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Abstract

Treatment options for autosomal dominant polycystic kidney disease (ADPKD) will likely become available in the near
future, hence reliable diagnostic and prognostic biomarkers for the disease are strongly needed. Here, we aimed to define
urinary proteomic patterns in ADPKD patients, which aid diagnosis and risk stratification. By capillary electrophoresis online
coupled to mass spectrometry (CE-MS), we compared the urinary peptidome of 41 ADPKD patients to 189 healthy controls
and identified 657 peptides with significantly altered excretion, of which 209 could be sequenced using tandem mass
spectrometry. A support-vector-machine based diagnostic biomarker model based on the 142 most consistent peptide
markers achieved a diagnostic sensitivity of 84.5% and specificity of 94.2% in an independent validation cohort, consisting
of 251 ADPKD patients from five different centers and 86 healthy controls. The proteomic alterations in ADPKD included,
but were not limited to markers previously associated with acute kidney injury (AKI). The diagnostic biomarker model was
highly specific for ADPKD when tested in a cohort consisting of 481 patients with a variety of renal and extrarenal diseases,
including AKI. Similar to ultrasound, sensitivity and specificity of the diagnostic score depended on patient age and
genotype. We were furthermore able to identify biomarkers for disease severity and progression. A proteomic severity score
was developed to predict height adjusted total kidney volume (htTKV) based on proteomic analysis of 134 ADPKD patients
and showed a correlation of r = 0.415 (p,0.0001) with htTKV in an independent validation cohort consisting of 158 ADPKD
patients. In conclusion, the performance of peptidomic biomarker scores is superior to any other biochemical markers of
ADPKD and the proteomic biomarker patterns are a promising tool for prognostic evaluation of ADPKD.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the

most frequent hereditary kidney disease, affecting between 1 in

400 and 1 in 1000 individuals of the general population [1,2]. The

growth of innumerable cysts in both kidneys causes progressive

kidney dysfunction leading to end stage renal disease (ESRD) by

the sixth decade in 50% of affected patients [3]. The disease is

caused by mutations in the PKD1 (85% of cases) or the PKD2

gene (15% of cases).

The disease course of ADPKD is characterized by high inter-

and intra-familial variability that hampers the prediction of disease

progression [4]. Affected individuals may retain adequate renal

function until their 9th decade, whereas others progress to ESRD

by their 3rd decade. Genetic modifiers as well as environmental

factors are likely to influence the disease course, although

information on these factors is sparse and the currently known

factors only account for a small proportion of the predictive power

for prognosis [5,6,7]. In particular, glomerular filtration rate

(GFR) remains stable for many decades in the early disease stages,
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when predicting disease progression would be most valuable for

counseling ADPKD patients [8]. During the last decade, several

pathways involved in the generation and growth of cysts in

ADPKD have been unraveled and several of these pathways have

led to the development of targeted medical therapies [9]. Specific

treatment options, such as the vasopressin antagonist tolvaptan,

somatostatin analogues, and angiotensin converting enzyme

inhibitors or angiotensin receptor blockers are currently being

evaluated in large clinical trials that await completion or

publication and may become available in the near future, whereas

other therapeutic options, such as the cyclin dependent kinase

inhibitor roscovitine, are in preclinical development. Since these

treatments will most likely need to be given over long periods of

time, prognostic evaluation of patients will gain further impor-

tance, particularly since the potential therapeutic benefits need to

be balanced against side effects and costs.

The diagnosis of ADPKD is usually based on the observation of

kidney cysts by ultrasound in patients with positive family history

for ADPKD [10]. However, ultrasound imaging has limited

sensitivity in children and young adults, particularly those with

PKD2 mutations, and thus ADPKD cannot be reliably excluded

by ultrasound before the age of 30 years [10]. Furthermore

molecular diagnosis by genetic testing has been hampered by the

genetic complexity of ADPKD, and only 65% of ADPKD patients

exhibit definitive pathogenic (i.e. truncating) mutations [11].

Proteomic analysis of urine offers a noninvasive means to

simultaneously detect changes in the expression and processing of

multiple proteins [12]. In contrast to other body fluids, such as

serum or plasma, the urinary proteome does not undergo

detectable degradation by endogenous proteases after voiding,

thus minimizing the bias introduced by preanalytical sample

handling [13]. CE-MS analysis of over 10,000 individual urine

samples demonstrated high stability and consistency of the urinary

low molecular weight proteome [14]. Through the simultaneous

measurement of hundreds of polypeptides followed by appropriate

statistical analysis, a combination of distinct biomarkers in a

classifier, rather than single biomarkers, can be developed, which

largely increases sensitivity and specificity in comparison to the

singla markers. Urinary biomarkers and biomarker-based classi-

fiers could be validated in several independent studies [15,16,17],

further supporting the validity of the approach and demonstrating

the stability of the human urinary proteome/peptidome.

We have previously identified a urinary polypeptide pattern

characteristic of ADPKD using capillary electrophoresis coupled

online to mass spectrometry (CE-MS) [18]. Here, we sought to

validate these findings in the large prospective ADPKD cohort of

the Consortium for Radiologic Imaging Studies in Polycystic

Kidney Disease (CRISP) and to develop a biomarker model for

disease severity that may aid prognostic evaluation.

Results

The design of the study, samples used and the flow of the data

are graphically depicted in Figure 1. In total, spot urine samples

from 224 CRISP patients [19], 68 patients of the SUISSE

ADPKD study [20],275 healthy controls (mean age 37615 years,

49% females, all caucasians) and from 481 patients suffering from

a variety of non-cystic renal and systemic diseases were analyzed.

The demographic data, kidney volume, GFR and clinical

characteristics were similar among patients of the CRISP and

SUISSE ADPKD cohorts (Table 1). The mean available follow-

up time after collection of urine for proteomic analysis was

2.9960.46 (range: 0.98–4.23) years in the CRISP cohort and

2.1860.49 (range: 1.46–3.37) years in the SUISSE ADPKD

cohort.

Since the previously published biomarker model for ADPKD

[18] was based on a relatively small number of patients (n = 17),

we now based our analysis on a larger number of urine samples,

aiming to identify additional urinary peptides that are altered in

ADPKD and to assure an adequate number of individuals to

develop a robust biomarker score. We compared peptidome data

of 41 SUISSE ADPKD patients to 189 healthy controls (mean age

37615 years, 49% females). Compiled urinary proteomic patterns

of ADPKD and control patients are given in Figure 2. Statistical

comparison of cases and controls resulted in the identification of

657 peptides that were significantly different between the two

groups after adjustment for multiple testing. Of these, 209 could be

sequenced using high-resolution tandem mass spectrometry. Most

biomarker candidates were collagen fragments, possibly reflecting

substantial alteration in extracellular matrix (ECM) turnover. The

CE-MS characteristics of all differentially excreted peptides, their

regulation in ADPKD, and where applicable their sequence are

given in Table S1.

Based on these peptides we next established a support-vector-

machine (SVM)-based diagnostic score. Because the number of

potential biomarkers substantially exceeded the number of samples

in the study, we reduced the number of variables for the biomarker

model to the most consistently altered 142 peptides using a ‘‘take-

one-out’’ procedure in the total cross-validation of the training

data. Of these 142 peptides, 57 could be identified by means of

their peptide sequence (Table 2). The SVM-based model

combines the amplitude of all 142 markers for a given urine

sample into a score, which denotes the distance of that sample in a

142-dimensional space (every dimension representing the abun-

dance of one peptide) from a hyperplane that is designed to

separate the cases from controls. The parameters of the kernel

function for the 141-dimensional hyperplane were: cost (C) of 640

and kernel width (c) of 0.000003. Of these 142 markers, 23 had

been among the markers used in the previously published

ADPKD_38 model [18]. The SVM-based diagnostic model,

ADPKD_142, yielded an area under the receiver operator

characteristics curve (AUC) of 0.98 in the training cohort using

total take-one-out cross validation. Upon validation in the

independent CRISP cohort and 86 healthy controls, the model

achieved an AUC of 0.95 (95% confidence interval [CI] 0.92–

0.98), corresponding to a sensitivity of 84.4% and a specificity of

94.2% when using a predefined cutoff value that yielded optimal

sensitivity and specificity in the cross-validated training data

(Figure 3). A sensitivity analysis for potential center bias was

performed by applying the biomarker model to 27 SUISSE

ADPKD patients that were not used to generate the model,

yielding similar sensitivity (85.2%) as for the CRISP cohort.

Combination of CRISP patients and these 27 SUISSE ADPKD

patients to validate the model resulted in an overall sensitivity of

84.5%.

It has been suggested that in ADPKD, signaling pathways of

tubular cell injury and repair are inadequately activated [21].

Several acute kidney injury (AKI) and tubular injury markers, such

as NGAL [22] and KIM-1 [23,24] have been found to be elevated

in ADPKD. We therefore tested whether urinary proteomic

changes in ADPKD overlap with changes found in AKI. In fact, of

the 209 urinary peptides that were altered in ADPKD and have

been sequenced, 40 overlapped with peptide fragments that were

altered in acute kidney injury (AKI) patients [25] and in 17 of

these, one of the two (N- or C-terminal) cleavage sites was identical

to the AKI peptides: 13 collagen alpha-1(I), 1 albumin and 3

fibrinogen alpha fragments. When testing the ADPKD urines with

Urine Proteomics in ADPKD
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a CE-MS based biomarker model that has been developed to

detect AKI [25], 112 of all 292 ADPKD patients (38.4%) scored

positive, hence ADPKD patients show considerable signs of acute

kidney injury in their urinary peptidome. In contrast, when

applying the ADPKD_142 biomarker model to 38 urine samples

of 16 patients with AKI, none of the AKI urines scored positive for

ADPKD. This suggests that the ADPKD_142 biomarker model

contains additional markers that are specific for ADPKD vs. AKI.

To further evaluate the specificity of the ADPKD_142 model, we

tested a total of 481 patients suffering from a variety of non-cystic

renal and systemic diseases. Table 3 depicts the diagnostic groups

and their rates of false positive tests; overall specificity of the model

was 90.2%. Hence, the detected proteomic alterations are specific

for ADPKD and do not simply reflect renal damage. Finally,

combining all validation cohorts described above (i.e. all patients

that were not used for biomarker discovery: 224 CRISP patients,

27 SUISSE ADPKD patients, 86 healthy controls and 481

diseased controls, total n = 918), yielded an overall sensitivity and

specificity for ADPKD of 84.5% and 90.8%, respectively.

Table 1. Clinical characteristics of all CRISP and SUISSE
ADPKD study patients included in the proteomic analysis.

Cohort SUISSE ADPKD CRISP

N 68 224

Age 31.466.3 32.468.7

Sex (% female) 35.8 59.4

Hypertension (%) 70.8 61.6

eGFR 86.4615.5 89.1627.8

TKV 10236592 10786647

GenotypePKD1PKD2no detectable
mutation

not available 78.1%13.8%7.1%

eGFR, estimated glomerular filtration rate according to the MDRD study
formula; TKV, total kidney volume. Values are mean 6 SD unless otherwise
specified.
doi:10.1371/journal.pone.0053016.t001

Figure 1. Usage of samples and flow of information. A, Identification and validation of diagnostic biomarkers and biomarker models. 41 cases
of ADPKD were compared to 189 healthy controls, which resulted in the definition of 657 potential biomarkers. Of these, 142 were employed in an
SVM-driven biomarker model, ADPKD_142. All potential biomarkers and the biomarker model were evaluated in a test set of 310 blinded samples
that consisted of 224 samples from patients with ADPKD and 86 healthy controls. The ADPKD_142 model was further validated using additional
ADPKD samples from the SUISSE ADPKD study (n = 27) and using controls samples of patients with a variety of different renal and systemic diseases.
B, Identification and validation of biomarkers and biomarker model for disease severity. CE-MS data from 135 urine samples from patients with
ADPKD were correlated with height adjusted TKV (htTKV), resulting in the identification of 99 potential biomarkers associated with htTKV. Employing
linear combination, a biomarker models indicative of disease severity was established. This biomarker model was subsequently tested in a validation
set consisting of 153 ADPKD samples.
doi:10.1371/journal.pone.0053016.g001
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The sensitivity and specificity of the diagnostic ultrasound

criteria depend on age and genotype, with sensitivity being

reduced in young patients and patients with PKD2 genotype [10].

The accuracy of the ADPKD_142 urinary biomarker model

exhibited a similar dependence on age and genotype (Table 4):

sensitivity was lower in young patients and in PKD2 genotype. In

the subgroup of patients with PKD1 genotype aged $20 years, the

model achieved a sensitivity of 91.9% and specificity of 93.0%.

Given the lack of prognostic markers for ADPKD, we next

tested whether the urinary proteome of ADPKD patients might

reflect disease severity and progression. Since the ADPKD_142

model was generated to distinguish ADPKD from healthy controls

with optimal accuracy, the diagnostic score is not expected to

correlate well with disease severity. Nevertheless, the

ADPKD_142 score correlated positively with total kidney volume

(TKV), height adjusted total kidney volume (htTKV) and absolute

annual TKV growth (ml per year) and negatively with GFR

(Table 5), but these correlations were weak. No correlation was

found with proteinuria and albuminuria. Since proteomic markers

that correlate highly with disease severity may have been excluded

from the diagnostic model due to their large variability within

ADPKD patients, we next tested the abundance of all 5352

urinary peptides detectable in ADPKD samples for correlation

with htTKV, which has been shown to be predictive of future

GFR decline and the development of CKD stage III [26]. The

analysis was done in a randomly chosen set of 134 patients and

validated in a set of 158 patients derived from both ADPKD

cohorts. 99 peptides showed a correlation (Spearman’s r) of

.0.25/,20.25 with htTKV (Table S2). Aiming at a classifier

that has superior value in comparison to a single biomarker, we

combined all 99 peptides in a linear model. When examining this

linear model, the correlation with htTKV was 0.590 (p,0.0001) in

the dataset that was used to identify these biomarkers and 0.415

(p,0.0001) in the independent validation set of 158 patients

(Figure 4). 43 of the 99 peptides could be identified by tandem

MS sequencing (Table 6). Clearly prominent is the negative

correlation of urinary collagen fragments with htTKV.

Discussion

This to the best of our knowledge the largest clinical proteomic

study reported so far. We analyzed urine samples from a total of

1,048 patients to characterize the urinary peptidomic pattern of

patients with relatively early disease stages of ADPKD. Compared

to our initial report [18], we have identified a large number of

additional peptides altered specifically in ADPKD and now

provide extensive validation in an independent, large and well

characterized ADPKD cohort (the CRISP cohort). Insights into

the pathways of the proteomic patterns are now becoming clearer

and specific proteomic markers appear to associate with disease

severity.

Sequencing of naturally occurring peptides still represents a

major challenge that frequently cannot be solved successfully

[27,28]. Nevertheless, we were able to identify over 200 peptides

associated with ADPKD in the training cohort. This vast number

of potential biomarkers is certainly to some degree representative

of the disease, enabling the generation of initial hypotheses linking

these biomarkers to pathophysiology. Interestingly, the proteomic

pattern of ADPKD showed some overlap with proteomic changes

during AKI, supporting the hypothesis that some of the pathways

driving cyst growth in ADPKD are mechanisms normally active

during acute kidney injury repair [21]. Even though individual

peptides demonstrated overlap between ADPKD and AKI, the

biomarker model was highly specific for ADPKD, as compared to

Figure 2. Compiled urinary protein profiles of ADPKD patients and healthy controls. Proteomic profiles for the training cohort (41
patients of the SUISSE ADPKD study vs. 189 controls, panel A) and the validation cohort (224 CRISP study samples vs. 86 controls, panel B) are
depicted separately. Normalized MS molecular weight (800–20,000 Da) in logarithmic scale is plotted against normalized CE migration time (18–
45 min). The mean signal intensity of polypeptides is given as peak height. In the lower panels, only the 142 biomarkers that were included in the
diagnostic biomarker model are depicted, and their amplitude is shown with 56 zoom compared to the upper panels.
doi:10.1371/journal.pone.0053016.g002
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Table 2. Sequenced biomarkers used in the SVM-based model.

Training set Test set

Mass (Da)
CE-Time
(Min)

p-value
(BH)

Fold
change

p-value
(BH)

Fold
change Sequence Protein name

1613.82 23.99 1.13E-02 0.62963 4.57E-01 0.926 VGGGEQPPPAPAPRRE Xylosyltransferase 1

1580.88 23.87 1.18E-03 0.36086 2.45E-08 0.5575 IDQSRVLNLGPITR Uromodulin

1588.71 30.15 3.75E-07 7.16036 1.18E-07 1.5048 TGLSMDGGGSPKGDVDP Sodium/potassium-
transporting
ATPase subunit gamma

1715.98 20.93 1.58E-02 1.67142 5.18E-01 0.8368 VRYTKKVPQVSTPTL Serum albumin

3202.43 30.6 4.39E-05 12.30155 4.78E-03 1.3896 SSQGGSLPSEEKGHPQEESEESNVSMASLGE Secretogranin-1

1140.52 25.39 6.78E-06 0.05484 2.60E-02 0.6513 YNKYPDAVAT Osteopontin

3318.55 30.99 2.27E-03 0.55513 3.16E-02 0.6907 GTSLSPPPESSGSPQQPGLSAPHSRQIPAPQGAV Metastasis-suppressor
KiSS-1

2445.1 28.24 2.67E-03 5.02023 1.99E-01 2.4947 mASDASHALEAALEQMDGIIAGTK Liprin-beta-2

1580.89 24.85 6.58E-03 3.37586 3.80E-10 3.101 LEIELQSLLATKHS Keratin, type I
cytoskeletal 25

1635.76 30.34 7.97E-05 3.39305 3.90E-01 0.9845 FIFPPSDEQLKSGTA Ig kappa chain C region

1142.56 21.89 2.78E-02 0.28994 3.93E-19 6.056 VSVNERVMPI Haptoglobin

1882.8 20.24 2.22E-03 2.05957 1.64E-04 1.3966 DEAGSEADHEGTHSTKRG Fibrinogen alpha chain

984.46 24.92 6.56E-05 6.15717 1.03E-12 2.2448 LAADDPEVR Ephrin-A1

2889.35 24.08 3.04E-02 3.77113 4.68E-02 1.2247 NGEAGSAGPpGppGLRGSpGSRGLPGADGRAG Collagen alpha-2(I) chain

3092.44 36.3 1.01E-02 0.44086 1.13E-03 0.6362 TGEVGAVGPpGFAGEKGPSGEAGTAGPpGTpGPQG Collagen alpha-2(I) chain

1173.53 37.49 3.30E-02 0.54615 8.89E-14 0.096 GPpGPpGPpGPVT Collagen alpha-1(XVII)
chain

1339.6 27.49 1.17E-02 0.67239 6.10E-11 0.2467 SpGERGETGPpGPA Collagen alpha-1(III)
chain

1324.59 28.7 6.56E-05 0.17368 1.38E-01 0.7682 TGPGGDKGDTGPpGP Collagen alpha-1(III)
chain

1623.73 24.12 5.64E-03 1.34979 2.30E-11 1.6404 DGApGKNGERGGpGGpGP Collagen alpha-1(III)
chain

1794.8 23.92 1.11E-03 1.60456 3.71E-17 2.0447 GNDGApGKNGERGGpGGpGP Collagen alpha-1(III)
chain

1989.88 32.44 1.81E-02 0.59974 1.12E-03 0.7419 SNGNpGPpGPSGSpGKDGPpGP Collagen alpha-1(III)
chain

2137.94 21.79 4.48E-03 1.69213 9.63E-09 1.7463 NGEpGGKGERGApGEKGEGGpPG Collagen alpha-1(III)
chain

2264.03 22.67 1.62E-02 2.63884 3.24E-02 1.436 KGDAGApGApGGKGDAGApGERGPpG Collagen alpha-1(III)
chain

2525.2 27.74 2.14E-02 0.45892 9.41E-06 0.5216 LRGGAGPpGPEGGKGAAGPpGPpGAAGTpG Collagen alpha-1(III)
chain

2564.15 22.98 1.11E-03 2.13239 6.52E-08 1.8085 GApGQNGEpGGKGERGApGEKGEGGPpG Collagen alpha-1(III)
chain

2580.14 22.98 8.95E-03 1.83953 3.43E-12 2.0512 GApGQNGEpGGKGERGApGEkGEGGPpG Collagen alpha-1(III)
chain

2823.33 29.12 3.19E-02 0.48201 1.08E-03 0.6638 LRGGAGpPGPEGGKGAAGpPGppGAAGTPGLQG Collagen alpha-1(III)
chain

2825.27 24.49 3.60E-04 1.44938 1.53E-12 1.7677 ERGEAGIpGVpGAKGEDGKDGSpGEpGANG Collagen alpha-1(III)
chain

3255.49 30.78 1.71E-03 3.79654 2.60E-02 1.7139 NTGApGSpGVSGPKGDAGQpGEKGSpGAQGPPGAPGP Collagen alpha-1(III)
chain

3258.46 22.92 6.22E-03 1.88038 1.05E-01 1.5147 ENGKPGEpGpKGDAGApGApGGKGDAGApGERGpPG Collagen alpha-1(III)
chain

911.43 25.88 1.42E-04 0.38645 1.33E-09 0.3484 DGKTGPpGPA Collagen alpha-1(I) chain

1050.48 26.92 5.68E-03 0.54258 1.73E-11 0.3488 MGPRGPpGPpG Collagen alpha-1(I) chain

1080.5 25.69 4.18E-03 0.35998 7.44E-02 0.4841 ApGDRGEpGPP Collagen alpha-1(I) chain

1096.48 26.08 3.79E-04 0.54362 4.00E-10 0.6097 ApGDRGEpGpP Collagen alpha-1(I) chain

1143.52 36.97 6.47E-04 0.40166 0.00E+00 0.1049 GLPGPpGPpGPpG Collagen alpha-1(I) chain

Urine Proteomics in ADPKD
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other renal diseases, including AKI, and the overall pattern of

peptidomic alterations confers specificity for ADPKD, hence

underscoring the advantage of the SVM-based approach to

integrate a high number of individual markers with low specificity

into a highly specific multidimensional model.

We observed the most prominent proteomic changes in

collagen-derived peptides, which represent the majority of the

identified biomarkers for ADPKD in this study. The formation of

cysts mandates reorganisation of ECM and the increase in tissue

collagen required for cyst growth may result in reductions in

collagen degradation products. In a recent manuscript, regulation

of collagen expression by PKD1 and PKD2 was described,

arguing for a negative feedback provided by the polycystin

proteins [29]. This is exactly what we observed: a large number of

urinary collagen fragments are altered in ADPKD and most of

these (about 80%) are in fact down-regulated. In addition, with

one exception, all collagen fragments that significantly associated

with htTKV are negatively correlated: increasing htTKV (hence

severity of disease) is reflected by reduced excretion of specific

urinary collagen fragments. We also observed consistent upregula-

tion of peptide fragments from a specific region of fibrinogen alpha

chain and of keratin in ADPKD. While the pathophysiological

relevance of these findings are not obvious yet, over-expression of

genes encoding keratin 19 and fibronectin has been associated

with accelerated renal cystogenesis in a mouse PKD model [30]

and upregulation of keratin 19 and 2 was associated with ADPKD

in a gene profiling study [31]. We further observed consistent

downregulation of c-terminal fragments of uromodulin associated

with ADPKD, which may be a result of reduced uromodulin

degradation. Uromodulin staining was reported to be clearly

present in cysts of ADPKD patients [32], indicating reduced

degradation, in line with our findings. Osteopontin was reported

to be increased in animal models of ADPKD [33] and the reduced

excretion of an osteopontin fragment in urine in this study may

indicate reduced degradation leading to tissue accumulation.

From a pathophysiological point of view, it is remarkable that a

model derived from a cohort primarily consisting of PKD1

patients (although not genotyped, most patients of the SUISSE

ADPKD study are expected to have the PKD1 genotype) still

positively diagnosed most (77.4%) of the PKD2 patients. This

suggest that the majority of biomarkers identified and utilized in

the classifier reflect ongoing tissue remodeling that occurs in

ADPKD independent of genotype. Importantly, the model did not

merely reflect any kind of renal damage, given its remarkable

specificity for ADPKD vs. other renal diseases. The direct

comparison of PKD1 and PKD2 patients as well as patients with

other cystic renal diseases may allow the identification of

genotype-specific markers that might be more closely linked to

early disease-initiating processes. However, such studies will

Table 2. Cont.

Training set Test set

Mass (Da)
CE-Time
(Min)

p-value
(BH)

Fold
change

p-value
(BH)

Fold
change Sequence Protein name

1157.54 37.44 2.34E-02 0.67572 0.00E+00 0.1177 GPPGPpGppGPPS Collagen alpha-1(I) chain

1247.52 22 5.32E-04 1.99799 3.77E-12 2.3055 DKGETGEQGDRG Collagen alpha-1(I) chain

1297.58 27.36 4.84E-03 0.51815 6.18E-03 0.6989 SpGSpGPDGKTGPp Collagen alpha-1(I) chain

1458.63 27.94 2.96E-04 0.31301 2.66E-04 0.3525 SpGENGApGQmGPRG Collagen alpha-1(I) chain

1469.67 23.69 3.04E-02 1.35379 1.50E-12 1.9438 DGQPGAKGEpGDAGAK Collagen alpha-1(I) chain

1491.74 39.83 1.45E-05 0.31846 2.70E-10 0.3511 VGPpGpPGPPGPPGPPS Collagen alpha-1(I) chain

1680.75 30.03 3.60E-04 1.67867 1.02E-04 1.3047 TGSpGSpGPDGKTGPpGPA Collagen alpha-1(I) chain

1684.67 31.75 8.38E-04 0.69637 0.00E+00 0.2026 EpGSpGENGApGQMGPR Collagen alpha-1(I) chain

2014.9 21.91 1.42E-04 2.00095 5.82E-23 2.384 EGSpGRDGSpGAKGDRGETGP Collagen alpha-1(I) chain

2128.98 26.97 8.32E-05 0.28973 2.51E-02 0.5359 DGKTGpPGPAGQDGRPGPpGppG Collagen alpha-1(I) chain

2210.95 33.61 3.36E-02 1.52269 2.69E-09 1.4605 NGApGNDGAKGDAGApGApGSQGApG Collagen alpha-1(I) chain

2407.09 27.67 1.44E-03 0.63697 5.06E-02 0.9479 LDGAKGDAGPAGPKGEpGSpGENGApG Collagen alpha-1(I) chain

2471.16 34.77 1.18E-02 0.50314 1.01E-09 0.5201 TGPIGPpGPAGApGDKGESGPSGPAGPTG Collagen alpha-1(I) chain

2639.29 21.42 5.69E-03 0.41876 4.26E-01 0.8895 KEGGKGPRGETGPAGRpGEVGpPGPpGP Collagen alpha-1(I) chain

2713.23 29.22 1.37E-02 0.42363 7.24E-01 0.6891 PpGADGQpGAKGEpGDAGAKGDAGPpGPAGP Collagen alpha-1(I) chain

2767.32 21.67 2.51E-02 0.51467 9.78E-02 0.7323 KEGGKGPRGETGPAGRpGEVGpPGPpGPAG Collagen alpha-1(I) chain

2942.3 22.23 3.52E-03 1.46282 2.46E-04 1.3039 ESGREGApGAEGSpGRDGSpGAKGDRGETGP Collagen alpha-1(I) chain

3011.39 29.75 2.63E-04 0.59664 1.18E-11 0.5752 LTGSpGSpGpDGKTGPPGPAGQDGRPGPpGppG Collagen alpha-1(I) chain

3264.56 25.75 4.90E-02 0.66949 2.30E-04 0.7512 AAGEPGkAGERGVpGPpGAVGPAGKDGEAGAQGPPGP Collagen alpha-1(I) chain

3295.53 25.45 5.57E-05 0.2414 1.60E-04 0.3386 DRGETGPAGPpGApGAPGAPGPVGpAGKSGDRGETGP Collagen alpha-1(I) chain

1128.39 33.59 2.29E-03 2.54104 4.36E-08 0.4147 DFDDFNLED CD99 antigen-like
protein 2

2256.97 33.55 6.15E-03 0.49781 3.08E-03 0.8933 ATNSTAGYSIYGVGSmSRYEQ Calsyntenin-2

Given are molecular mass (in Da), normalized migration time (in min), adjusted p-value (Benjamini and Hochberg) and regulation factor (mean signal intensity of ADPKD
samples divided by mean signal intensity of control samples) for training- and test set, amino acid sequence (modified amino acids: p = hydroxyproline;
k = hydroxylysine; m = oxidized methionine) and parental protein name.
doi:10.1371/journal.pone.0053016.t002
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require substantially larger cohorts, as these likely more subtle

changes mandate larger number of samples to be included.

In the majority of cases, the diagnosis of ADPKD is relatively

straight forward using ultrasound imaging. Renal ultrasound

reaches a very high accuracy in patients with PKD1 genotype aged

.30 years [10], and is therefore unlikely to be outreached by

alternate diagnostic methods. However, imaging-based diagnosis

of ADPKD has limited sensitivity in young patients, particularly

those with a PKD2 genotype [10]. We therefore wondered

whether urinary proteomics might be useful for ADPKD diagnosis

in this patient group. However, similar to the accuracy of

ultrasound diagnostic criteria [10] the diagnostic biomarker model

exhibited a reduced sensitivity in young patients and in patients

with PKD2 genotype and a slightly reduced specificity in older

patients. Since for all patients in the validation cohort (the CRISP

cohort) ADPKD diagnosis was based on ultrasound imaging, the

sensitivity of our proteomic biomarker model might be somewhat

lower when applied to an at-risk population, including patients

very early in the course with genetically proven disease but

negative imaging results. Hence, despite the very high overall

accuracy of our diagnostic biomarker model, it will need further

refinement before providing benefit over ultrasound based

diagnosis in clinical practice. Urine proteome analysis of very

young, mutation positive ADPKD patients with no detectable cysts

yet might allow the identification of very early and subtle

proteomic alterations that may have gone undetected in our study.

A major challenge in the management of patients with ADPKD

is to predict prognosis. Even within a family the disease course

exhibits a high variability [4]. Disease prediction will gain further

importance with the development of specific treatment options.

Such treatments will most likely need to be started early during

disease course to affect outcome, before the majority of

functioning kidney tissue has been replaced by cysts. One focus

of our studies was therefore the evaluation of urine proteome

utility in predicting severity and progression of ADPKD. We

anticipated that the diagnostic biomarker score would not exhibit

strong associations with disease severity and progression, since it

was designed to discriminate ADPKD patients from controls with

high accuracy, but not to detect differences among ADPKD

patients. Urinary peptides with highly variable excretion among

Figure 3. ROC curve with 95% CI for the differentiation of
ADPKD patients from healthy controls by the biomarker model
ADPKD_142 applied to the CRISP validation cohort and 86
healthy individuals.
doi:10.1371/journal.pone.0053016.g003

Table 3. Demographic characteristics and numbers of false positive results in controls with other renal and non-renal diseases.

Diagnosis N
Number of false positive
results Age (mean ± SD) Sex (% female)

FSGS 31 2 38.8611.6 35.4

IgAN 70 9 36.7612.8 32.9

MN 46 2 44.667.9 19.6

MCD 29 2 35.6612.3 41.4

DNP 83 8 48.666.7 26.5

AKI 16 0 61.7613.3 50.0

Fanconi 11 0 13.469.4 36.4

Renal diseases, others 10 0 48.967.7 40.0

DM type 1 without DNP 42 7 40.9610.3 45.2

DM type 2 without DNP 12 0 49.469.1 25.0

SLE 45 6 38.768.8 71.1

Vasculitis 12 1 42.6615.2 41.7

Bladder cancer 22 1 51.166.2 9.1

Liver transplantation 6 0 45.7613.2 0

Stem cell transplantation 46 9 50.6613.5 37.0

All diseased controls combined 481 47 42.7611.7 35.6

FSGS, focal and segmental glomerulosclerosis; IgAN, IgA nephropathy; MN, membranous nephropathy; MCD, minimal change disease; DNP, diabetic nephropathy; AKI,
acute kidney injury; DM, diabetes mellitus; SLE, systemic lupus erythematosus.
doi:10.1371/journal.pone.0053016.t003
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ADPKD patients that might correlate with disease severity may

have been excluded from the diagnostic model since they are less

useful to differentiate ADPKD versus controls. Nevertheless,

ADPKD_142 correlated with several measures of disease severity

and progression, including the annual TKV growth, although

these correlations were moderate. We therefore developed a linear

model that was specifically designed to correlate with ADPKD

severity. A shortcoming of such efforts is the absence of a clear

measure for disease progression. Future development of ESRD

would likely be the best variable, but this was not available for

most patients, as it would require an unfeasibly long observation

time for patients with early disease. We therefore chose as a

surrogate marker htTKV, which has recently been shown to be a

strong predictor of the development of KDOQI CKD Stage 3 and

4 within 8 years in ADPKD patients [26]. A linear model to

predict htTKV achieved a high accuracy. This clearly shows, that

a subset of proteomic markers different from the diagnostic

peptides reflect disease severity. The CRISP and SUISSE studies

continue to follow-up data on these patients, including GFR,

which will, in the future, serve to validate the current model as a

predictive tool and may allow the derivation of a biomarker model

that directly predicts TKV growth and GFR decline over time.

Several potential urinary and plasma biomarkers for ADPKD

have recently been reported, including NGAL [22], MCP-1

[24,34], KIM-1 [23,24], CD-14 and copeptin [35]. These

markers, however, are all unspecific for ADPKD and mostly

show considerable overlap with healthy controls. Copeptin, CD14

and NGAL correlated with disease severity in the initial reports,

however, in the case of NGAL, this could not be confirmed in a

subsequent study [36]. The other markers mostly still lack

independent validation. Gronwald et al. [37] recently used a

metabolomic approach based on NMR spectroscopy of urine and,

similar to our approach, combined multiple markers through an

SVM algorithm. Although lacking validation in an independent

cohort, their model achieved an AUC of 0.91 for the discrimi-

nation of ADPKD from normal controls upon nested cross-

validation. Like our study, this report demonstrates the potential

usefulness of multidimensional profiling of biological fluids to

detect biomarker patterns rather than individual markers. On the

other hand, the application of ‘‘omic’’ approaches to biomarker

discovery is inherently susceptible to overestimating the signifi-

cance of the findings due to multiple testing, and to model over-

fitting when combining biomarkers to classifiers. We have

therefore extensively validated our proteomic biomarker model

for ADPKD by testing it in the CRISP cohort, a large prospective

ongoing ADPKD registry where information on the PKD

genotype was available, and in a large group of healthy and

diseased controls.

In summary, our study demonstrates that the urine proteome is

profoundly altered in young ADPKD patients and that proteomic

profiling can be used to derive diagnostic and prognostic models

Table 4. Sensitivity and specificity of the ADPKD biomarker model according to age and genotype subgroup and using three
different diagnostic cut off values.

all patients age,30 age.30 PKD1 PKD2

cut off sens spec sens spec sens spec sens spec sens spec

20.169 0.844 0.942 0.720 0.975 0.920 0.913 0.863 0.942 0.774 0.942

20.250 0.875 0.907 0.768 0.950 0.937 0.870 0.891 0.907 0.806 0.907

20.400 0.906 0.895 0.817 0.925 0.958 0.870 0.914 0.895 0.903 0.895

doi:10.1371/journal.pone.0053016.t004

Figure 4. Scatter plots for correlation between classification scores of linear model for disease progression and the height adjusted
TKV: Depicted are also the regression line and 95% confidences. In A training set data are showed and in B test set data.
doi:10.1371/journal.pone.0053016.g004
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for ADPKD. Further refinement of the presented models will be

necessary for future clinical application.

Methods

Patients and Procedures
All analyzed urines were morning spot urine samples drawn

after the first morning void. ADPKD samples were from baseline

visits of two clinical studies: the SUISSE ADPKD study (68 urine

samples) and the CRISP cohort (224 urine samples; since all urine

samples from the SUISSE ADPKD study were from Caucasian

patients, we excluded African American CRISP participants from

analysis). Both studies were described in detail elsewhere

[38,39,40,41,42]. Shortly, the SUISSE ADPKD study was an

open-label randomized, controlled trial evaluating the effect of

sirolimus treatment on kidney volume growth in ADPKD patients

aged 18 to 40 years with a creatinine clearance $70 ml/min.

Patients underwent magnetic resonance imaging (MRI) of their

kidneys at 6 months intervals and kidney volumes were

determined by a manual segmentation method. The CRISP study

was an observational longitudinal study including ADPKD

patients aged 16 to 45 years with a creatinine clearance

$70 ml/min. All patients underwent MRI of their kidneys at

annual intervals and kidney volumes were determined by

stereology. The total follow up time was 3 years. TKV growth

rate was calculated for all patients from both studies as absolute

progression rate in ml per year, and as relative growth rate in

percent per year by regressing either TKV or log-transformed

TKV over time. From the SUISSE ADPKD study, only patients

which did not receive sirolimus treatment with at least 4 sequential

MRI kidney volume measurements available (N = 48) were used to

calculate TKV progression. We used urine samples from the first

41 patients that had been enrolled in the SUISSE ADPKD study

and that have been previously analyzed in our first report on urine

proteomics in ADPKD [18] as training samples for the refined

diagnostic biomarker model and the remaining SUISSE ADPKD

urine samples as a second validation cohort (in addition to the

CRISP cohort, to test for center bias). Control urine samples have

been previously collected as part of several clinical studies (refs

[13,18,25,43,44,45,46,47] and as yet unpublished studies). Demo-

graphic characteristics of controls with other renal and non-renal

diseases are given in Table 3. Healthy control urine samples were

collected from volunteers that did not report any history of renal

or chronic extrarenal diseases. Mean age of healthy controls was

37615 years, 49% were females. Out of the healthy control urine

samples we randomly chose 2/3 of all samples for biomarker

identification and model generation and used the remaining

samples as part of the independent validation cohort. Informed

consent was obtained from all patients and healthy controls after

local ethics committee approval. These studies were performed in

accordance with the Helsinki Declaration.

Sample preparation and CE-MS analysis
All urine samples for CE-MS analyses were stored at 280uC

until analysis and underwent a maximum of 2 freeze/thaw cycles.

CE-MS analysis was performed exactly as described previously

[48]. Briefly, an aliquot was thawed immediately before use, 1:1

diluted with 2 M urea, 10 mM NH4OH, 0.02% SDS, filtered

using Centrisart ultracentrifugation filter devices (20 kDa

MWCO; Sartorius, Goettingen, Germany) to remove higher

molecular weight proteins, desalted on a PD-10 desalting column

(Amersham Bioscience, Uppsala, Sweden), equilibrated in 0.01%

NH4OH in HPLC-grade H2O, lyophilized, stored at 4uC, and

resuspended in HPLC-grade H2O shortly before CE-MS analysis.

CE-MS analysis was performed using a P/ACE MDQ capillary

electrophoresis system (Beckman Coulter, Fullerton, USA) on-line

coupled to a Micro-TOF MS (Bruker Daltonic, Bremen,

Germany) as described [48].

Proteomic data processing and cluster analysis
MosaiquesVisu software [49] was used to deconvolve mass

spectral ion peaks representing identical molecules at different

charge states into single masses. Migration time and ion signal

intensity were normalized using internal polypeptide standards

[50] that are unaffected by any disease state studied to date [51].

All detected polypeptides were deposited in a Microsoft SQL

database, allowing comparison of multiple samples (patient

groups).

Statistical methods, definition of biomarkers and sample
classification

Statistical calculations were carried out in MedCalc version

8.1.1.0 (MedCalc Software, Mariakerke, Belgium, http://www.

medcalc.be). Confidence intervals (95% CI) were estimated based

on exact binomial calculations. The reported unadjusted p-values

were calculated using the natural logarithm-transformed intensities

of the CE-MS spectra and the Gaussian approximation to the t-

distribution. Statistical adjustment for multiple testing was

performed by the method described by Benjamini and Hochberg

[52].

Disease-specific polypeptide patterns were generated using

SVM based MosaCluster software [53]. The algorithm has been

recently described [54]. Briefly, MosaCluster uses Gaussian basis

radial functions (RBF) as kernel function to map the data into the

high dimensional feature space, where the separating hyperplane

can be defined. Ideally, the hyperplane should separate the

subjects into two non-overlapping groups, what is often impossible

in reality. The accuracy of an SVM model is largely dependent of

the selection of model parameters like cost (C) and kernel width (c).

C controls the trade off between allowing training errors and

forcing rigid margins and c controls the width of SVM kernel. To

optimize this parameters gird search method was used: the model

was evaluated via cross validation at many points within the gird

for each parameter to destine the best possible parameter

combination. The calculated scores, based on the amplitude of a

set of markers, denote the distance of that sample in an n-

dimensional space (every dimension representing the amplitude of

one marker and n being the number of markers combined to a

Table 5. Correlation of the biomarker score with clinical
markers of disease severity and progression.

Clinical parameter Spearman’s rho p-value

TKV 0.308 ,0.001

TKV/height 0.310 ,0.001

TKV change (ml per year) 0.225 0.001

TKV change (% per year) 0.098 0.134

MDRD GFR 20.284 ,0.001

iothalamate GFR 20.188 0.005

Proteinuria 20.029 0.698

Albuminuria 0.060 0.389

TKV, total kidney volume.
doi:10.1371/journal.pone.0053016.t005
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Table 6. Identified 54 biomarkers of the 99 biomarkers that correlated with height adjusted TKV.

Mass (Da) CE-Time (min) Spearman’s rho p-values Sequence Protein name

840.41 23.17 20.258 1.76E-06 KGDTGPpGP Collagen alpha-1(III) chain

858.39 23.24 20.273 9.08E-06 SpGEAGRpG Collagen alpha-1(I) chain

935.45 23.68 20.253 2.83E-05 GRpGPpGPpG Collagen alpha-1(I) chain

1040.48 25.05 20.312 7.92E-05 SpGPDGKTGPp Collagen alpha-1(I) chain

1050.48 26.92 20.280 1.34E-04 MGPRGPpGPpG Collagen alpha-1(I) chain

1058.48 24.89 0.324 1.46E-04 TISRLEPED Ig kappa chain V-III region NG9

1096.48 26.08 20.325 1.66E-04 ApGDRGEpGpP Collagen alpha-1(I) chain

1097.50 21.00 0.301 1.67E-04 AHVDDmPNAL Hemoglobin subunit alpha

1114.49 25.55 20.288 2.09E-04 SpGERGETGPp Collagen alpha-1(III) chain

1189.60 21.18 0.271 2.60E-04 YGRAPQLRET Alpha-1-microglobulin

1223.57 19.39 0.287 2.66E-04 DHEGTHSTKRG Fibrinogen alpha chain

1251.62 22.53 20.267 3.10E-04 DGVPGKDGPRGPT Collagen alpha-1(III) chain

1257.64 19.92 0.346 3.15E-04 TISEKTSDQIH Antithrombin-III

1265.59 27.09 20.281 3.33E-04 SpGPDGKTGPpGPA Collagen alpha-1(I) chain

1268.57 27.25 0.321 3.66E-04 SpGERGETGPpGP Collagen alpha-1(III) chain

1378.61 28.82 20.373 7.31E-04 ApGEDGRpGPpGPQ Collagen alpha-1(II) chain

1430.65 29.24 0.267 9.27E-04 DSEETRAAAPQAW Drebrin

1447.70 19.47 20.254 9.49E-04 DTDRFSSHVGGTLG Inter-alpha-trypsin inhibitor heavy chain H4

1467.66 29.07 0.275 9.97E-04 SpGSpGPDGKTGPpGp Collagen alpha-1(I) chain

1525.67 30.39 20.316 1.04E-03 YKTTPPVLDSDGSF Ig gamma-1 chain C region

1591.74 30.39 0.307 1.07E-03 IGPpGPAGApGDKGESGP Collagen alpha-1(I) chain

1630.74 20.65 20.266 1.25E-03 EGSpGRDGSpGAKGDRG Collagen alpha-1(I) chain

1636.86 23.18 0.313 1.36E-03 LSALEEYTKKLNTQ Apolipoprotein A-I

1680.75 30.03 20.257 1.46E-03 TGSpGSpGPDGKTGPpGPA Collagen alpha-1(I) chain

1692.80 30.89 20.277 1.48E-03 PpGEAGKpGEQGVPGDLG Collagen alpha-1(I) chain

1734.79 23.58 20.282 1.57E-03 GppGPPGKNGDDGEAGKPG Collagen alpha-1(I) chain

1767.00 24.11 0.321 1.59E-03 SVIDQSRVLNLGPITR Uromodulin

1796.75 29.45 20.272 1.60E-03 GEpGApGSKGDTGAKGEpGP Collagen alpha-1(I) chain

1837.80 30.56 20.274 1.63E-03 AVAHVDDMPNALSALSDL Hemoglobin subunit alpha

1847.89 43.67 20.253 1.65E-03 DAGPVGPpGPpGPpGPPGPPS Collagen alpha-1(I) chain

1859.83 24.41 20.266 1.68E-03 NSGEpGApGSKGDTGAKGEp Collagen alpha-1(I) chain

1860.83 21.40 20.284 1.84E-03 EGSpGRDGSpGAKGDRGET Collagen alpha-1(I) chain

1916.85 24.63 20.258 1.94E-03 GNSGEPGApGSkGDTGAKGEp Collagen alpha-1(I) chain

1954.97 25.36 0.333 2.25E-03 SHTSDSDVPSGVTEVVVKL Clusterin

2042.07 25.14 0.295 2.27E-03 EAIPMSIPPEVKFNKPFV Alpha-1-antitrypsin

2059.01 33.08 0.281 2.31E-03 ELTETGVEAAAASAISVARTL Plasma protease C1 inhibitor

2080.94 20.20 20.266 2.36E-03 DAHKSEVAHRFKDLGEEN Serum albumin

2389.24 22.40 0.260 2.63E-03 MIEQNTKSPLFMGKVVNPTQK Alpha-1-antitrypsin

2391.20 22.62 0.262 2.70E-03 AAHLPAEFTPAVHASLDKFLASV Hemoglobin subunit alpha

2405.22 22.47 0.273 2.70E-03 MIEQNTKSPLFmGKVVNPTQK Alpha-1-antitrypsin

3092.46 31.25 20.363 2.93E-03 ADGQPGAkGEPGDAGAKG-
DAGPPGPAGpAGpPGPIG

Collagen alpha-1(I) chain

3108.45 31.28 20.312 2.95E-03 ADGQpGAKGEpGDAGAKGD-
AGpPGPAGPAGPPGpIG

Collagen alpha-1(I) chain

3149.46 31.25 20.259 3.00E-03 GADGQPGAKGEpGDAGAKGDA-
GPpGPAGpAGPPGPIG

Collagen alpha-1(I) chain

Given are molecular mass (in Da), normalized migration time (in min), the Spearman’s coefficient of rank correlation and the significance level (p-values). In addition,
amino acid sequence (modified amino acids: p = hydroxyproline; k = hydroxylysine; m = oxidized methionine) and parent protein names are given.
doi:10.1371/journal.pone.0053016.t006
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model) from an (n-1)-dimensional hyperplane that is designed to

separate the cases from controls.

Sequencing of polypeptides
The urine samples were analysed on a Dionex Ultimate 3000

RSLS nano flow system (Dionex, Camberly UK). The samples

(5 ml) were loaded onto a Dionex 100 mm62 cm65 mm C18 nano

trap column at a flow rate of 5 ml/min in 0.1% formic acid and

acetonitrile (98:2). Once loaded onto the trap column the sample

was washed off into an Acclaim PepMap C18 nano column

75 mm615 cm, at a flowrate of 0.3 ml/min. The trap and nano

flow column were maintained at 35 C. The samples were eluted

with a gradient of solvent A: 0.1% formic acid versus solvent B:

acetonitrile starting at 5% B rising to 50% B over 100 min. The

eluant from the column was directed to a Proxeon nano spray ESI

source (Thermo Fisher Hemel UK) operating in positive ion mode

then into an Orbitrap Velos FTMS. The ionisation voltage was

2.5 kV and the capillary temperature was 200uC. The mass

spectrometer was operated in MS/MS mode scanning from 380 to

2000 amu. The top 10 multiply charged ions were selected from

each full scan for MS/MS analysis, the fragmentation method was

HCD at 35% collision energy. The ions were selected for MS2

using a data dependent method with a repeat count of 1 and

repeat and exclusion time of 15 s. Precursor ions with a charge

state of 1 were rejected. The resolution of ions in MS1 was 60,000

and 7,500 for HCD MS2. Data files were searched against the IPI

human non-redundant database using the Open Mass Spectrom-

etry Search Algorithm (OMSSA, http://pubchem.ncbi.nlm.nih.

gov/omssa) and Proteome Discoverer (Thermo), without any

enzyme specificity. No fixed modification was selected, and

oxidation of methionine and proline were set as variable

modifications. Mass error window of 10 ppm and 0.05 Da were

allowed for MS and MS/MS, respectively. For further validation

of obtained peptide identifications, the strict correlation between

peptide charge at pH of 2 and CE-migration time was utilized to

minimize false-positive identification rates [55]. Calculated CE-

migration time of the sequence candidate based on its peptide

sequence was compared to the experimental migration time.

Accepted were peptides which were found with both search

algorithms (OMSSA and Proteome Discoverer), and a CE-

migration time deviation below 61 min.

Supporting Information

Table S1 Characteristics of the 657 peptides with
altered excretion in ADPKD. The peptide identification

number in the dataset (Peptid ID), molecular mass (in Da) and

normalized migration time (in min) are shown along with the

AUC-values, p-values adjusted according to Benjamini-Hochberg

and the regulation factor for the comparison of cases with controls

for both, the training and the validation cohort. In addition, amino

acid sequence (modified amino acids: p = hydroxyproline; k = hy-

droxylysine; m = oxidized methionine), parent protein name with

the position of the first (start) and last (stop) amino acid of the

identified peptide within the parent protein, the SwissProt/

TrEMBLEentry numbers and accession numbers are given. The

first 142 peptides were employed in the diagnostic SVM model.

(PDF)

Table S2 Characteristics of the 99 biomarkers corre-
lated with height adjusted TKV. Shown are the peptide

identification number in the dataset (Peptid ID), molecular mass

(in Da) and normalized migration time (in min). Given are the

Sperman’s coefficient of rank correlation and the significance level

(p-values). In addition, amino acid sequence (modified amino

acids: p = hydroxyproline; k = hydroxylysine; m = oxidized methi-

onine), parent protein name with the position of the first (start) and

last (stop) amino acid, the SwissProt/TrEMBLEentry numbers

and accession numbers are given.

(PDF)

Author Contributions

Conceived and designed the experiments: ADK ALS HM ABC.

Performed the experiments: ADK JS WM. Analyzed the data: JS ADK

HM DP FK JEB WM. Contributed reagents/materials/analysis tools:

ADK ALS VET MM JJG KTB JEB RPW HM ABC. Wrote the paper:

ADK ALS HM ABC.

References

1. Dalgaard OZ (1957) Bilateral polycystic disease of the kidneys; a follow-up of

two hundred and eighty-four patients and their families. Acta Med Scand Suppl

328: 1–255.

2. Iglesias CG, Torres VE, Offord KP, Holley KE, Beard CM, et al. (1983)

Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota:

1935–1980. Am J Kidney Dis 2: 630–639.

3. Hateboer N, v Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, et al. (1999)

Comparison of phenotypes of polycystic kidney disease types 1 and 2. European

PKD1-PKD2 Study Group. Lancet 353: 103–107.

4. Harris PC, Rossetti S (2010) Determinants of renal disease variability in

ADPKD. Adv Chronic Kidney Dis 17: 131–139.

5. Chapman AB, Johnson AM, Gabow PA, Schrier RW (1994) Overt proteinuria

and microalbuminuria in autosomal dominant polycystic kidney disease. J Am

Soc Nephrol 5: 1349–1354.

6. Gabow PA, Johnson AM, Kaehny WD, Kimberling WJ, Lezotte DC, et al.

(1992) Factors affecting the progression of renal disease in autosomal-dominant

polycystic kidney disease. Kidney Int 41: 1311–1319.

7. Johnson AM, Gabow PA (1997) Identification of patients with autosomal

dominant polycystic kidney disease at highest risk for end-stage renal disease.

J Am Soc Nephrol 8: 1560–1567.

8. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney

disease. Lancet 369: 1287–1301.

9. Wuthrich RP, Serra AL, Kistler AD (2009) Autosomal dominant polycystic

kidney disease: new treatment options and how to test their efficacy. Kidney

Blood Press Res 32: 380–387.

10. Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, et al. (2009) Unified

Criteria for Ultrasonographic Diagnosis of ADPKD. J Am Soc Nephrol 20: 205–

212.

11. Harris PC, Rossetti S (2010) Molecular diagnostics for autosomal dominant

polycystic kidney disease. Nat Rev Nephrol 6: 197–206.

12. Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, et al. (2007)

Advances in urinary proteome analysis and biomarker discovery. J Am Soc

Nephrol 18: 1057–1071.

13. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, et al. (2006)

Discovery and validation of new protein biomarkers for urothelial cancer: a

prospective analysis. Lancet Oncol 7: 230–240.

14. Siwy J, Mullen W, Golovko I, Franke J, Zurbig P (2011) Human urinary peptide

database for multiple disease biomarker discovery. Proteomics Clin Appl 5: 367–

374.

15. Alkhalaf A, Zurbig P, Bakker SJ, Bilo HJ, Cerna M, et al. (2010) Multicentric

validation of proteomic biomarkers in urine specific for diabetic nephropathy.

PLoS One 5: e13421.

16. Snell-Bergeon JK, Maahs DM, Ogden LG, Kinney GL, Hokanson JE, et al.

(2009) Evaluation of urinary biomarkers for coronary artery disease, diabetes,

and diabetic kidney disease. Diabetes Technol Ther 11: 1–9.

17. Zurbig P, Jerums G, Hovind P, Macisaac R, Mischak H, et al. (2012) Urinary

Proteomics for Early Diagnosis in Diabetic Nephropathy. Diabetes.

18. Kistler AD, Mischak H, Poster D, Dakna M, Wuthrich RP, et al. (2009)

Identification of a unique urinary biomarker profile in patients with autosomal

dominant polycystic kidney disease. Kidney Int 76: 89–96.

19. Grantham JJ, Chapman AB, Torres VE (2006) Volume progression in

autosomal dominant polycystic kidney disease: the major factor determining

clinical outcomes. Clin J Am Soc Nephrol 1: 148–157.

20. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, et al. (2010) Sirolimus and

kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med

363: 820–829.

21. Weimbs T (2007) Polycystic kidney disease and renal injury repair: common

pathways, fluid flow, and the function of polycystin-1. Am J Physiol Renal

Physiol 293: F1423–1432.

Urine Proteomics in ADPKD

PLOS ONE | www.plosone.org 11 January 2013 | Volume 8 | Issue 1 | e53016



22. Bolignano D, Coppolino G, Campo S, Aloisi C, Nicocia G, et al. (2007)

Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant
polycystic kidney disease. Am J Nephrol 27: 373–378.

23. Kuehn EW, Hirt MN, John AK, Muehlenhardt P, Boehlke C, et al. (2007)

Kidney injury molecule 1 (Kim1) is a novel ciliary molecule and interactor of
polycystin 2. Biochem Biophys Res Commun 364: 861–866.

24. Meijer E, Boertien WE, Nauta FL, Bakker SJ, van Oeveren W, et al. (2010)
Association of urinary biomarkers with disease severity in patients with

autosomal dominant polycystic kidney disease: a cross-sectional analysis.

Am J Kidney Dis 56: 883–895.
25. Metzger J, Kirsch T, Schiffer E, Ulger P, Mentes E, et al. (2010) Urinary

excretion of twenty peptides forms an early and accurate diagnostic pattern of
acute kidney injury. Kidney Int.

26. Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, et al. (2012)
Kidney Volume and Functional Outcomes in Autosomal Dominant Polycystic

Kidney Disease. Clin J Am Soc Nephrol.

27. Chalmers MJ, Mackay CL, Hendrickson CL, Wittke S, Walden M, et al. (2005)
Combined top-down and bottom-up mass spectrometric approach to charac-

terization of biomarkers for renal disease. Anal Chem 77: 7163–7171.
28. Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, et al. (2009)

Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker

discovery and clinical diagnosis: an update of recent developments. Mass
Spectrom Rev 28: 703–724.

29. Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S, et al. (2010) The ADPKD
genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model

Mech 3: 354–365.
30. Mrug M, Zhou J, Woo Y, Cui X, Szalai AJ, et al. (2008) Overexpression of

innate immune response genes in a model of recessive polycystic kidney disease.

Kidney Int 73: 63–76.
31. Schieren G, Rumberger B, Klein M, Kreutz C, Wilpert J, et al. (2006) Gene

profiling of polycystic kidneys. Nephrol Dial Transplant 21: 1816–1824.
32. Therezo A, Bacchi C, Franco M (1998) Histogenesis of the cysts in the

autosomal dominant polycystic kidney disease - An immunohistochemical study.

Applied Immunohistochemistry 6: 219–223.
33. Cowley BD Jr, Ricardo SD, Nagao S, Diamond JR (2001) Increased renal

expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD
in rats. Kidney Int 60: 2087–2096.

34. Zheng D, Wolfe M, Cowley BD Jr, Wallace DP, Yamaguchi T, et al. (2003)
Urinary excretion of monocyte chemoattractant protein-1 in autosomal

dominant polycystic kidney disease. J Am Soc Nephrol 14: 2588–2595.

35. Meijer E, Bakker SJ, van der Jagt EJ, Navis G, de Jong PE, et al. (2011)
Copeptin, a surrogate marker of vasopressin, is associated with disease severity in

autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 6: 361–
368.

36. Parikh CR, Dahl NK, Chapman AB, Bost JE, Edelstein CL, et al. (2012)

Evaluation of urine biomarkers of kidney injury in polycystic kidney disease.
Kidney Int.

37. Gronwald W, Klein MS, Zeltner R, Schulze BD, Reinhold SW, et al. (2011)
Detection of autosomal dominant polycystic kidney disease by NMR

spectroscopic fingerprinting of urine. Kidney Int 79: 1244–1253.
38. Serra AL, Kistler AD, Poster D, Struker M, Wuthrich RP, et al. (2007) Clinical

proof-of-concept trial to assess the therapeutic effect of sirolimus in patients with

autosomal dominant polycystic kidney disease: SUISSE ADPKD study. BMC
Nephrology 8: 13.

39. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, et al. (2010) Sirolimus and

Kidney Growth in Autosomal Dominant Polycystic Kidney Disease.
N Engl J Med: NEJMoa0907419.

40. Kistler AD, Poster D, Krauer F, Weishaupt D, Raina S, et al. (2009) Increases in

kidney volume in autosomal dominant polycystic kidney disease can be detected
within 6 months. Kidney Int 75: 235–241.

41. Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, et al.
(2003) Renal structure in early autosomal-dominant polycystic kidney disease

(ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic

Kidney Disease (CRISP) cohort. Kidney Int 64: 1035–1045.
42. Grantham JJ, Torres VE, Chapman AB, Guay-Woodford LM, Bae KT, et al.

(2006) Volume Progression in Polycystic Kidney Disease. N Engl J Med 354:
2122–2130.

43. Delles C, Schiffer E, von Zur Muhlen C, Peter K, Rossing P, et al. (2010)
Urinary proteomic diagnosis of coronary artery disease: identification and

clinical validation in 623 individuals. J Hypertens 28: 2316–2322.

44. Haubitz M, Good DM, Woywodt A, Haller H, Rupprecht H, et al. (2009)
Identification and validation of urinary biomarkers for differential diagnosis and

evaluation of therapeutic intervention in anti-neutrophil cytoplasmic antibody-
associated vasculitis. Mol Cell Proteomics 8: 2296–2307.

45. Schiffer E, Vlahou A, Petrolekas A, Stravodimos K, Tauber R, et al. (2009)

Prediction of muscle-invasive bladder cancer using urinary proteomics. Clin
Cancer Res 15: 4935–4943.

46. Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, et al. (2010) Naturally
occurring human urinary peptides for use in diagnosis of chronic kidney disease.

Mol Cell Proteomics 9: 2424–2437.
47. Drube J, Schiffer E, Mischak H, Kemper MJ, Neuhaus T, et al. (2009) Urinary

proteome pattern in children with renal Fanconi syndrome. Nephrol Dial

Transplant 24: 2161–2169.
48. Kistler AD, Mischak H, Poster D, Dakna M, Wuthrich RP, et al. (2009)

Identification of a unique urinary biomarker profile in patients with autosomal
dominant polycystic kidney disease. Kidney Int.

49. Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, et al. (2004) Mass spectrometry

for the detection of differentially expressed proteins: a comparison of surface-
enhanced laser desorption/ionization and capillary electrophoresis/mass

spectrometry. Rapid Commun Mass Spectrom 18: 149–156.
50. Theodorescu D, Fliser D, Wittke S, Mischak H, Krebs R, et al. (2005) Pilot study

of capillary electrophoresis coupled to mass spectrometry as a tool to define
potential prostate cancer biomarkers in urine. Electrophoresis 26: 2797–2808.

51. Coon J, Zurbig P, Dakna M, Dominiczak A, Decramer S, et al. (2008) CE-MS

analysis of the human urinary proteome for biomarker discovery and disease
diagnostics. Proteomics Clin Appl in press.

52. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed
genes using false discovery rate controlling procedures. Bioinformatics 19: 368–

375.

53. Decramer S, Wittke S, Mischak H, Zurbig P, Walden M, et al. (2006) Predicting
the clinical outcome of congenital unilateral ureteropelvic junction obstruction in

newborn by urinary proteome analysis. Nat Med 12: 398–400.
54. Mischak H, Vlahou A, Ioannidis JP (2012) Technical aspects and inter-

laboratory variability in native peptide profiling: The CE-MS experience. Clin
Biochem.

55. Zurbig P, Renfrow MB, Schiffer E, Novak J, Walden M, et al. (2006) Biomarker

discovery by CE-MS enables sequence analysis via MS/MS with platform-
independent separation. Electrophoresis 27: 2111–2125.

Urine Proteomics in ADPKD

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e53016


