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Abstract

Objective(s)

To use machine learning (ML) to predict short-term requirements for invasive ventilation in

patients with COVID-19 admitted to Australian intensive care units (ICUs).

Design

A machine learning study within a national ICU COVID-19 registry in Australia.

Participants

Adult patients who were spontaneously breathing and admitted to participating ICUs with

laboratory-confirmed COVID-19 from 20 February 2020 to 7 March 2021. Patients intubated

on day one of their ICU admission were excluded.

Main outcome measures

Six machine learning models predicted the requirement for invasive ventilation by day three

of ICU admission from variables recorded on the first calendar day of ICU admission; (1)

random forest classifier (RF), (2) decision tree classifier (DT), (3) logistic regression (LR),

(4) K neighbours classifier (KNN), (5) support vector machine (SVM), and (6) gradient

boosted machine (GBM). Cross-validation was used to assess the area under the receiver

operating characteristic curve (AUC), sensitivity, and specificity of machine learning

models.
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Results

300 ICU admissions collected from 53 ICUs across Australia were included. The median

[IQR] age of patients was 59 [50–69] years, 109 (36%) were female and 60 (20%) required

invasive ventilation on day two or three. Random forest and Gradient boosted machine were

the best performing algorithms, achieving mean (SD) AUCs of 0.69 (0.06) and 0.68 (0.07),

and mean sensitivities of 77 (19%) and 81 (17%), respectively.

Conclusion

Machine learning can be used to predict subsequent ventilation in patients with COVID-19

who were spontaneously breathing and admitted to Australian ICUs.

Introduction

SARS-CoV-2 is a highly transmissible upper respiratory tract virus that causes coronavirus dis-

ease 2019 (COVID-19). A striking feature of COVID-19 is rapidly progressive respiratory fail-

ure which develops in approximately 5% of infected adults, typically one week after the onset

of coryzal symptoms [1, 2]. Globally, two-thirds of adult patients admitted to intensive care

with respiratory failure secondary to severe COVID-19 require invasive mechanical ventilation

[3]. The institution of mechanical ventilation is strongly associated with poor outcomes in

COVID-19—so identifying cohorts at high risk for mechanical ventilation is important to

allow therapies to be targeted to specific populations and for resource allocation [4]. Avoiding

intubation where possible decreases the risk of the intubation procedure, ventilator-induced

lung injury and nosocomial infection. Alternately, delaying an inevitable intubation increases

the risk of sudden respiratory arrest and unplanned airway management which exposes staff

to a greater risk of infection [5]. Accordingly, developing tools to accurately predict patients at

risk of deteriorating is a priority [6].

During the COVID-19 pandemic the prominence of the Electronic Medical Record world-

wide has allowed artificial intelligence researchers to interrogate rich databases with machine

learning algorithms to improve the speed and accuracy of diagnosis [7, 8], analyse response to

therapeutic interventions [9], identify susceptible patients based on genomics [10], and predict

mortality [11, 12]. There is a paucity of artificial intelligence research modelling predictors of

mechanical ventilation and no studies utilising Australian data. This is important as a limita-

tion of supervised machine learning models is that they are subject to regional bias [13].

The Short Period Incidence Study of Severe Acute Respiratory Infections (SPRINT-SARI)

Australia registry [4] has been prospectively collecting comprehensive data on critically ill

patients with COVID-19 admitted to Australian intensive care units (ICU) from February

2020. The aim of this study was to use the SPRINT-SARI database to develop a machine learn-

ing algorithm to predict progression to mechanical ventilation within the first three days of

admission to an Australian ICU.

Methods

This national multicentre inception-cohort study was performed following the recommenda-

tions of the STROBE Statement [14]. Ethics approval with full consent waiver was granted

under the National Mutual Acceptance scheme by the Alfred Health Human Research Ethics

Committee (HREC/16/Alfred/59) or by specific applications at individual sites. Establishment
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of SPRINT-SARI Australia was approved by the Victorian State Government Chief Health

Officer (Professor Brett Sutton) as an Enhanced Surveillance Project "to capture detailed clini-

cal, epidemiological and laboratory data relating to COVID-19 patients in the intensive care

setting". The requirement for informed consent was waived as was Site Specific Governance at

most contributing sites.

Study design, setting and participants

The methodology for SPRINT-SARI Australia has been described in detail elsewhere [4]. In

brief, the SPRINT-SARI Australia case report form prospectively collected data on all COVID-

19 admissions to participating ICUs. Patients had to have a positive polymerase chain reaction

(PCR) test for COVID-19 and require ICU admission. Patients without PCR-confirmed

COVID-19 and those < 18 years of age were excluded. Data pertaining to baseline demo-

graphics, past medical history, clinical characteristics, treatments, and outcomes were collected

prospectively and extracted from the SPRINT-SARI Australia database for patients admitted

from 20 February 2020 until 7 March 2021. Consistent with previous machine learning studies

in severe COVID-19, our study aimed to predict progression to mechanical ventilation within

72 hours of admission using data from the first calendar of admission [13]. Intubation on the

first calendar day of ICU admission was thought to reflect pre-ICU variables such that this

time window was excluded.

Variable selection

All available variables were analysed for inclusion in the predictive modelling. Initial explora-

tion of the data involved univariate analysis of variables using Pearson’s Chi-Squared test for

categorical variables, and Welch two-sample t-tests for continuous variables. All clinically rele-

vant variables were included in machine learning models regardless of univariate significance.

Only data available from day one of ICU admission were used as model inputs. Variable

reduction/feature selection was trialled on a per-model basis, removing all inputs with a

mutual information score of zero. Sensitivity analysis was subsequently performed, comparing

the performance of ‘full’ and ‘reduced variable’ models. A complete list of the input variables

included in the final models can be found in the results.

Outcome definition

A binary outcome variable was defined as “1” if patients received invasive ventilation by either

day two or day three of their ICU admission, and “0” if this did not occur [13]. Notably,

patients classified as “0” may have ultimately required invasive ventilation at a latter point

than day three of their ICU admission. Patients discharged from ICU prior to day three were

assigned “0”. Deaths within the designated time-frame were included in the final analysis.

Data pre-processing

Continuous variables were rescaled to between 0 and 1 using a min-max approach retaining

the shape of the continuous distribution. However, rescaling was not used for tree-based

approaches, namely random forest, gradient boosting, or decision tree algorithms. For any

missing values (see Appendix C of the S1 File) in the final data frame, k nearest neighbour

imputation was performed using R statistical software (version 3.5.3) with k = 5. Based on the

study protocol and circumstances surrounding data collection, observations missing at ran-

dom was deemed to be a fair assumption in the context of this investigation [15, 16].
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Machine learning models

Six commonly used [17] classes of machine learning algorithms were explored: (1) random

forest classifier, (2) decision tree classifier, (3) logistic regression, (4) K neighbours classifier,

(5) support vector machine, and (6) gradient boosted machine [18].

Hyperparameter optimisation was achieved with grid search. Models were supplied the

same input variables, and the AUC was the main optimisation metric. Final hyper-parameter

values and training metrics are detailed in Appendix A of the S1 File. Machine learning models

were constructed using open-source software libraries (Python version 3.6, scikit-learn version

0.24).

Training and evaluation

Five-fold cross-validation repeated four times was used to assess model performance. Metrics

measuring performance were the AUC, sensitivity, and specificity; these were calculated using

Youden’s Index at a per-fold basis To account for class imbalance in the data set, minority

class oversampling was applied to the training data using SMOTE [19].

Explanatory model generation

Model accuracy is often achieved through increased complexity, often incurring the cost of

compromising explicability. Explanatory modelling of the most performant algorithms in this

investigation was achieved with Shapley additive values [20], which provides a unified frame-

work for interpreting feature importance in the context of black-box algorithms. Explanatory

modelling was developed for predictions from a test set (20%), from the algorithm trained on a

training set (80%). Explanations for correctly classified samples were visualised with a sum-

mary plot, where the points on the plot are the change in model output, derived from the Shap-

ley value of that feature, for each patient in the test set [20].

Results

The raw dataset consisted of 608 patients, of whom 387 (63.7%) were not ventilated on day

one of admission. A further 87 patients had inadequate data collected on day one of admission

(nil bloods data for the given patient at the relevant site and time-point) and were excluded

leaving 300 patients from 53 ICUs included in the final analysis. This included 60 (20%)

patients who required invasive ventilation by day three of their ICU admission, and 240 (80%)

patients who did not. Median (IQR) age for the final dataset was 59 (50–69) years, comprising

of 191 (63.7%) male patients. Inputs utilised in the modelling are shown in Tables 1 (discrete

variables) and 2 (continuous variables), along with their population characteristics (stratified

by whether or not invasive ventilation was required by day 3) and respective p-values. Variable

reduction did not yield a statistically significant improvement in model performance (see

Appendix D of the S1 File). A further 26 patients from the original cohort went on to require

invasive ventilation beyond day three. The median time to invasive ventilation was two days

(Range 2–14, IQR 2–4).

Training and model fit

Final performance metrics (see Appendix A of the S1 File) suggest that despite optimized

hyperparameter tuning, all models evaluated in this study suffered from a degree of

overfitting.
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Table 1. Discrete input variables’ population characteristics and corresponding p-value (Pearson’s Chi-Squared Test).

Input variable Received invasive ventilation on day 2 or

3 (%)

Did not receive invasive ventilation on day 2

or 3 (%)

p.value

History of travel to area with documented COVID cases 19 (32) 65 (27) 0.58

Close contact with suspected or confirmed COVID-19 case 42 (70) 142 (59) 0.16

Presence in healthcare facility with documented COVID-19 7 (12) 31 (13) 0.97

Presence in laboratory handling COVID-19 samples 2 (3) 4 (2) 0.76

Arab 7 (12) 14 (6) 0.19

Black 4 (7) 6 (3) 0.23

East Asian 3 (5) 19 (8) 0.62

South Asian 7 (12) 17 (7) 0.37

West Asian 0 (0) 2 (1) 1.00

Latin American 2 (3) 2 (1) 0.38

Caucasian 27 (45) 103 (43) 0.88

Aboriginal/First Nations 1 (2) 0 (0) 0.45

Other Ethnicity 3 (5) 24 (10) 0.34

Unknown Ethnicity 5 (8) 50 (21) 0.04

Male sex at birth 40 (67) 151 (63) 0.70

Female sex at birth 20 (33) 89 (37)

Transfer from other health facility 3 (5) 20 (8) 0.55

History of fever 47 (78) 188 (78) 1.00

Cough 43 (72) 174 (73) 1.00

Cough with sputum production 15 (25) 67 (28) 0.77

Haemoptysis 0 (0) 10 (4) 0.23

Sore throat 13 (22) 45 (19) 0.74

Rhinorrhoea 4 (7) 29 (12) 0.33

Ear pain 0 (0) 1 (0) 1.00

Wheeze 1 (2) 23 (10) 0.08

Chest pain 10 (17) 52 (22) 0.50

Myalgia 27 (45) 79 (33) 0.11

Joint pain 6 (10) 14 (6) 0.39

Fatigue 38 (63) 147 (61) 0.88

Dyspnoea 46 (77) 177 (74) 0.77

Lower chest wall indrawing 2 (3) 1 (0) 0.19

Headache 15 (25) 44 (18) 0.33

Altered conscious state 4 (7) 23 (10) 0.65

Seizures 0 (0) 0 (0) 0.00

Abdominal pain 3 (5) 19 (8) 0.62

Vomiting/Nausea 16 (27) 64 (27) 1.00

Diarrhoea 24 (40) 63 (26) 0.05

Conjunctivitis 1 (2) 0 (0) 0.45

Skin rash 1 (2) 3 (1) 1.00

Skin ulcers 2 (3) 1 (0) 0.19

Lymphadenopathy 1 (2) 1 (0) 0.86

Bleeding(haemorrhage) 0 (0) 2 (1) 1.00

Bleeding in more than one place 0 (0) 1 (0) 1.00

Loss of smell/taste 10 (1) 27 (11) 0.36

Rigors or sweating 15 (25) 46 (19) 0.41

Severe dehydration 3 (5) 10 (4) 1.00

(Continued)
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Predicting the need for invasive ventilation by day 2 or 3 of ICU admission

The best overall performing machine learning algorithms were gradient boosted machine and

random forest classifier, with mean (SD) AUC of 0.68 (0.07) and 0.69 (0.06) respectively.

These models additionally demonstrated high mean (SD) sensitivities of 0.81 (0.17) and 0.77

(0.19) respectively. DeLong’s test revealed that there was no significant difference in the per-

formance of gradient boosted machine and random forest classifier (Z = 0.82, p-value = 0.41),

and that these both significantly outperformed each of the remaining machine learning algo-

rithms tested. A comprehensive list of DeLong’s test coefficients can be found in Appendix B

of the S1 File.

Second in overall performance was support vector machine, with a mean (SD) AUC of 0.65

(0.08), followed by LR with a mean (SD) AUC of 0.64 (0.08). Decision tree was the poorest per-

forming model tested with a mean (SD) AUC of 0.54 (0.07), representing zero class separation

capability. A complete outline of the models tested, their AUCs, and additional performance

metrics can be seen in Table 3.

Table 1. (Continued)

Input variable Received invasive ventilation on day 2 or

3 (%)

Did not receive invasive ventilation on day 2

or 3 (%)

p.value

Type of oxygen saturation reading closest to pre-intubation on

day one:

0.02

On O2 therapy 40 (67) 116 (48)

On room air 20 (33) 124 (52)

Chronic cardiac disease 11 (18) 29 (12) 0.29

Past ACE inhibitor or A2 blocker use 13 (22) 47 (20) 0.86

Obesity 19 (32) 55 (23) 0.22

Chronic pulmonary disease 5 (8) 21 (9) 1.00

Complicated diabetes 3 (5) 11 (5) 1.00

Uncomplicated diabetes 18 (30) 48 (20) 0.13

Asthma 10 (17) 38 (16) 1.00

Chronic Kidney Disease 2 (3) 13 (5) 0.74

Rheumatological disorder 0 (0) 15 (6) 0.10

Moderate or severe liver disease 1 (2) 3 (1) 1.00

Dementia 0 (0) 0 (0) 0.00

Mild liver disease 0 (0) 6 (3) 0.47

Malnutrition 0 (0) 0 (0) 0.00

Chronic neurological disorder 1 (2) 4 (2) 1.00

Malignant neoplasm 1 (2) 9 (4) 0.69

Smoker 7 (12) 23 (10) 0.81

Chronic haematological disease 2 (3) 6 (3) 1.00

AIDS/HIV 0 (0) 3 (1) 0.88

Chronic immunosuppression 2 (3) 21 (9) 0.25

Readmission 0 (0) 3 (1) 0.88

PaO2 sample type—from ABG with worst P:F ratio for the day: 0 0 0.00

Arterial 54 (90) 167 (70)

Venous 6 (10) 73 (30)

High flow nasal cannula therapy required 43 (72) 112 (47) 0.00

Non-invasive ventilation (e.g. BIPAP,CPAP) required 3 (5) 17 (7) 0.77

Vasopressor support required 3 (5) 7 (3) 0.69

Prone positioning required 7 (12) 26 (11) 1.00

https://doi.org/10.1371/journal.pone.0276509.t001
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Table 2. Continuous input variables’ population characteristics and corresponding p-value (Welch Two Sample t-test).

Input variable Received invasive ventilation on day 2

or 3

Did not receive invasive ventilation on day 2

or 3

p.value

Median (IQR) Median (IQ)

Age (years) 64.5 (52.2–70.0) 58.0 (49.0–69.0) 0.17

Time from onset of symptoms to ICU admission (days) 7 (5–10) 8 (5–11) 0.33

Time spent in hospital prior to ICU admission (hours) 17 (3–57) 9 (3–43) 0.32

Temperature H24 (˚C) 38.6 (37.8–39.1) 38.1 (37.3–38.8) 0.06

Heart rate H24 (beats per minute) 94 (87–109) 100 (85–111) 0.64

Respiratory rate -highest for day (breaths per minute) 30 (25–36) 30 (24–36) 0.41

Systolic blood pressure L24 (mmHg) 119 (103–143) 113 (10–132) 0.16

Diastolic blood pressure—from same point as SBP L24 (mmHg) 60 (54–73) 63 (57–75) 0.30

Oxygen saturation (%) closest to pre-intubation on day one 91 (89–94) 92 (88–95) 0.74

Estimated height (cm) 170 (160–178) 170 (164–175) 0.79

Estimated weight (kg) 82 (70–100) 85 (71–100) 0.66

FiO2—from ABG with worst P:F ratio for the day 0.45 (0.36–0.55) 0.35 (0.25–0.46) 0.91

SaO2/SpO2—from ABG with worst P:F ratio for the day (%) 92 (89–95) 93 (87–95) 0.08

PaO2—from ABG with worst P:F ratio for the day (mmHg) 65 (57–73) 60 (50–70) 0.02

PaCO2 -from ABG with worst P:F ratio for the day (mmHg) 34 (32–37) 36 (33–39) 0.02

pH from ABG with worst P:F for the day 7.46 (7.44–7.48) 7.44 (7.42–7.46) 0.00

HCO3- from ABG with worst P:F ratio for the day (mmol/L) 24 (23–26) 24 (23–26) 0.72

Base excess from ABG with worst P:F ratio for the day (mmol/L) 0.9 (-0.4–2.4) 0.6 (-1.1–2.3) 0.18

GCS—lowest for the day 15 (14–15) 15 (14–15) 0.84

Systolic BP—lowest for the day (mmHg) 114 (104–132) 110 (100–121) 0.05

Diastolic BP—from same time point as lowest SBP on day 1

(mmHg)

61 (56–71) 64 (56–72) 0.76

Mean arterial pressure—lowest for day (mmHg) 78 (73–92) 81 (70–89) 0.61

Daily urine output (mL) 911 (500–1229) 925 (582–1206) 0.97

Platelet count—worst value for day (x 10^9 /L) 205 (110–236) 208 (176–243) 0.74

Total bilirubin—worst value for day (μmol/L) 11 (7–13) 10 (8–13) 0.58

Lactate—worst value for day (mmol/L) 1.4 (1.1–2.0) 1.5 (1.2–2.0) 0.96

Creatinine—worst value for day (μmol/L) 79 (66–96) 77 (67–92) 0.85

Number of quadrants in which infiltrates are present on CXR 3 (2–3) 2 (2–3) 0.28

Haemoglobin—lowest value for day (g/L) 134 (123–138) 133 (125–140) 0.64

WBC count—lowest for day (x 10^9 /L) 6.99 (5.80–8.73) 7.15 (5.49–8.90) 0.77

WBC count—highest for day (x 10^9 /L) 8.03 (6.37–9.96) 8.15 (6.32–9.68) 0.97

Lymphocyte count—lowest for day (x 10^9 /L) 0.71 (0.60–0.93) 0.80 (0.66–0.97) 0.13

Neutrophil count—lowest for day (x 10^9 /L) 5.60 (4.22–7.05) 5.17 (3.80–6.59) 0.21

Haematocrit—worst value for day (L/L) 0.39 (0.36–0.41) 0.39 (0.37–0.41) 0.50

APTT/APTR—worst value for day (s) 32 (31–35) 33 (30–37) 0.35

PT—worst value for day (s) 15 (14–19) 15 (14–24) 0.29

INR—worst value for day 1.1 (1.0–1.1) 1.1 (1.0–1.2) 0.02

ALT/SGPT—worst value for day (U/L) 42 (31–56) 47 (34–67) 0.76

AST/SGOT—worst value for day (U/L) 53 (45–58) 54(45–66) 0.97

Glucose—highest for day (mmol/L) 8.8 (7.4–10.4) 9.3 (7.8–11.0) 0.09

Blood Urea Nitrogen—worst value for day (mmol/L) 5.7 (4.9–7.5) 5.9 (4.8–7.5) 0.98

Sodium—worst value for day (mmol/L) 136 (133–137) 136 (134–137) 0.03

Potassium—worst value for day (mmol/L) 3.9 (3.7–4.0) 4.0 (3.8–4.2) 0.01

CRP—worst value for day (mg/L) 107 (84–134) 104 (83–124) 0.07

(Continued)
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Explanatory modelling

The top 20 most impactful features that contributed to correct sample classification in RF and

GBM are seen in Figs 1 and 2, respectively. Blue and red are indicative of higher and lower var-

iable values respectively, whilst left of the X-axis meridian implies favouring a requirement for

short term ventilation. For example, in the case of GBM (Fig 1), the estimated weight variable

is red left of the Y-axis, and blue to its right. This broadly suggests that the model attributed a

higher risk of short term ventilation to overweight patients. Numerous highly weighted fea-

tures were shared between the two algorithms, with an apparent focus on arterial blood gas

derived data including the fraction of inspired oxygen (FiO2), arterial partial pressure of oxy-

gen (PaO2), pH, and base excess. Other laboratory derived data (worst plasma sodium, potas-

sium, and lactate levels) and clinical observations (lowest systolic blood pressure and diastolic

blood pressure) were also shared between the two models. Minor differences included that gra-

dient boosted machine utilised pulse oximetry derived arterial oxygen saturation (SaO2)

whereas random forest classifier did not, and, conversely, random forest classifier gave relative

importance to arterial partial pressure of carbon dioxide (PaCO2) whilst gradient boosted

machine did not.

The logistic regression coefficients are shown in Fig 3, with blue and red bar colours repre-

senting direct and indirect correlation respectively to the requirement for short term ventila-

tion. There were multiple prominent inputs from a linear standpoint that were not deemed

important to random forest classifier or gradient boosted machine. These were an array of

both clinical (chronic kidney disease, wheeze, skin ulcers, diarrhoea) and demographic fea-

tures (Aboriginal ethnicity, presence in a healthcare facility with documented COVID-19,

close contact with confirmed or suspected COVID-19 case). That being said, a handful of

inputs were deemed to be of high utility in both linear and non-linear modelling, particularly

arterial blood gas derived values such arterial partial pressure of oxygen.

Whilst univariate analysis (see Tables 1 and 2) was not used for input filtration, the categor-

ical (high flow nasal cannula therapy) and continuous (pH) inputs deemed to be of greatest

Table 2. (Continued)

Input variable Received invasive ventilation on day 2

or 3

Did not receive invasive ventilation on day 2

or 3

p.value

Median (IQR) Median (IQ)

Daily fluid balance (mL) 8.48 (-278.40–392.08) 126.00 (-253.35–530.60) 0.27

H24—Highest in first 24 hours of hospital admission, L24—Lowest in first 24 hours of hospital admission

‘Day’ refers to the first 24 hours of ICU admission unless otherwise specified.

’Worst’ refers to the worst value as relating to the APACHE II score.

P:F ratio = PaO2 divided by FiO2

https://doi.org/10.1371/journal.pone.0276509.t002

Table 3. Performance of ML algorithms.

Classifier AUC Sensitivity Specificity

KNN 0.59 +/- 0.07 0.78 +/- 0.24 0.49 +/- 0.20

DT 0.54 +/- 0.07 0.31 +/- 0.13 0.78 +/- 0.05

SVM 0.65 +/- 0.08 0.78 +/- 0.16 0.59 +/- 0.15

GBM 0.68 +/- 0.07 0.81 +/- 0.17 0.58 +/- 0.17

LR 0.64 +/- 0.08 0.75 +/- 0.19 0.59 +/- 0.21

RF 0.69 +/- 0.06 0.77 +/- 0.19 0.62 +/- 0.17

https://doi.org/10.1371/journal.pone.0276509.t003
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Fig 2. Summary plot showing the 20 most predictive features as defined by the GBM model for correctly classified

samples. H24—Highest in first 24 hours of hospital admission, L24—Lowest in first 24 hours of hospital admission.

‘Day’ refers to the first 24 hours of ICU admission unless otherwise specified. ’Worst’ refers to the worst value as

relating to the APACHE II score. P:F ratio = PaO2 divided by FiO2.

https://doi.org/10.1371/journal.pone.0276509.g002

Fig 1. Summary plot showing the 20 most predictive features as defined by the RF model for correctly classified

samples. H24—Highest in first 24 hours of hospital admission, L24—Lowest in first 24 hours of hospital admission.

‘Day’ refers to the first 24 hours of ICU admission unless otherwise specified. ’Worst’ refers to the worst value as

relating to the APACHE II score. P:F ratio = PaO2 divided by FiO2.

https://doi.org/10.1371/journal.pone.0276509.g001
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significance by univariate analysis nonetheless featured as highly weighted inputs for all three

of gradient boosted machine, random forest classifier and logistic regression.

Finally, neither age nor sex featured in the top 20 impactful features of the most performant

algorithms in this investigation.

Discussion

This is the first study to leverage Artificial Intelligence/Machine Learning to identify readily

available clinical risk factors for mechanical ventilation in COVID-19 patients admitted to

ICU using Australian data [21]. The population in this study represent a ‘grey-area’ cohort

who have been deemed unwell enough for ICU admission, however, did not require invasive

ventilator support on admission to ICU. The high sensitivity (81%) AI-driven tools developed

in this investigation, empower institutions to predict resource allocation for COVID-19

patients at risk of requiring intubation in the short term.

Consensus guidelines on when to intubate patients with severe COVID-19 are lacking and

the decision to intubate at present is based on the discretion of the treating physician. Early in

the pandemic The Chinese Society of Anaesthesiology Task Force on Airway Management

advocated for early intubation of patients showing no improvement in respiratory distress and

poor oxygenation (PaO2:FiO2 ratio <150 mmHg) after two hours of high flow oxygen or non-

invasive ventilation [22]. Concerns regarding aerosolizing the virus with high-flow oxygen and

non-invasive ventilation with subsequent increased risk to healthcare workers, further rein-

forced calls to intubate early [5]. More recently there has been a shift away from protocolised

early intubation. A French prospective multicentre observational study of 245 patients with

severe COVID-19 categorised early intubation as within the first two days of ICU admission

[23]. Patients in the early intubation cohort had higher rates of pneumonia and bacteraemia,

longer lengths of ICU stay and increased 60-day mortality (weighted hazard ratio 1.784, 95%

CI 1.07–2.83) [23]. A systematic review of 12 studies involving 8944 critically ill patients with

COVID-19 found that timing of intubation had no effect on morbidity or mortality [24]. In

the absence of traditional evidence-based guidelines to guide timing of intubation, machine

Fig 3. Largest twenty coefficients by absolute value as defined by logistic regression. These represent the model’s weighting of the

variable of interest on the outcome (whether or not invasive ventilation will be required by day 2 or 3 of ICU admission). Positive values

signify that as variable increases, the risk of requiring invasive ventilation increases. Negative values signify that as the variable decreases,

the risk of requiring invasive ventilation decreases. H24—Highest in first 24 hours of hospital admission. ‘Day’ refers to the first 24 hours of

ICU admission unless otherwise specified. ’Worst’ refers to the worst value as relating to the APACHE II score. ��Closest to pre-intubation

on day one. �From ABG with worse P:F (PaO2 divided by FiO2) ratio for the day.

https://doi.org/10.1371/journal.pone.0276509.g003
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learning algorithms have been proposed as a tool to inform this important clinical decision

[11–13].

Utilising a supervised machine learning algorithm, Arvind et al. used 24-hour admission

data to predict mechanical ventilation at 72 hours in 4,087 patients admitted to hospital in

New York City (United States) with suspected or confirmed COVID-19 [13]. Using a random

forest classifier they demonstrated a superior AUC of 0.84 [11]. In a retrospective study of

1,980 COVID-19 patients in Michigan (United States), Yu et al. used a XGBoost machine

learning model to predict mechanical ventilation from emergency department data with a pre-

diction accuracy of 86% (96%CI 0.03) and an AUC of 0.68 [12]. In a single centre prospective

observational study of 198 patients admitted to an Infectious Disease Clinic in Modena (Italy),

Ferrari et al applied GBM machine learning to predict mechanical ventilation with a superior

AUC 0f 0.84 [25]. Finally, Heldt et al. applied machine learning to inpatient data of 879 con-

firmed COVID-19 patients in London (United Kingdom) to predict risk of ICU admission,

need for mechanical ventilation and death [11]. Prediction performance was best with random

forest and XGBoost models with AUC of 0.87. The algorithms developed in this study are the

first to use Australian data to predict outcomes in critically ill patients with COVID-19. The

performance of our GBM model with an AUC of 0.68 and sensitivity of 0.81 is inferior to what

has been reported internationally [11–13, 25]. This is not surprising; our population were criti-

cally ill patients that had already deteriorated to the point of requiring admission to the inten-

sive care unit as opposed to previous machine learning models which had been developed on

patients in the emergency department or hospital ward [11–13]. By virtue of a greater severity

of illness at baseline we hypothesize that any signals for deterioration to requiring mechanical

ventilation will be more dilute in our critically ill cohort.

Strengths of our study include that it was performed using readily available data from a

national database in which data collection was performed by experienced research staff using a

standardised case report form. The follow-up rate was high with complete data for the primary

outcome of invasive ventilation. Our study also represents a unique high acuity cohort for AI

modelling of mechanical ventilation risk. Whereas previous studies modelled data from

COVID-19 patients in the emergency department [12] and/or hospital ward [11, 13] our

cohort were exclusively patients admitted to intensive care. Additionally, it has been shown

that the interpretability of the results for time-constrained decision-makers are critical success

factors when attempting to integrate automated processes into clinical tasks [26]. Advances in

explanatory modelling systems, such as Shapley additive values [20] utilised in this investiga-

tion, increase ‘black box’ transparency and thus clinical interpretability. Taken together, these

models highlight the potential for artificial intelligence/machine learning to guide clinical deci-

sion making across an array of hospital settings.

There are, however, important limitations. Firstly, we restricted our prediction window to a

72-hour interval as per Arvind et al [13]. This meant that a proportion of patients in our cohort

who eventually required invasive ventilation beyond day three of their ICU admission were

not detected by the model (26/87 30.2%). This shortened forecasting was deemed appropriate

given the median time to ventilation was two days (IQR 2–4 days) and events beyond three

days were thought to have less mechanistic link to variables collected on the day of admission

[13]. Nevertheless, these models do not predict the risk of mechanical ventilation throughout

the entire ICU admission. Secondly, increasing the complexity of ML models, especially in the

context of smaller sized datasets such as that utilised in this investigation, can cause overfitting

[27]. Although our investigation attempted to address the issues of overfitting via active and

appropriate choice of pre-training, hyper-parameter selection, and regularisation [28], all

models evaluated in the study suffered from overfitting as indicated by performance discrep-

ancies in the training and test sets during cross-validation (see Appendix A of the S1 File).
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Cross validation during hyperparameter optimisation was also not nested, potentially posing a

source of bias [29]. These limitations may impact the external validity of these models. Addi-

tionally, despite a rigorous and highly protocolised data collection process, the degree of miss-

ingness was high for a selection of the variables. The clinical design of this investigation,

however, ensured that these values were missing at random, justifying the implementation of

conventional imputation. We tested six of the most commonly used classes of machine learn-

ing algorithms which were chosen based on their clinical utility in predicting patient deteriora-

tion in critical care settings [11–13, 25]. We acknowledge that there are a multitude of high

performing machine learning algorithms with clinical and medical informatics utility and can-

not exclude that these additional classes would have superior predictive ability [30–32]. During

the capture period Australia experienced two distinct ‘waves’; an initial wave from 27 February

to 30 June 2020 and a second wave from 1 July to the 7th of March 2021. Due to insufficient

sample size we were unable to undertake a time period analysis by COVID wave. Furthermore,

we were not able to compare the model to the current standard being intensivist prediction of

mechanical ventilation. Machine learning models may be better, worse or the same as the

experienced clinician gestalt.

Conclusions

ML models based on readily available demographic, observational and laboratory data can reli-

ably predict short term requirements for invasive ventilation in Australian patients with

COVID-19 patients not intubated on day one of their ICU admission.
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