets of these diseases become available.
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