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Abstract
Objectives  Current mortality prediction models used in 
the intensive care unit (ICU) have a limited role for specific 
diseases such as influenza, and we aimed to establish an 
explainable machine learning (ML) model for predicting 
mortality in critically ill influenza patients using a real-
world severe influenza data set.
Study design  A cross-sectional retrospective multicentre 
study in Taiwan
Setting  Eight medical centres in Taiwan.
Participants  A total of 336 patients requiring ICU-
admission for virology-proven influenza at eight hospitals 
during an influenza epidemic between October 2015 and 
March 2016.
Primary and secondary outcome measures  We 
employed extreme gradient boosting (XGBoost) to 
establish the prediction model, compared the performance 
with logistic regression (LR) and random forest (RF), 
demonstrated the feature importance categorised by 
clinical domains, and used SHapley Additive exPlanations 
(SHAP) for visualised interpretation.
Results  The data set contained 76 features of the 336 
patients with severe influenza. The severity was apparently 
high, as shown by the high Acute Physiology and Chronic 
Health Evaluation II score (22, 17 to 29) and pneumonia 
severity index score (118, 88 to 151). XGBoost model (area 
under the curve (AUC): 0.842; 95% CI 0.749 to 0.928) 
outperformed RF (AUC: 0.809; 95% CI 0.629 to 0.891) and 
LR (AUC: 0.701; 95% CI 0.573 to 0.825) for predicting 30-
day mortality. To give clinicians an intuitive understanding 
of feature exploitation, we stratified features by the clinical 
domain. The cumulative feature importance in the fluid 
balance domain, ventilation domain, laboratory data 
domain, demographic and symptom domain, management 
domain and severity score domain was 0.253, 0.113, 
0.177, 0.140, 0.152 and 0.165, respectively. We further 
used SHAP plots to illustrate associations between 
features and 30-day mortality in critically ill influenza 
patients.

Conclusions  We used a real-world data set and applied 
an ML approach, mainly XGBoost, to establish a practical 
and explainable mortality prediction model in critically ill 
influenza patients.

Background
Sepsis is a leading cause of death in the inten-
sive care unit (ICU) worldwide and contrib-
utes to approximately 50% of hospital deaths 
in the USA.1 2 A number of scoring systems 
have been developed to predict mortality in 
patients admitted to ICUs; however, the clin-
ical application remains limited given that 
sepsis consists of diverse aetiologies and no 
single scoring system appears to be appli-
cable in diverse patient populations.3–5 For 
example, the Acute Physiology and Chronic 
Health Evaluation (APACHE) II score, a 
widely used severity scoring system in the 
ICU,6 7 has been found to have a limited role 

Strengths and limitations of this study

►► This study used machine learning to predict the 
mortality risk of critically ill influenza patients.

►► We used a data set containing medical data of real-
world practice at eight Taiwanese referral centres 
during an influenza epidemic.

►► We employed extreme gradient boosting (XGBoost) 
to establish a prediction model with high accuracy 
and used domain-based feature importance and 
SHapley Additive exPlanations plots for visualised 
realisation to mitigate the concern of black-box 
issue.

►► The number of subjects was relatively small, and 
large-scale studies are needed to validate our 
findings.
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in a number of diseases and settings, including severe 
influenza, pancreatitis, post-cardiac surgery and burn 
injury.8–12 Similarly, the pneumonia severity index (PSI) 
is currently a widely used scoring system to assess patients 
with pneumonia,13 but PSI might underestimate severity 
in patients with influenza.8 9 Currently, influenza infec-
tion remains a global health threat that is estimated to 
affect nearly five million people worldwide, resulting in 
250 000 to 500 000 deaths in 2015.14 Our previous studies, 
investigating 336 patients with severe influenza requiring 
ICU management, showed the impact of an influenza 
epidemic on the healthcare system due to an abrupt 
increase in patients with severe influenza and found that 
lung-protective ventilation as well as fluid balance were 
early predictors for 30-day mortality in patients with 
severe influenza.15 16 These findings highlight the crucial 
need to develop an influenza-specific mortality prediction 
model for both the management of patients and the allo-
cation of ICU resources during an influenza epidemic. 
Taiwan experienced an influenza epidemic in the spring 
of 2016,17 and the Taiwan Severe Influenza Research 
Consortium was established to survey the management 
strategies of distinct clinical domains, including the venti-
lation domain and fluid balance domain, laboratory data 
domain, demographic and symptom domain, manage-
ment domain and conventional ICU severity score domain 
including APACHE II and PSI. Current machine learning 
(ML) models have enabled us to use all of the collected 
variables among the aforementioned clinical domains 
to develop an influenza-specific mortality prediction 
system, which has the potential to be incorporated into a 
healthcare information system as an automated decision 
support system (DSS).18 19 However, the lack of intuitional 
understanding of ML models is one of the main obsta-
cles in the implementation of ML in the medical field.20 
Herein, we employed an ML approach to illustrate the 
domain-specific feature importance, applied a visualised 
interpretation of the importance of each feature and 
compared the accuracy of different ML models using a 
nationwide severe influenza data set.

Methods
Subject enrolment
This multicentre retrospective cohort study enrolled 
patients admitted to the ICUs at eight tertiary referral 
centres in Taiwan for virology-confirmed influenza who 
were enrolled during an influenza epidemic. The reported 
influenza epidemic occurred between October 2015 and 
March 2016, and the diagnosis of influenza was confirmed 
by the Taiwan Centers for Disease Control based on the 
rapid influenza diagnostic test, reverse transcription-
polymerase chain reaction or viral culture. The study was 
approved by the Institutional Review Boards of the eight 
participating hospitals. Written informed consent was 
waived owing to the minimal risk, and all patients’ infor-
mation was de-identified before analysis.

Measurement of variables
A standardised case report form was used to collect data 
at the eight participating hospitals. Medical records were 
reviewed to obtain data, which included demographics, 
comorbidities, physiological data, laboratory tests and 
influenza-associated data. Importantly, given that the 
reported influenza epidemic was characterised by a high 
proportion of patients with acute respiratory distress 
syndrome (ARDS), we collected ventilatory parameters 
and daily fluid status; protective ventilation strategy and 
dry-lung strategy are key components of the fundamental 
management of ARDS.21 22 We also collected severity 
scores, including APACHE II, which is one of the quality-
assessment indicators used across ICUs in Taiwan, and 
PSI, a widely used scoring system for predicting mortality 
in patients with pneumonia.13 23

Extreme gradient boosting
We used extreme gradient boosting (XGBoost), an 
ensemble machine learning method based on decision 
trees, to establish a prediction model for 30-day mortality 
using data within the first 7 days after admission to the ICU 
and to illustrate the feature importance. Gradient boosting 
is a technique employed in complex prediction models 
that involves iterative combinations of ensembles of weak 
prediction models into one strong learner.24 XGBoost 
uses second-order Taylor series to approximate the value 
of the loss function and further reduces the likelihood of 
overfitting by application of regularisation.25 In the setup 
of the hyperparameters, the optimal values were found by 
performing a grid search on possible value combinations 
of the parameters. The main fine-tuned parameters in the 
present study included number of trees (n_estimator=100), 
learning rate (eta=0.007), minimal loss to expand on a leaf 
node (gamma=0), maximum tree depth (max_depth=4), 
subsample proportion (subsample=1), ratio of the number 
of negative class samples to positive class samples (scale_
pos_weight=263/73) and minimum sum of instance weight 
needed in a child node (min_child_weight=1). All the other 
parameters may remain at their default values (see online 
supplementary table 1 for detailed parameters).25 Addition-
ally, the ensemble of decision tree methods can be used 
to obtain a predictive model with high accuracy through 
sequential (boosting) or parallel (bagging) ensemble 
methods and to provide estimates of feature importance 
from a trained predictive model. In the present study, which 
used F scores in XGBoost, the relative importance of each 
variable was computed as the sum of Gini improvement 
among the corresponding splits within a tree averaged over 
all the trees. Moreover, we implemented SHapley Additive 
exPlanations (SHAP), which is a recent approach to explain 
the output of a machine learning model, to illustrate the 
individual feature-level impacts on the 30-day mortality.26 
In brief, SHAP is an additive feature attribution method 
that provides an explanation of the tree ensemble's overall 
impact in the form of particular feature contributions and 
is relatively consistent with human intuition. In the present 
study, the training set consisted of a randomly selected 80% 
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of the patients, and the testing set was composed of the 
remaining 20% of the patients. The model establishment 
was based on data from the training set, and the testing 
set was independent of the training process and was used 
only for performance evaluation after the establishment of 
the model. The same training and testing sets were used 
in all three machine learning models in the present study 
(online supplementary figure 1).

Logistic regression and random forest
In addition to XGBoost, we also employed other ML models, 
including logistic regression (LR) and random forest (RF). 
LR is a widely used method in medicine and is used as an 
ML model for classification tasks; however, LR is based on 
the assumption that a linear relationship exists between 
the input variables and the outcomes.27 With regards to 
XGBoost and RF, both models are tree-based classifiers; 
however, these two ML models have substantial differences 
in ensemble method: XGBoost is based on boost, whereas 
RF is based on bagging.24 28 In detail, XGBoost is based on 
the ensemble of weak learners and is characterised by high 
bias and low variance.25 In contrast, RF is designed as fully 
grown decision trees and is hence characterised by low bias 
and high variance.29 In RF, max_depth was 4 and n_estima-
tors was 100, while default values were used for the other 
parameters in RF and LR (see online supplementary table 
1 for detailed parameters).

Statistical analysis
Data were expressed as frequencies (percentages) 
for categorical variables and as means±SD or median 
(IQR) based on the test of normality for continuous 
variables. Kolmogorov-Smirnov test was applied to test 
the normality. Differences between the survivor and 
non-survivor groups were analysed using Student’s t-test 
for continuous variables and Fisher’s exact test for cate-
gorical variables. Mann-Whitney U test was used for the 
variable which is not normally distributed. For the inter-
pretability of the ML approach, feature importance was 
used to quantify the variable importance of each variable, 
and the SHAP summary plot and partial SHAP depen-
dency plots were used to illustrate the distribution of the 
variable importance of individual variables. The score of 
feature importance was the average gain across all splits 
of a feature’s used in the construction of the model. 
The performance of XGBoost, RF and LR for predicting 
30-day mortality was determined by using the area under 
the receiver operating characteristic (ROC) curve metric. 
The DeLong’s test was used to compare the difference 
between two areaunder the curves (AUCs). Python V.3.6 
was used in the present study.

Results
Patient characteristics
A total of 336 patients with virology-proven influenza were 
enrolled, and 76 variables with complete data of these 
336 patients were analysed. Table 1 summarises patients’ 
demographic characteristics and other relevant data. The 

median age of patients was 61 (IQR, 53 to 69) years, and 
62.8% were men (see online supplementary dataset for 
details). Given that the eight participating hospitals were 
all teaching hospitals, the enrolled patients had a high 
severity, including a high APACHE II score (22, IQR 17 
to 29) and PSI score (118, IQR 88 to 151) as well as a low 
ratio of oxygen PaO2 to fractional inspired oxygen ratio 
(PaO2/FiO2 (fraction of inspired O2)) (107, IQR 65 
to 159.2). To investigate factors associated with hospital 
mortality, we divided the 336 subjects into survivor and 
non-survivor groups according to mortality at 30 days. 
Compared with those in the survivor group, those in 
the non-survivor group were more likely to have a lower 
PaO2/FiO2 (85.9 vs 111.2, p<0.01), higher PSI (146.5 vs 
108, p<0.01), APACHE II (28 vs 21, p<0.01), serum C-re-
active protein (16.3 vs 12.9 mg/dL, p=0.07), blood urea 
nitrogen (30 vs 20.8 mg/dL, p=0.01) and creatinine (1.5 
vs 1.0 mg/dL, p=0.01) and were more likely to receive 
extracorporeal membrane oxygenation (27.8% vs 12.5%, 
p<0.01), haemodialysis (23.6% vs 7.2%, p<0.01) and 
usage of steroid (60.8% vs 42.3%, p=0.01) (table 1).

Given that patients with severe influenza infection were 
characterised by oxygenation failure, as evidenced by the 
low PaO2/FiO2 and a high proportion (78.3%, 263/336) 
of ARDS, we specifically collected dynamic ventilator 
parameters and data regarding fluid status in this study 
(table  2). Compared with those in the survivor group, 
those in the non-survivor group appeared to require a 
high FiO2, high positive end-expiratory pressure (PEEP), 
high peak pressure (Ppeak), and a low tidal volume/
predicted body weight (VT/PBW) and these trends 
tended to be apparent on day 3. The dynamic fluid data 
showed that a positive cumulative fluid balance on day 4 
(3801.2±4128.8 vs 1347.3±3137.4 mL, p<0.01) and on day 
7 (4500.7±4997.8 vs 506.8±4385 mL, p<0.01) was associ-
ated with high 30-day mortality (table 2). Taken together, 
these data highlight the critical role of dynamic ventila-
tory parameters and fluid status in critically ill influenza 
patients.

Visualisation of feature importance
To provide clinicians with a straightforward under-
standing of feature importance, we categorised the top 
30 features by clinical domain (figure 1). The cumulative 
feature importance of the fluid balance domain, ventila-
tion domain, laboratory data domain, demographic and 
symptom domain, management domain and conven-
tional severity score domain was 0.253, 0.113, 0.177, 
0.140, 0.152 and 0.165, respectively. Moreover, to allow 
the visualised interpretation of the selected variables, we 
used SHAP to illustrate how these variables affect 30-day 
mortality (figure 2). As shown in figure 2, the higher PSI 
and cumulative day-4 fluid balance were associated with 
a higher 30-day mortality, whereas a lower PaO2/FiO2 
was associated with a higher 30-day mortality, in critically 
ill influenza patients. SHAP can also be used to illustrate 
the impact of an individual feature on 30-day mortality. 
As shown in figure  3A, PSI mainly contributed to high 
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Table 1  Basic characteristics of the 336 patients categorised by 30-day mortality

All Survivor Non-survivor

P valuen=336 n=264 n=72

Demographic data  �   �   �

 � Age (years) 61(53-69) 62 (55.8–72.3) 61 (51–69) 0.09

 � Sex 211 (62.8%) 164 (62.1%) 47 (65.3%) 0.68

 � Body mass index 24.5 (21.5–27.7) 24.33 (21.4–26.2) 24.71 (21.6–28.2) 0.01

Disease severity  �   �   �

 � APACHE II 22 (17–29) 28 (22.0–35.0) 21 (15–27) <0.01

 � PSI 118 (88–151) 146.5 (123.0–172.5) 108 (80–140) <0.01

 � PaO2/FiO2 107 (65–159.2) 85.9 (55.4–130.4) 111.2 (68–174) <0.01

Comorbidities  �   �   �

 � Malignancy 50 (14.9%) 37 (14%) 13 (18.1%) 0.45

 � Congestive heart failure 37 (11%) 27 (10.2%) 10 (13.9%) 0.40

 � Diabetes mellitus type 2 102 (30.4%) 78 (29.5%) 24 (33.3%) 0.56

 � Chronic pulmonary diseases 31 (9.2%) 25 (9.5%) 6 (8.3%) 0.99

 � Chronic renal failure 24 (7.1%) 18 (6.8%) 6 (8.3%) 0.61

Symptoms  �   �   �

 � Fever 239 (71.1%) 191 (72.3%) 48 (66.7%) 0.38

 � Myalgia 83 (24.7%) 67 (25.4%) 16 (22.2%) 0.65

 � Headache 17 (5.1%) 13 (4.9%) 4 (5.6%) 0.77

 � Haemoptysis 23 (6.8%) 20 (7.6%) 3 (4.2%) 0.43

Complication of influenza  �   �

 � Pulmonary complication 327 (97.3%) 255 (96.6%) 72 (100%) 0.21

 � Neurological complication 7 (2.1%) 5 (1.9%) 2 (2.8%) 0.65

 � Myocarditis 17 (5.1%) 12 (4.5%) 5 (6.9%) 0.38

Virology data  �   �   �

 � Rapid influenza diagnostic test 162 (48.2%) 127 (48.1%) 35 (48.6%) 0.99

 � Virus culture 102 (30.4%) 75 (28.4%) 27 (37.5%) 0.15

 � RT-PCR 266 (79.2%) 207 (78.4%) 59 (81.9%) 0.62

 � Influenza subtype A 255 (75.9%) 204 (77.3%) 51 (70.8%) 0.28

 � Influenza subtype B 27 (8%) 18 (6.8%) 9 (12.5%) 0.14

Laboratory data  �   �   �

 � White blood cell counts (/ml) 8900 (6008–13 500) 8800 (5850–16 155) 8920 (6100–13 210) 0.52

 � Haemoglobin (mg/dl) 11.9 (9.6–13.7) 11.2 (9.2–13.8) 12 (9.7–13.5) 0.60

 � Platelet count (103/ml) 145 (102–202.2) 135 (81.3–196.0) 149 (107–204.8) 0.21

 � C reactive protein (mg/dl) 13.9 (6.1–22.6) 16.3 (7.495–24.935) 12.9 (6.0–20.8) 0.07

 � Blood urea nitrogen (mg/dl) 22 (14.4–43.3) 30 (19–54.5) 20.8 (13.9–40) 0.01

 � Creatinine (mg/dl) 1.1 (0.8–1.9) 1.5 (1.0–2.6) 1.0 (0.8–1.7) 0.01

 � Sodium (mg/dl) 137 (133–140) 138 (132–141) 137 (133–140) 0.55

 � Potassium (mg/dl) 3.9 (3.5–4.4) 4 (3.5–4.7) 3.9 (3.5–4.3) 0.20

Management  �   �   �

 � First-dose oseltamivir (days) 0.6 (0.1–1.9) 0.5 (0.1–1.9) 0.6 (0.1–1.9) 0.77

 � ICU wait (days) 0.2 (0–1.0) 0.2 (0–0.9) 0.2 (0–1.0) 0.70

 � Prone ventilation 65 (19.3%) 48 (18.2%) 17 (23.6%) 0.31

 � ECMO 53 (15.8%) 33 (12.5%) 20 (27.8%) <0.01

 � Haemodialysis 36 (10.7%) 19 (7.2%) 17 (23.6%) <0.01

Continued
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All Survivor Non-survivor

P valuen=336 n=264 n=72

 � Steroid usage 144 (46.3%) 103 (42.4%) 41 (60.3%) 0.01

 � Vasopressor usage 110 (32.7%) 80 (30.3%) 30 (41.7%) 0.09

 � Sedation usage 222 (66.1%) 175 (66.3%) 47 (65.3%) 0.89

Data were presented as frequencies (percentages) or median (IQR).
APACHE II, Acute Physiology and Chronic Health Evaluation II; ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; PSI, 
pneumonia severity index; RT-PCR, reverse transcriptase-polymerase chain reaction.

Table 1  Continued

variable importance when PSI was higher than approx-
imately 130, and this finding is consistent with previous 
studies on PSI. In line with the results of our previous 
study, a positive day-4 cumulative fluid balance appeared 
to be associated with a higher 30-day mortality, as shown 
in figure  3B.16 Taken together, these data showed the 
feature importance in accordance with clinical domains 
and illustrated the importance of individual features by 
using SHAP plots so that physicians might have an intui-
tive understanding of feature importance.

Comparisons among XGBoost, RF and LR
We then attempted to compare the performance of the 
three ML models to predict 30-day mortality using data 
within the first 7 days after admission to the ICU. Using 
ROC analysis, we found that the AUC value for predicting 
30-day mortality in the XGBoost was 0.842 (95% CI 0.749 
to 0.928), which was slightly higher than those in RF 
(AUC: 0.809, 95% CI 0.629 to 0.891) and much better 
than those in LR (AUC: 0.701; 95% CI 0.573 to 0.825) 
(figure  4). The detailed metrics of the performance of 
these three models were provided (online supplementary 
table 2). Furthermore, we used DeLong's test to deter-
mine the difference between two AUCs and confirmed 
that XGBoost outperformed RF and LR (XGBoost against 
RF, p=0.002; XGBoost against LR, p=0.003). Additionally, 
we examined the use of standard severity scores in the 
ICU, including APACHE II and PSI, to predict 30-day 
mortality in critically ill influenza patients, and the perfor-
mance of APACHE II and PSI was 0.720 (95% CI 0.653 to 
0.784) and 0.720 (95% CI 0.654 to 0.7897), respectively 
(figure 5). Collectively, these data demonstrated the value 
of XGBoost and SHAP plots for giving physicians an intu-
itive understanding of key features and for establishing 
a model that predicts the 30-day mortality of critically ill 
influenza patients with high accuracy.

Discussion
Using a multicentre severe influenza data set along with 
XGBoost and SHAP plots, we demonstrated that the 
ML approach can illustrate key features and establish a 
mortality prediction model with high accuracy in crit-
ically ill influenza patients. The illustration of cumula-
tive domain-specific feature importance and visualised 
interpretation of feature importance may give physicians 

an intuitive understanding of the key features within 
XGBoost. Furthermore, the prediction model, using 
clinical data in the routine practice of ICU care instead 
of advanced molecular biomarkers, can potentially be 
integrated into a computerised clinical decision support 
system in the future.

Consistent with other studies on severe influenza,8 9 we 
found that both APACHE II and PSI had a discriminative 
power of approximately 0.72 in the ROC analysis, which 
is generally deemed acceptable accuracy for a single 
parameter (figure 5). The expected finding that the ML 
approach outperformed PSI and APACHE II in critically 
ill influenza patients should reflect the capability of ML 
to establish an influenza-specific weighting model using 
all of the obtained data. Unlike other critical diseases, 
which are mainly characterised by shock-associated mani-
festations, severe influenza is characterised by severely 
compromised oxygenation, so-called ARDS. Our previous 
studies have also found that early lung-protective venti-
lation and early fluid balance were associated with 
mortality in patients with severe influenza,15 16 a result 
that is consistent with current concepts of the early lung-
protective ventilation strategy and dry-lung strategy in the 
management of patients with ARDS.21 22 Therefore, it was 
reasonable to find that the ventilation domain (cumula-
tive feature importance: 0.113) and fluid balance domain 
(cumulative feature importance: 0.253) were of particular 
importance in the present study, reflecting the additional 
weights on these two domains in XGBoost compared with 
those in conventional severity scores, including APACHE 
II and PSI. Notably, the parameters in the ventilation 
domain and fluid balance domain were all recorded on 
a routine daily basis in the ICU, and hence, the estab-
lished prediction model should be generalisable to other 
settings. Taken together, the results of this study demon-
strate that the use of an ML approach, mainly XGBoost, 
in a real-world data set was capable of establishing a prac-
tical DSS in critically ill patients with a specific aetiology, 
namely, severe influenza.

Critical care medicine requires prompt decision-
making based on clinical data that can be interpreted with 
the assistance of automated DSS. Increasing evidence has 
shown the potential of ML-based automated DSS in crit-
ical care medicine. Taylor et al, using electronic health 
records and ML algorithms, including the RF model, 
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Table 2  Ventilatory and dynamic fluid parameters of the 336 patients categorised by 30-day mortality

All Survivor Non-survivor

P valuen=336 n=264 n=72

Ventilatory data  �   �   �

 � Day-1 FiO2 61.6±38.1 59.2±37.5 70.6±39.4 0.02

 � Day-1 PEEP 8.3±5.6 8.3±5.7 8.2±5.3 0.84

 � Day-1 VT/PBW 6.4±4 6.3±3.9 6.6±4.3 0.54

 � Day-1 Ppeak 22.1±13.2 22±13 22.5±13.8 0.79

 � Day-2 FiO2 61.5±22.3 57.7±20.9 75.7±21.7 0.00

 � Day-2 PEEP 11.3±3.7 11.1±3.8 11.9±3.5 0.12

 � Day-2 VT/PBW 8.3±2 8.4±2 8.2±2.1 0.49

 � Day-2 Ppeak 28.1±4.9 27.8±5.1 29.1±4.3 0.10

 � Day-3 FiO2 53.7±20.1 51.1±18.7 64.5±22.1 <0.01

 � Day-3 PEEP 11.2±3.7 10.9±3.8 12.5±3.2 <0.01

 � Day-3 VT/PBW 8.1±2 8.2±2 7.7±1.9 0.13

 � Day-3 Ppeak 27.7±5.3 27.2±5.5 29.7±4.1 0.00

 � Day-7 FiO2 48.9±18.5 45.3±15.2 65±23.2 0.00

 � Day-7 PEEP 9.8±3.8 9.6±3.7 11.2±4.1 0.02

 � Day-7 VT/PBW 8.3±2.1 8.3±2 7.9±2.5 0.27

 � Day-7 Ppeak 26.3±6.4 25.7±6.4 29±5.6 0.00

Dynamic fluid status  �   �   �

 � Day-1 input 2135.9±1897.2 2036.5±1651.6 2481.5±2561.9 0.22

 � Day-1 output 1403.9±1052.2 1463.9±1021.4 1185.5±1139.7 0.08

 � Day-2 input 2626.3±1148.4 2576±1104 2809.2±1290 0.22

 � Day-2 output 1891.2±1195.5 2003.4±1193.1 1478.6±1119.4 <0.01

 � Day-3 input 2558.6±1170.7 2481.8±990.3 2875±1701.2 0.13

 � Day-3 output 2211.6±1438.3 2213.6±1215.3 2203.2±2146.2 0.34

 � Day-4 input 2424.5±944.1 2392.6±922.3 2563.6±1031.2 0.39

 � Day-4 output 2338.1±1294.7 2435.8±1259.5 1906.7±1370.4 0.01

 � Day-1–4 fluid balance 1864.7±3509.7 1347.3±3137.4 3801.2±4128.8 <0.01

 � Day-5 input 2395.1±935 2365.2±896.9 2534.7±1094.3 0.32

 � Day-5 output 2552±1362.2 2582.3±1322.5 2411.8±1539.1 0.41

 � Day-6 input 2345.2±855 2294.2±762.3 2604.4±1199.7 0.09

 � Day-6 output 2626.1±1882.2 2723.5±1956.9 2130.8±1354.6 0.05

 � Day-7 input 2395.6±898.8 2322.6±826.3 2785.5±1150.4 0.01

 � Day-7 output 2510.1±1265 2549.7±1213.2 2299.8±1509.7 0.23

 � Day-1–7 fluid balance 1351.6±4799.7 506.8±4385 4500.7±4997.8 <0.01

FiO2, fraction of inspired O2; PBW, predicted body weight; PEEP, positive end-expiratory pressure; Ppeak, peak pressure; VT, tidal volume.

recently reported that the ML-based approach was supe-
rior to traditional logistic regression for predicting in-hos-
pital mortality in patients admitted to the emergency 
department for sepsis.30 In line with our ML approach, 
Allyn et al compared an ML-based approach to traditional 
scoring systems (EuroSCORE I and EuroSCORE II) for 
predicting mortality in patients receiving elective cardiac 
surgery and found that the ML-based approach (AUC: 
0.795, 95% CI 0.755 to 0.834) outperformed EuroSCORE 
I (AUC: 0.737, 95% CI 0.691 to 0.783) and EuroSCORE 
II (AUC: 0.742, 95% CI 0.698 to 0.785).31 In addition to 

predicting mortality, Horng et al recently reported an 
ML-based model that included vital signs, demographic 
data and free-text data to identify patients with infection 
in the emergency department (AUC: 0.85, 95% CI 0.84 
to 0.86) and proposed a potential automated trigger for 
sepsis clinical decision support in the emergency depart-
ment.32 Therefore, the accuracy of the prediction model 
in the field of critical care medicine appears to increase 
from approximately 0.7 in the conventional scoring 
system to nearly 0.8 in ML models.
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Figure 1  Relative feature importance categorised by the 
six main clinical domains. APACHE, Acute Physiology and 
Chronic HealthEvaluation; BMI,body mass index; BUN, blood 
urea nitrogen; ECMO, extracorporeal membraneoxygenation; 
FiO2, fraction of inspired O2; K,potassium; Na, sodium, 
PBW, predicted body weight; PEEP,positive end-expiratory 
pressure; PSI, pneumoniaseverity index; Ppeak, peak pressure; 
VT, tidal volume.

Figure 2  SHAP summary plots for 30-day mortality 
predictors in critically ill influenza patients. APACHE, 
Acute Physiology and Chronic HealthEvaluation; 
BMI,body mass index; BUN, blood urea nitrogen; ECMO, 
extracorporeal membraneoxygenation; FiO2, fraction of 
inspired O2; K,potassium; Na, sodium, PBW, predicted 
body weight; PEEP,positive end-expiratory pressure; PSI, 
pneumoniaseverity index; Ppeak, peak pressure; SHAP, 
SHapley Additive exPlanations; VT, tidal volume.

Figure 3  Partial SHAP dependence plot of two 
representative features. (A) PSI score. (B) Cumulative day-4 
fluid balance. PSI,pneumonia severity index; SHAP, SHapley 
Additive exPlanations.

Figure 4  Receiver operating characteristic curves showing 
the performance of the XGBoost model (AUC 0.842, 95% 
CI 0.749 to 0.928), RF (AUC 0.809, 95% CI 0.629 to 0.891) 
and LR (AUC 0.701, 95% CI 0.573 to 0.825) for predicting 
30-day mortality in critically ill influenza patients. AUC, area 
under the curve; LR,logistic regression; RF, random forest; 
XGBoost,extreme gradient boosting.

In the present study, we found a similar test accuracy 
between XGBoost (AUC 0.842) and RF (AUC 0.809), 
whereas the accuracy of LR was poor (AUC 0.701). 
Indeed, LR is a widely used interpretable algorithm and 
works well if a single decision boundary exists. However, 
LR is based on a number of assumptions, including the 
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Figure 5  Receiver operating characteristic curves showing 
the performance of PSI (AUC 0.720, 95% CI 0.654 to 0.7897) 
and APACHE II (AUC 0.720, 95% CI 0.653 to 0.784) for 
predicting 30-day mortality in critically ill influenza patients 
supporting information files. APACHE, Acute Physiology and 
Chronic HealthEvaluation; AUC, areaunder the curve; PSI, 
pneumonia severity index.

independence between input variables and a linear 
correlation between input and output variables, whereas 
the real-life data set may not meet all the assumptions of 
LR. We postulate that the assumption of a linear relation-
ship between the input variables and the outcomes might 
at least partly account for the restively low accuracy of LR 
in this study, as the complex biological events in severe 
influenza may be correlated with each other in a non-
linear model. Instead, tree-based classifiers, including 
RF and XGBoost, based on homogeneity appeared to fit 
the characteristics of the data set in the present study. We 
thought that the application of regularisation, using Taylor 
expansion to approximate the loss function, and high 
flexibility to allow for fine-tuning might enable XGBoost 
to perform slightly better than RF. Taken together, our 
findings suggest that the XGBoost approach can illustrate 
the feature importance and establish a mortality predic-
tion model with high accuracy, and this approach has a 
high potential for practical implementation because it 
can be integrated with existing computerised healthcare 
information systems.

Although ML techniques have made substantial 
advances in many domains, the clinical application 
of ML-based algorithms in healthcare has not always 
been straightforward. One major issue that needs to be 
tackled is the clarification of the black-box issue, rather 
than higher accuracy, to reassure clinicians in the appli-
cation of ML-based algorithms in clinical practice.20 33 34 
Given that the nature of ML is based on accuracy-driven 
performance metrics, it is likely that the model of ML will 
continue to become even more opaque. Therefore, the 
black-box problem will remain an issue in the application 
of ML-based algorithms for patient care. Tree-based ML 
algorithms, including RF and XGBoost, are characterised 

by the potential for interpretation; however, ensembles 
of hundreds of trees, which are essential to improve the 
predictive capability, are essentially not interpretable.35 
In the field of medicine, given that the goal of interpret-
ability is to help the physician make a decision based on 
numerous clinical variables, the interpretability should 
mimic the behaviour of physicians in real-world prac-
tice, rather than merely providing explanations of the 
logical concepts behind the black box.36 In the present 
study, we not only demonstrated the feature importance, 
a quantitative score that considered the feature’s use in 
the construction of the tree models, categorised by clin-
ical domain of real-world practice in critical care medi-
cine but also provided a visualised interpretation using 
SHAP plots. SHAP, developed by Lundberg and Lee, is 
an additive feature attribution method that provides an 
explanation of the tree ensemble's overall impact in the 
form of particular feature contributions and is relatively 
consistent with human intuition.26 Additionally, we used 
local interpretable model-agnostic explanations (LIME) 
to illustrate the impact of key features at the individual 
level, and the results of LIME were consistent with the 
findings from SHAP and will enable physicians to apply 
the ML model to individual patients (online supplemen-
tary figure 2).34 37 However, it is noteworthy that LIME 
mainly illustrated key features by applying a local linear 
model. We believe that the concern of the black-box issue 
should be mitigated by applying these measures, which 
are designed to interpret the model.

There are limitations to this study that merit discussion. 
First, the number of subjects was relatively small. Given 
that only one per cent of patients with influenza-like 
illness develop severe influenza, the sample size in studies 
on severe influenza is generally small.38 As the main focus 
of the study was to determine predictors for mortality in 
ICU patients with proven influenza, the enrollees in this 
study actually accounted for 44.2% (72/163) of deaths 
among patients with severe influenza during the reported 
influenza epidemic in Taiwan.17 To mitigate the issue of 
small sample size, we have performed cross-validation 
(k=5) of XGBoost, RF and LR. The evaluation metric for 
cross-validation was the error rate of classification (ie, the 
number of wrong predictions divided by the total number 
of predictions). The accuracy for XGBoost, RF and LR 
were 0.792±0.022, 0.786±0.010 and 0.732±0.059, respec-
tively. These findings are consistent with the data in the 
manuscript. Second, the study employed a retrospective 
design, though most research on influenza is retrospec-
tive, and evidence obtained from retrospective studies, 
including the present investigation, might be valuable for 
future epidemic or pandemic influenza preparations.39 40 
Third, there was a small improvement in the accuracy of 
mortality prediction. In the fields of critical care medi-
cine and influenza epidemics, small improvements in the 
accuracy of predicting mortality may have a major impact 
on various aspects of healthcare, including patient care 
and resource allocation. Fourth, we used variables within 
7 days as independent variables instead of time-varying 

https://dx.doi.org/10.1136/bmjopen-2019-033898
https://dx.doi.org/10.1136/bmjopen-2019-033898
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variables to predict 30-day mortality. Finally, we did not 
include hospital-factor in the present study despite a 
slight increase of accuracy of XGBoost given that we 
aimed to establish a mortality prediction model with high 
generalisability in critically ill influenza patients (online 
supplementary figure 3).

Conclusions
In conclusion, using a multicentre severe influenza 
data set, we found that the ML approach, particularly 
XGBoost, outperformed traditional severity scoring 
systems, including APACHE II and PSI, for predicting 
mortality among critically ill influenza patients. We 
used domain-based feature importance and SHAP plots 
for visualised realisation and these approaches should 
at least partly mitigate the concern of black-box issue. 
Future prospective research is warranted to validate the 
proposed model and to translate the advantages of ML 
models into improved patient outcomes through auto-
mated and real-time DSS.
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