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Bacteria that readily adapt to different natural environments, can also exploit this

versatility upon infection of the host to persist. Pseudomonas aeruginosa, a ubiquitous

Gram-negative bacterium, is harmless to healthy individuals, and yet a formidable

opportunistic pathogen in compromised hosts. When pathogenic, P. aeruginosa causes

invasive and highly lethal disease in certain compromised hosts. In others, such as

individuals with the genetic disease cystic fibrosis, this pathogen causes chronic lung

infections which persist for decades. During chronic lung infections, P. aeruginosa adapts

to the host environment by evolving toward a state of reduced bacterial invasiveness that

favors bacterial persistence without causing overwhelming host injury. Host responses

to chronic P. aeruginosa infections are complex and dynamic, ranging from vigorous

activation of innate immune responses that are ineffective at eradicating the infecting

bacteria, to relative host tolerance and dampened activation of host immunity. This review

will examine how P. aeruginosa subverts host defenses and modulates immune and

inflammatory responses during chronic infection. This dynamic interplay between host

and pathogen is a major determinant in the pathogenesis of chronic P. aeruginosa lung

infections.

Keywords: Pseudomonas aeruginosa, cystic fibrosis, immune evasion, chronic lung infection, host evasion,

bacterial adaptation

INTRODUCTION

Bacterial pathogens are most commonly studied for their ability to invade and injure the host,
causing acute and invasive infections. In contrast, chronic infections present a distinct paradigm
in infection pathogenesis which may challenge conventional notions of bacterial virulence and
host defenses. To healthy individuals, Pseudomonas aeruginosa (PA) is a ubiquitous Gram-negative
bacterium commonly encountered in the environment and readily cleared by host defenses.
However, PA is also a formidable opportunistic pathogen that can cause invasive and fulminant
infections, such as acute pneumonia or bloodstream infections, in immune compromised hosts.
Remarkably, the same pathogen also causes chronic infections that persist for months to decades,
such as the chronic lung infection in individuals with the genetic disease cystic fibrosis (CF).
Chronic PA infections thus result from a dynamic and complex interplay between pathogen and
host, where bacteria persist without causing overwhelming host injury, and where host defenses
fail to eradicate the pathogen.
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PA has a large genome (>6Mb) that encodes many regulatory
genes involved in sensing environmental signals, controlling
expression of virulence factors, metabolism and resistance
mechanisms. PA thus readily adapts to a wide range of
environments and can exploit this versatility to enhance its
long-term survival and persistence in the host. Importantly,
host-pathogen interactions evolve over time and anatomical
space, with the balance fluctuating between host recognition and
vigorous activation of defense mechanisms, and immune evasion
and tolerance by the host.

Chronic PA lung infections in individuals with CF persist for
decades and provide a unique opportunity to examine how a
bacterial pathogen can adapt to its host, modulate host responses
and shift between different infection phenotypes. It is widely
recognized that CF disease is associated with several intrinsic host
defects, including impaired mucociliary clearance, and immune
and inflammatory dysregulation. The implications of these host
defects to the development of CF lung disease are beyond
the scope of this review but may be found in excellent other
ones (1–3). In this review, we will examine how PA defines
the interactions central to the host immune and inflammatory
response, and the bacterial adaptive strategies that promote
bacterial persistence, and allow evasion and tolerance by the host
during chronic infection. Specifically, we will highlight bacterial
factors that undergo host-adaptation during chronic infections.

BACTERIAL FACTORS INVOLVED IN HOST
INTERACTIONS AND RECOGNITION

Flagellin and Flagellar Motility
PA possesses a single polar flagellum composed of polymerized
flagellin, its major structural protein, and attached to a
transmembrane motor complex. The flagellar-host interaction
plays a major role in defining the immune and inflammatory
outcomes of PA infection, as the flagellar complex interacts
with immune and non-immune cells through its structural
components and as well as motility function.

The flagellar-host interactions have been extensively
characterized at the cellular and molecular level. Flagellin
is best known as a pathogen-associated molecular pattern
that binds to the extracellular Toll like receptor TLR5 (4) and
intracellular NOD-like receptor (NLR) neuronal apoptosis-
inhibitory protein (NAIP) (5), in human (6), leading to
activation of the pro-inflammatory MyD88 pathway and the
NLRC4-inflammasome, respectively (7). TLR5 mediates a major
component of the epithelial cytokine and chemokine responses
leading to neutrophil recruitment in PA lung infection (8–10),
and contributes to the production of pro-IL-1ß in monocytes
and macrophages (11). Flagellin is also translocated by the
Type-3 secretion system (T3SS) in the cytoplasm of mammalian
cells, thereby activating the NAIP-NLRC4-inflammasome

Abbreviations: PA, Pseudomonas aeruginosa; CF, cystic fibrosis; cyclic

di-GMP, cyclic diguanylate; EPS, exopolysaccharide; IL, interleukin; LPS,

lipopolysaccharide; NAIP, neuronal apoptosis-inhibitory protein; ROS, reactive

oxygen species; T3SS, Type-3 secretion system; T4P, Type 4 pili; TLR, Toll like

receptor.

and inducing mature IL-1ß secretion (12, 13). Notably, IL-1ß
promotes phagocytosis through its autocrine and paracrine
effects (11, 14). Interestingly both flagellin and a motile flagellum
are required to activate the NAIP-NLRC4-inflammasome (5, 15–
17), but how host cells sense flagellar motility remains unclear.
Beyond its ability to activate host cell signaling pathways,
the flagellum also promotes adherence and colonization of
host surfaces, and various specific targets have been identified
including MUC1 mucin (18), heparin sulfate (19), surfactant
protein A (20), and asialoGM1 (21).

During chronic infection, PA uses multiple strategies to
evade flagellum-mediated host recognition. Flagellin expression
is under the complex regulation by several global transcriptional
regulators (22–25). It is repressed in mucoid variants which
over-produce the exopolysaccharide alginate (26), during biofilm
growth (27), upon as well as in response to the host nutritional
and inflammatory environment. Notably, flagellin is repressed
in the presence of CF sputum and airway fluid (28) as well
as neutrophil elastase released at sites of inflammation (29).
PA also expresses the secreted bacterial proteases AprA and
LasB which cleave extracellular flagellin, suggesting an intrinsic
mechanism to shut down flagellin-mediated immune recognition
(30). Finally, loss of flagellar motility is common in host-
adapted PA strains from CF lung infections and is associated
with increased bacterial burden and disease severity (31).
Genome sequencing studies of longitudinal PA strains have
revealed evidence of convergent evolution and genetic mutations
in regulatory genes such as rpoN and fleQ which lead to
downregulation of flagellar expression and motility (32, 33). In
fact, PA isolates recovered from chronic CF lung infections fail to
activate the inflammasome due to reduced expression of flagellin
and T3SS (34).

Type 3 Secretion System (T3SS)
The type III secretion system (T3SS) is a complex needle-
like secretion machinery found in gram-negative bacteria that
allows the translocation of bacterial effectors directly into the
cytoplasm of host cells, causing cytotoxicity, or subversion of host
defenses (35). The T3SS causes tissue injury, promotes bacterial
dissemination and has been implicated in the pathogenesis
of acute and invasive infections, including pneumonia (36–
38). Four T3SS-dependent effectors have been identified in PA,
namely ExoS, ExoT, ExoY, and ExoU, and have been recently
reviewed elsewhere (35). The T3SS effectors cause disruption
of host cell cytoskeleton (ExoS, T, and U) and cleavage of
phospholipases (ExoU), leading to cell death, a breach of
epithelial and endothelial barriers and killing of phagocytes
(39–41). ExoS also dampens phagocytosis by interfering with
lysosome signaling in macrophages (42, 43).

Beyond its role in cytotoxicity, the T3SS activates innate
immune responses through secretion of IL-1ß (44). The
T3SS apparatus itself, independently of exotoxin, can activate
the NLRC4-inflammasome through NAIP recognition (44–
46), leading to pyroptotic cell death and the secretion of
mature IL-1ß and IL-18. Whether inflammasome activation
contributes to the effective immune response to control bacteria,
or to the immunopathology associated with PA lung infections
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remains incompletely understood. On one hand, inflammasome
activation and IL-1R signaling may be protective at early stages
of infection (47, 48). On the other hand, NLRC4 activation
is associated with reduced alveolar macrophages, reduced PA
clearance and increased neutrophil recruitment, leading to
greater lung immunopathology and mortality in a murine model
of acute lung infection (49, 50).

Chronic infections appear to select against T3SS-expressing
PA. Although many CF patients carry antibodies against T3SS
effector proteins (51), suggesting that these effector proteins were
secreted at some stage of the infection, most PA strains isolated
from chronic infection are T3SS-negative (34, 52, 53). Loss of
T3SS results in dampened inflammasome activation and lesser
pyroptotic cell death in macrophages and neutrophils (34). CF
isolates are rarely ExoU+ (54), also consistent with the notion
that acute cytotoxicity, particularly when conferred by ExoU, is
less compatible with chronic infection. As discussed later in this
review, several mechanisms contribute to the loss of T3SS in
CF-adapted PA strains.

Secreted Proteases
PA produces several secreted proteases, which include LasB (also
known as PA elastase or pseudolysin), LasA, AprA, and protease
IV. Secreted PA proteases interact with a wide range of host
molecules, leading to diverse outcomes, from degradation of
structural components tomodulation of inflammatory responses.
The PA proteases are most studied for their ability to cause
direct tissue damage, and they are primarily known as virulence
factors involved in the pathogenesis of acute infections. LasB, a
broad specificity metallo-protease, degrades elastin (55), disrupts
epithelial tight-junctions (56), and reduce endothelial barrier
integrity (57, 58). As a consequence, LasB mutants are attenuated
in virulence in experimental models of bacteremia (59), acute
pneumonia (60), or burn wound model (61).

PA proteases also alter host responses by degrading secreted
mediators, leading to a dampening of inflammatory and immune
responses, which likely contributes to its ability to evade
host defenses. In vitro studies have shown that PA proteases
potently degrades secreted mediators such as cytokines (e.g.,
INF-γ, IL-6), chemokines (e.g., IL-8/CXCL1, MCP-1, CXCL-
5, RANTES/CCL5) (62–66), host defense components such as
immunoglobulins (67, 68), antimicrobial peptides (e.g., LL-37)
(69), and membrane receptors (e.g., protease-activated receptor
PAR-1,2 and 4) (70, 71). LasB helps PA subvert alveolar
macrophage activity by down-regulating the oxidative burst
and production of complement factors (72). LasB mediated
degradation of surfactant proteins SP-A and SP-D also leads
to phagocytosis resistance (73, 74). Proteolysis of thrombin by
LasB releases an anti-inflammatory thrombin-derived peptide
FYT21, which inhibits the activation of the transcription
factors NF-κB and AP-1 (75). Finally, AprA and LasB can
degrade flagellin monomers, and thus blunt TLR5-mediated
responses (30) and inflammasome activation (76). Interestingly,
the inflammasome activation is also dampened due to proteolytic
degradation of extracellular inflammasome components by PA
proteases (76).

Although most PA isolates recovered from environmental
sources or acute infections produce secreted proteases, protease-
deficient PA isolates are commonly isolated from patients
with CF and chronic obstructive pulmonary disease (COPD)
chronically colonized with PA (77, 78). In fact, loss of secreted
protease activity occurs as part of the genetic adaptation
of PA to the host environment (see section below) and
is associated with chronic and more advanced lung disease
(32, 79). As secreted proteases dampen inflammation, loss of
protease activity in CF-adapted PA variants conversely can
promote exaggerated inflammation and lung immunopathology,
as observed in vitro, in vivo in murine models of chronic
PA lung infections and in CF patients (80). The impact
of secreted PA proteases on host responses and pathology
thus varies in different infection settings, such as acute vs.
chronic, invasive vs. localized, as the presence or loss of
proteases promote disease through different mechanisms of host
interactions.

Exopolysaccharides (EPS)
PA produces three extracellular polysaccharides (or
exopolysaccharides), namely alginate, Psl, and Pel. They
provide many protective properties and confer surface and
self-adherence. They are constituents of the biofilm matrix, are
involved in surface colonization and promote host immune
evasion. A detailed review of these EPS and their distinct
functions can be found elsewhere (81).

Mucoid PA overproduces the exopolysaccharide alginate
and these strains are commonly associated with chronic CF
lung infections and other chronic lung diseases (79, 82, 83).
Alginate over-production (mucoidy) impairs host defenses and
promotes bacterial persistence through several mechanisms.
Alginate overproduction interferes with opsonophagocytosis
and complement activation, scavenges ROS and inhibits
phagocytic killing (82, 84, 85). It also confers resistance to host
antimicrobials such as LL-37 and reactive oxygen species H2O2

(86). Whether mucoidy dampens host detection remains unclear.
Mucoidy represses flagellar biosynthesis due to the co-regulation
of flagellin and alginate (26), leading to reduced TLR5-dependent
activation. However, mucoidy is linked with increases bacterial
lipoproteins expression (87), which activates TLR2 in host airway
epithelial cells (88), and is associated to greater resistance to the
anti-inflammatory effects of corticosteroids (89).

Psl and Pel are exopolysaccharides which confer structural
and aggregative properties to the biofilm matrix and
contribute to the biofilm antibiotic tolerance (90, 91). Psl
interferes with complement deposition and hinders neutrophil
opsonophagocytosis and oxidative killing (92). Although its
interactions with host cells are less well-characterized, Pel likely
also contributes to resistance against neutrophil killing (93). PA
genetic variants that overproduce Psl and/or Pel are found in
chronic CF infections (94) and are associated with increased
bacterial burden and host immune evasion (95).

Lipopolysaccharides (LPS)
LPS (also known as endotoxin) is a major component of the
outer membrane of Gram negative bacteria. LPS is composed
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of three components: the lipid A and core oligosaccharides
that form the outer leaflet of the bacterial outer membrane,
and the O-antigen polysaccharide which interacts with the
extracellular environment. LPS is recognized by the Toll
like receptor 4 and myeloid differentiation factor 2 complex
(TLR4-MD2). The O-antigen consists of highly variable and
immunogenic oligosaccharide repeats which elicit a strong
humoral response (96).

During chronic infection, the LPS undergoes important
adaptive changes at the level of its synthesis and structure,
leading to modification of the lipid A structure and loss of
O antigen which likely promote immune evasion. Lipid A
acylation patterns or addition of positively charged components,
renders the outer membrane more resistant to host antimicrobial
peptides (97–99), modulates TLR4-MD2 receptor recognition
and dampens host inflammation (100). PA isolates from chronic
infection commonly express little or no O-antigen (101, 102).
Mutations in LPS and O-antigen biosynthesis are common (32,
103, 104) and appear to be a hotspot of genetic variation and
adaptation during chronic CF infections (105). Finally, O-antigen
biosynthesis is also modulated by cyclic-di-GMP, a second
messenger involved in the switch frommotile to adherent lifestyle
of PA (106). A summary of the bacterial factors/complex involved
in the host adaptation during chronic PA infections is provided
in Table 1.

PA PHENOTYPIC AND GENETIC
ADAPTION TO HOST ENVIRONMENTS

During the process of chronic infection, PA adapts to the host
environment and undergoes changes which promote bacterial
survival and evasion of host defenses. Certain adaptive processes
occur at the phenotypic and regulatory level, while others occur
through geneticmutations and evolution.Wewill review here the
key regulatory and genetic adaptive processes that PA undergoes
during chronic PA infection.

Biofilm Lifestyle
In contrast to the free-living bacterial lifestyle termed planktonic,
PA can also grow in a multicellular and sessile form, termed
biofilms. Biofilms are formed by self-aggregated or surface-
adherent bacteria encased within an extracellular matrix.
Biofilms cause many chronic and non-invasive human infections
such as medical device associated infections, chronic CF lung
infection and chronic wound infections. Our understanding of
in vivo host responses to PA biofilms is limited by the lack of
animal infection models that mimic human biofilm infections.
Our insights are thus primarily drawn from in vitro studies that
examine the response of various cell types to biofilm bacteria.
Biofilm formation and its role in disease pathogenesis have been
the subject of recent reviews (81, 107), and only aspects relevant
to host-biofilm interactions are outlined here.

Host responses to PA biofilms are complex, as biofilms may
both stimulate or suppress the immune system. Biofilms may
be less immune-stimulatory than their free-living planktonic
counterparts. For example, the expression of flagellin and T3SS

is down-regulated (108, 109), and the complement system is less
activated (110) during biofilm growth. Furthermore, bacterial
factors involved in host interactions may be embedded within
the biofilmmatrix and not readily accessible for host recognition.
Conversely, biofilms can induce a robust neutrophilic response
where neutrophils are activated, undergo oxidative burst and
degranulate, but are immobilized (111–113). Biofilm PA can also
trigger necrotic cell death in neutrophils (113), leading to further
inflammation and collateral tissue damage.

Importantly, innate immune responses are less effective
against biofilm than planktonic PA. As described above,
exopolysaccharides constitute the major components of the
biofilm matrix and contribute to biofilm resistance against host
antimicrobials defenses and phagocytic killing. Biofilm infections
are thus associated with a smoldering immune response that is
ineffective at clearing bacteria but remains active enough to cause
tissue damage over long periods of time.

Regulatory Control to Switch Bacterial
Lifestyle and Infection Strategy
PA is capable of phenotypically switching between its motile
planktonic lifestyle and the sessile biofilm lifestyle through
multiple and overlapping regulatory networks which include
the RetS/GacS sensor pathway. Through the opposing functions
of RetS and GacS and their signaling cascades, the RetS/GacS
pathway converge on the regulator RsmA and is linked to
the second messenger cyclic di-GMP. It coordinately controls
the expression of motility, Pel and Psl exopolysaccharides,
T3SS and Type VI secretion system (T6SS) -related gene (114,
115). Chronic infection is thus favored as PA represses its
T3SS, motility and produces the exopolysaccharides that form
the biofilm matrix. Interestingly, analysis of host-adapted PA
strains from chronic CF infections identified genetic mutations
in the RetS/GacS pathway, with the possibility that retS
mutations promote a chronic infection state (116). Conversely,
dysregulation of RetS/GacS pathway due to mutations in gacS
or its regulator ladS can also cause excessive T3SS activity and
cytotoxicity, leading to hyper-virulent PA strains that cause
fulminant infections (117) or exacerbations during chronic CF
infection (118).

Cyclic di-GMP is an intracellular bacterial secondary
messenger that regulates multiple bacterial behaviors, most
notably those involved in biofilm formation. The cellular level
of c-di-GMP are modulated in response to environmental and
intracellular signals, and affect expression of genes involved in
flagellar and type IV pilus mediated motility, exopolysaccharide
production and surface adhesion (115). Genetic variants
that overproduce cyclic di-GMP display an auto-aggregative
phenotype caused by the overproduction of Psl and Pel, have been
recovered from chronic CF lung infections (94).

The RetS/GacS and sensor pathway, cyclic di-GMP
signaling and other global regulators (e.g., quorum sensing,
two component sensor regulators) allow PA to coordinately
regulate numerous factors that define distinct bacterial infection
strategies, namely acute and invasive disease, or chronic
and localized disease. It is plausible that the ability of PA to
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TABLE 1 | Bacterial factors/complex involved in host-adaptation during chronic PA infections.

Bacterial

factor/complex

Bacterial function Host interactions Adaptation in chronic infection

Flagellum - Macromolecular motility appendage

which confers motility in low

viscosity liquids through rotational

movement

- Flagellin is the principal structural

component of the flagellar filament

- Mediates biotic and abiotic surface

adhesion

- Flagellin binds and activates TLR5 and

intracellular Naip5 protein, leading to

activation of MyD88 and

NLRC4—dependent inflammatory

pathways respectively

- Promotes surface attachment and

colonization by adhering to mucins,

surfactant protein A, host surface

molecules (e.g., heparin sulfate

proteoglycans, AsialoGM1)

- Reduced flagellar motility and/or flagellin

synthesis in response to mucin, neutrophil

elastase and airway fluid, during biofilm

growth, and due to genetic mutations in

biogenesis or regulatory genes (e.g., rpoN,

fleQ)

- Dampened host recognition, phagocytic

uptake and downstream activation of MyD88

and NLRC4—dependent pathways

Type IV pili (T4P) - Macromolecular motility appendage

which confers surface motility

through extension, attachment, and

retraction movement

- Mediates sensing and adhesion to

biotic and abiotic surfaces

- Promotes biofilm formation (in vitro)

- DNA uptake

- Binds host surface molecules (e.g.,

heparin sulfate proteoglycans and

N-glycans) and promotes surface

colonization

- Promotes direct bacterial-host cell

membrane contact and thus

T3SS-dependent toxicity

- Reduced pilus-mediated motility due to

regulatory control (e.g., cAMP and cyclic-di-

GMP pathways) or due genetic mutations in

biogenesis or regulatory genes

- Reduced colonization and invasion of host

tissues

Type 3 secretion

system (T3SS)

- Needle-like structure that injects

and translocates bacterial effector

proteins across cellular membranes

into the host cell cytoplasm

- Translocation of effectors proteins

(ExoU, ExoY, ExoS, ExoT, flagellin) which

interact with the eukaryotic cytoskeleton

and immune responses in phagocytes

and non-phagocytic cells

- Translocation of flagellin and other

flagellar components into host cytosol,

leading to inflammasome activation

- Repressed expression due to regulatory

control or mutations of regulatory genes (e.g.,

RetS/GacS, cyclic-di-GMP pathways)

- Reduced host cell cytotoxicity and

inflammasome activation

Type 6 secretion

system (T6SS)

- Secretion/injection system that

delivers effector proteins into

prokaryotic and eukaryotic target

cells

- Involved in bacterial competition

- The effectors PldA and PldB activate the

PI3K/Akt pathway, and VgrG2b interacts

with microtubules, which promote

bacterial internalization in

non-phagocytic cells (in vitro)

- Expression potentially induced due to

regulatory control or mutations of regulatory

genes (e.g., RetS/GacS, cyclic-di-GMP

pathways)

Exopolysaccharides - Alginate scavenges reactive oxygen

species and is overproduced in

mucoid variants

- Psl and Pel have aggregative

properties that confer cell-cell and

surface adherence

- Major structural component of

biofilm matrix, which contribute to

biofilm antibiotic resistance

- Pel and Psl promotes adherence to host

cell surface

- Interferes with opsono-phagocytosis,

phagocyte oxidative burst and killing

- EPS overproduction due to mutations or

environment control in regulatory genes (e.g.,

mucA, cyclic-d-GMP pathway)

- Co-regulation of EPS with other bacterial

factors through common pathways (e.g., AlgT,

cyclic-di-GMP) leads to repression of flagellar

biosynthesis and T3SS activity, increased

expression of bacterial lipoproteins (TLR2

agonists) in EPS over-expressing strains.

- Impaired bacterial clearance

Lipolysaccharides

(LPS)

- Lipid A component is embedded in

the outer membrane

- O-antigen is composed of highly

variable oligosaccharide repeats

exposed at the bacterial surface

- Lipid A binds TLR4-MD2

- O-antigen is a common antibody

epitope

- Confers resistance to complement killing

and cationic antimicrobial peptides

- Different lipid A modifications with varying

impact: enhanced or dampened TLR4

activation, leading to immune evasion or

enhanced immune-stimulation

- Loss of O-antigen due to mutations in

biosynthetic genes, leading to immune

evasion

Secreted proteases

(LasA, LasB, AprA,

Protease IV)

- Proteolytic degradation of

extracellular peptides

- Degrades elastin, thrombin, fibrinogen,

surfactant proteins A and D,

complements proteins,

immunoglobulins, cytokines, and other

extracellular mediators

- Degrades flagellin

- Disrupts epithelial tight-junctions and

reduces barrier integrity

- Loss of secreted protease activity due to

genetic mutations in regulatory genes (e.g.,

LasR quorum sensing)

- Reduced host tissue destruction and invasion

- Dampened immune recognition

- Increased accumulation of mediators and

inflammation

phenotypically switch between acute and chronic virulence
modes contributes to the complex disease phenotype it causes:
the natural history of chronic PA lung infections is characterized
by slowly progressive tissue pathology, but is also interrupted

by periods of acute and more fulminant disease termed acute
exacerbations. It is possible to speculate that exacerbation
episodes may be caused in part by a phenotypic switch to acute
virulence.
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Genetic Adaptation During Chronic
Infection
The bacterial genetic adaptation to host environments is a
common theme during chronic infection. For PA, this has been
best documented in chronic CF lung infection, and we suggest
several excellent recent reviews (33, 116, 119) for a detailed
discussion of the topic. In CF, factors that contribute to the
mutagenesis of PA include the presence of hypermutator strains
(120), and the pro-inflammatory environment of the CF lung rich
in oxidative and nitrosative stresses (33).

During its long residence in the CF lung, PA populations
show both genetic diversification as well as convergent evolution.
On one hand, PA undergoes significant genetic and phenotypic
diversification during chronic CF infection, a process likely
attributable to the divergent evolution of clonally related PA
inhabiting different regions and micro-environments of the lung
(121). On the other hand, numerous studies have shown evidence
of convergent evolution when comparing the PA genomes
within patients over time, and across different patients (122).
Genome sequence analyses show a strong positive selection for
non-synonymous mutations in genes encoding or regulating
virulence factors (e.g., T3SS, exotoxin A, quorum sensing),
immunogenicity factors (e.g., O-antigen), motility (flagellar and
T4P mediated motility), drug resistance (e.g., multidrug efflux
pumps), and metabolism (e.g., iron uptake). Importantly, many
of these mutations confer loss of function or secretion of
extracellular factors (e.g., proteases, T3SS) and promote immune
evasion (32, 123). For example, LasR quorum sensing and
protease-deficient variants are observed in over a third of CF
patients with chronic PA infections. This suggests that the host
environment likely confers strong selective forces that shape
host-pathogen interactions and drive the genetic adaptation of
PA toward a state that promote bacterial survival and persistence
in the face of host defenses.

ADVANCES AND CHALLENGES IN THE
DEVELOPMENT OF ALTERNATIVE OR
ADJUVANT THERAPIES FOR CHRONIC PA
INFECTIONS

Alternative or adjuvant therapies that minimize direct bacterial
damage to the host, that enhance protective host responses or
subvert pathological ones, can improve infection outcomes (124).
Such therapies are particularly needed in light of the alarming rise
in drug resistance, and for drug tolerant chronic infections (125).
The latter refers to the phenotypic state of slow growing and
biofilm bacteria which are refractory to antibacterial killing even
in the absence of drug resistance. Unfortunately, despite intense
research efforts and many candidates in pre-clinical studies, the
development of novel therapies in chronic PA infections has been
arduous and met with very limited success so far.

Anti-virulence therapies target bacterial virulence
without disrupting bacterial growth or viability. Although
numerous PA targets (e.g., quorum sensing signaling, biofilm
exopolysaccharides, T3SS complex, and effectors) and inhibitor
molecules have been studied, very few have progressed past

pre-clinical studies (126). Anti-virulence therapies face unique
challenges due to the bacterial phenotypic heterogeneity and
complex host interactions characteristic of chronic PA infections.
First, many PA strains isolated from chronic infections do
not express functional factors such as flagellum and T3SS,
suggesting that these factors may not play as important a role
in virulence during chronic infections as during acute PA
infections. Furthermore, the genetic and phenotypic adaptation
of PA to the host during chronic infection lead to extraordinary
heterogeneity between different patients, as well as at different
stages or anatomically distinct foci of disease within the
same patient. Anti-virulence therapies may thus need to be
tailored to specific patients and/or infection states (e.g., early
infection or acute exacerbation) based on a more comprehensive
microbiological profiling than currently available in the clinic.

Antibacterial antibodies can neutralize bacterial virulence
factors, induce complement mediated lysis and enhance
opsonophagocytic uptake and killing (127). Advances in
antibody engineering and screening have accelerated antibody
therapeutics, and a few anti-PA antibodies have reached
clinical trials. Polyclonal anti-PA antibodies (PsAer-IgY) (128)
are currently in Phase 3 clinical trials (NCT01455675) for the
prevention of recurrent PA infections in CF patients. Monoclonal
antibodies that target the exopolysaccharides alginate (AR-105,
Aridis Pharmaceuticals) and Psl (129), the T3SS needle protein
PcrV [MEDI3902, MedImmune (130); KB001 (131)], O11
serotype LPS [AR-101/KBPA101, Aridis Pharmaceuticals (132)],
or combinations [e.g., bispecific anti Psl/PcrV MEDI3902,
MedImmune (130)] are currently tested for the prevention or
treatment of acute PA pneumonia but their utility in preventing
or treating chronic infections remains to be determined (133).

Considering the intractable nature of chronic PA infection,
an important strategy is also to prevent infection through
approaches such as vaccine, antibody, enzyme or antibiotic-based
treatments. Although several anti-PA vaccine targeting antigens
such as LPS O-antigen, alginate, outer membrane or flagellar
proteins showed promise in pre-clinical trials, their clinical
efficacy in reducing the risk of chronic PA infection in susceptible
individuals (such as CF patients) has been overall disappointing
to date (134, 135).

CONCLUSION

Chronic PA infection illustrates a paradigm of chronic bacterial
infections where pathogens dampen host defenses, adapt and
evolve within the host to persist. Understanding the pathogenesis
of chronic PA infection thus requires an intricate assessment of
bacteria, host responses, and their interactions over time. Host-
PA interactions are exceptionally complex in chronic infections,
as they involve numerous host cell types and bacterial factors.
These interactions are further complicated by the common co-
existence of other pathogens or polymicrobial communities that
interact with both host and PA, and by the potential changes
in the host due to factors such as aging or environmental
exposures. While decades of research have provided us with
vast mechanistic data on host-PA interactions, integrating these
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mechanistic insights into a whole system understanding of
chronic infection and translating this knowledge into effective
treatments remain a major challenge. The development of
better in vivo models of chronic PA infection and tools to
simultaneously probe host and pathogen over time is critical
in order to gain a more integrated understanding of chronic
infections.
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