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Background. Malaria risk stratification is essential to differentiate areas with distinct malaria intensity and seasonality patterns.
+e development of a simple prediction model to forecast malaria incidence by rainfall offers an opportunity for early detection of
malaria epidemics.Objectives. To construct a national malaria stratification map, develop prediction models and forecast monthly
malaria incidences based on rainfall data. Methods. Using monthly malaria incidence data from 2012 to 2016, the district level
malaria stratification was constructed by nonhierarchical clustering. Cluster validity was examined by the maximum absolute
coordinate change and analysis of variance (ANOVA) with a conservative post hoc test (Bonferroni) as the multiple comparison
test. Autocorrelation and cross-correlation analyses were performed to detect the autocorrelation of malaria incidence and the
lagged effect of rainfall on malaria incidence.+e effect of rainfall on malaria incidence was assessed using seasonal autoregressive
integratedmoving average (SARIMA)models. Ljung–Box statistics for model diagnosis and stationary R-squared andNormalized
Bayesian Information Criteria for model fit were used. Model validity was assessed by analyzing the observed and predicted
incidences using the spearman correlation coefficient and paired samples t-test. Results. A four cluster map (high risk, moderate
risk, low risk, and very low risk) was the most valid stratification system for the reported malaria incidence in Eritrea. Monthly
incidences were influenced by incidence rates in the previous months. Monthly incidence of malaria in the constructed clusters
was associated with 1, 2, 3, and 4 lagged months of rainfall. +e constructed models had acceptable accuracy as 73.1%, 46.3%,
53.4%, and 50.7% of the variance in malaria transmission were explained by rainfall in the high-risk, moderate-risk, low-risk, and
very low-risk clusters, respectively. Conclusion. Change in rainfall patterns affect malaria incidence in Eritrea. Using routine
malaria case reports and rainfall data, malaria incidences can be forecasted with acceptable accuracy. Further research should
consider a village or health facility level modeling of malaria incidence by including other climatic factors like temperature and
relative humidity.

1. Background

Despite the drastic decline in morbidity and mortality over
the past two decades, malaria continues to remain a global
public health concern. In 2015, there were an estimated 212
million malaria cases globally, translating into an incidence
rate of 94 per 1000 persons at risk—a 41% decrease from the
rate in 2000 [1]. Africa shares three-quarters of the global
malaria cases with sub-Saharan Africa carrying the largest
burden (35.4 million disability adjusted life years) [2].

Located in the horn of Africa, Eritrea is topographically
classified as western and eastern lowlands and central
highlands. Most regions of the country receive low sporadic
rainfall, with a significant difference in rainfall amount
between the highland and lowland areas. +e coastal plains
(0–1000meters above sea level) have very similar malaria
situation as the western lowlands, but with notably less
precipitation. In the western lowlands (with a range of el-
evation between 700 and 1500meters above sea level),
malaria transmission is highly seasonal and the area is prone
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to epidemics. Transmission is perennial along the rivers,
valleys, dams, and irrigation projects. +e highlands
(>1500meters above sea level) are generally free from
malaria but are highly prone to malaria epidemics as a result
of low immunity of these populations. With an estimated
population size of four million, about 46.5% of the Eritrean
population lives in the zones classified as moderate malaria-
risk areas. +e most common malaria parasite in Eritrea is
Plasmodium falciparum which accounts for more than 80%
of all malaria cases. Plasmodium vivax is the second species
which accounts for about 20%. Anopheles arabiensis is the
main vector of malaria in the country followed by A. dthali,
A. cinereus, A. rhodesiensis, A. squamosus, and A. rupicolus
[3]. In Eritrea, there are six administrative regions (zones)
with 58 districts (subzones). In each zone, the socioeco-
nomic drivers of malaria transmission are well known; in
fact, each zonal and/or subzonal malaria coordinator knows
the vector breeding sites in the locality. +e drivers of
malaria transmission in each of the zones are varied. In the
Gash Barka zone, the area has a July-September rainfall
season and a small rain season in April/May. +e drivers of
transmission are the many brick-making sites, the big rivers,
the borders with Ethiopia and Sudan, many inaccessible
areas, lots of dams, and irrigation activities. +is is coupled
with movement of nonimmune people to these areas for
economic activities which may worsen the malaria situation.
In the Debub zone, months July-September are the rainy
seasons and the April/May small rain. Drivers of trans-
mission are similar to those in Gash Barka. It also shares
border with Ethiopia, but limitedmovement of people across
the boarders limits the cross-border transmission of malaria
here. Debub has the highest population density in the
country. Anseba zone has July-September rainy season and
the April/May small rain. +is zone has imported malaria
cases fromGash Barka.+ere are lots of dams and rivers.+e
zone has good surveillance system, and it reports that 60% of
malaria cases in the zone are imported from Gash Barka.
Semenawi Keih Bahri zone has December/January raining
season with no April/May small rain. +e land mass is very
big, but malarious areas are limited because the coastal area
is desert and very hot. It has rivers and two raining seasons in
some areas. Debubawi Keih Bahri zone has December/
January rainy season and no April/May small rain; there
is perhaps no local transmission, and cases are imported
from the western lowland and southern region. Despite the
reduction in malaria morbidity and mortality, the disease
remains a public health concern in most parts of the country
threatening economic development. +e disease is most
prevalent in Gash Barka and Debub zones, which bear more
than 85% of the national burden.

Over the past two decades, successful implementation
of various strategies to combat malaria has led to a sig-
nificant decrease in malaria incidence in Eritrea [4–8]. In
2012, there was 89% reduction in malaria incidence from
157 cases/1000 population at risk in 1998 to 17 cases/1000
in 2016. In the same year, there was a 98% reduction (0.004
deaths/1000) in malaria-specific deaths compared to 0.198
deaths/1000 in 1998. In some parts of Eritrea, there seems
to be a “break in malaria transmission” as subzones that

previously reported thousands of cases are reporting very
few or nil cases. Furthermore, the NMCP has developed a
National Malaria Strategic Plan to eliminate malaria in
Eritrea by 2030 [9, 10].

Malaria stratification is classification of areas according
to the risk of malaria. Malaria risk mapping is a useful
preliminary stage to differentiate areas that experience ep-
idemic or highly seasonal transmission of malaria. In
moderate and low transmission settings characterized by
marked spatial heterogeneity of malaria risk, the stratifi-
cation level needs to be more spatially specific in order to
facilitate precise targeting of interventions, ideally at the
subdistrict or village level [11–13]. Stratification, spatio-
temporal distribution, and disease surveillance for the
subzone level early detection of malaria epidemics has been
used in many countries [14–18]. In Eritrea, malaria control
programs are designed to suit at the level of administrative
zones (subzones). +us, the subzone level stratification is
more appropriate than large-scale stratification, which may
cause overlapping of strata.

Eritrea is an example of a country that has achieved
substantial reductions in malaria morbidity and mortality
and is now making a shift from a “control” phase to the
“preelimination” phase.+e National Strategic Plan has set a
goal to reduce malaria incidence by 50% from 2010 and
achieve the test positivity rate (TPR) below 5% in all sub-
zones by 2017 and beyond. To attain this goal, one part of the
objectives aims to strengthen the malaria surveillance system
in light of preelimination and detect and respond to 100% of
malaria epidemics within two weeks of onset [19]. Conse-
quently, the NMCP has been making efforts in targeting
malaria interventions through a more refined malaria
stratification risk approach [20, 21] and to provide timely
data on temporal and spatial variations in malaria case
numbers across all malaria-endemic subzones in the country
[22].

+e effects of climate change on malaria remain complex
[23–25]. Various studies have argued that climatic condi-
tions alone are not responsible for the observed changes in
malaria transmission, but other socioeconomic factors such
as land use change, population growth, migration changes,
and economic development play a considerable role in the
disease transmission dynamics [26]. Nevertheless, many
studies found a link between changes in climatic factors and
malaria transmission [27–36]. Some researchers posit that
both explanations are plausible since various factors com-
plement and interact with each other at different time scales
[27]. Recent studies have found relationships of climate
variables, typically temperature and rainfall, with malaria
incidence. For instance, links between temperature and
malaria transmission have been observed in many countries
[31, 37–39]. Relationships between rainfall and malaria
transmission have also been reported in many studies
worldwide [31, 37–40].

Because rainfall created wet conditions suitable for
breeding, vector coverage and disease season un-
predictability is common. It is worth nothing that an in-
crease in rainfall does not necessarily increase in malaria
cases and vice versa. Heavy rainfall tends to be associated
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with the detrimental effect in breeding sites, while moderate
rainfall may favor vector abundance [27, 40].

An understanding of the trends and relationships be-
tween malaria transmission and rainfall could be beneficial
for anticipating disease epidemics and making early
preparations for prevention and control. While the re-
lationships between the malaria distribution and envi-
ronmental condition have been studied to some extent, the
effects of rainfall on malaria incidence have not been
studied in Eritrea. Lack of information on the expected
number of malaria cases in a given area in a certain period
of time is a challenge to the NMCP because of the diffi-
culties to predict “when and where epidemics will occur”.
Hence, the development of a simple prediction model to
forecast the occurrence of malaria transmission by rainfall
variability offers an opportunity for early detection of
malaria epidemics for a timely response. However, there
have been no studies that provide forecasted malaria in-
cidence based on rainfall in Eritrea. In this context, this
study aimed at constructing a national malaria stratifica-
tion map and developing models and forecast malaria
incidence in Eritrea based on rainfall variability.

2. Methodology

2.1. Study Design. +is is a retrospective analytic cross-
sectional study.

2.2. StudyArea. Eritrea is a malaria-epidemic-prone country
situated in the Horn of Africa with an approximate area of
124,000 square kilometers (sq km).+e study was conducted
in all six zones with 58 subzones of the country.

2.3. Study Population. Retrospective census analysis of all
health facility reports of malaria cases from 2012 to 2016
from the National Health Management and Information
System (NHMIS) office.

2.4. Data Collection Method

2.4.1. Data on Malaria Cases. All malaria cases reported
from health facilities to NHMIS were extracted by month
and health facility for the years 2012–2016. Zonal and
subzonal boundary files were obtained from the National
Statistics Office (NSO), Asmara, Eritrea. Malaria cases
were summed over both age groups (under and above
5 years) by the subzone and month for the given number of
years. Malaria incidence per 100,000 persons per month by
the subzone was calculated by using the year 2015 pop-
ulation estimates obtained from the National Statistics
Office.

2.4.2. Rainfall Data. From 2012–2016, monthly rainfall data
from all ground metrological stations in Eritrea were col-
lected from the National Civil Aviation, Ministry of Agri-
culture, Ministry of Water, Land and Environment and
Eritrea National Mapping and Information Center.

Comparison of data quality and completeness was checked,
and the most reliable data were selected from the Ministry of
Agriculture.

2.5. Data Analysis

2.5.1. Spatial Distribution Analysis (Stratification Map).
Monthly malaria incidence during the 5-year period for all
subzones was used for stratification. Stratification map was
constructed using nonhierarchical cluster analysis (using the
K-means cluster analysis menu in SPSS). Validity of the
stratified clusters was checked by examining the maximum
absolute coordinate change and one-way analysis of variance
(ANOVA) with a conservative post hoc test using Bonfer-
roni as the multiple comparisons test to determine the
difference of mean incidence rates between the constructed
clusters. Finally, each cluster was marked with a different
color on the subzone level map.

2.5.2. Autocorrelation and Cross-Correlation Analysis.
Using the Ljung–Box Q test, the autocorrelation coefficient
(AC), and partial autocorrelation coefficient (PAC), the
effect of lagged months on malaria incidence was assessed. A
cross-correlation analysis was also conducted to detect how
malaria transmission was influenced by up to seven lagged
months.

2.5.3. Time-Series Models. +e forecasting menu of IBM
SPSS Statistics 20 was used for data analysis. +e dependent
variable was the monthly malaria cases of the stratified
clusters using the 5 years malaria incidence data (2012–
2016). +e independent variable was the total rainfall (in
mm). Expert modeler was used to build the model. Ap-
propriate date variables were defined for the consideration of
seasonal terms in the model by using the define date menu
from the transform tab in SPSS.

In order to take into account the different situations that
may bias classical regression models, the monthly malaria
incidence and rainfall modeling was performed using a
seasonal autoregressive integrated moving average (SAR-
IMA) model. +e simplified notation for seasonal ARIMA is
ARIMA (p, d, q) × (P, D, Q)12, where p indicates the non-
seasonal autoregressive (AR) order, d is the nonseasonal
differencing, and q indicates the nonseasonal moving av-
erage (MA) order. P, D, and Q are the corresponding sea-
sonal components. S indicates the period, which in this case
is 12months.

Normalized Bayesian Information Criteria (N.BIC) and
stationary R-squared (coefficient of determination) in-
dicators were used to determine the fitness of the model, and
the Ljung-Box Q (LB) statistic was used to determine its
suitability. Models with a LB significance value of more than
0.05 were considered suitable. Finally, models with the best
fit, with respect to the above criteria, were selected. +e files
of the selected models were stored as XML data and applied
for forecasting the 2017 malaria incidence rates. Model
validity was checked by examining the relationship of the
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observed and predicted incidence using the Spearman
correlation coefficient and testing the degree of difference of
the observed and predicted monthly malaria incidences
using the paired samples t-test.

3. Results

3.1. Spatial Distribution of Malaria in Eritrea. +ere were
87,666 reported malaria cases in Eritrea from 2012 to 2016.
No malaria cases were reported in Areta and central Den-
kalia subzones during this period. +e highest malaria in-
cidences were mainly distributed in Gash Barka and Debub
subzones, namely, May Ayni (5086/100, 000 population),
May Mine (6271), Goluj (6417), Molqui (6744/100, 000),
Barentu (7138/100, 000), Teseney (7861/100, 000), Ghindae
(11302/100, 000), and Mogolo (14324/100, 000).

3.2. Subzone Stratification into Clusters by Nonhierarchical
Clustering Analysis. A four cluster map was found to be the
most valid of the reported malaria incidence during the
study period. With these clusters, we were able to capture
differences in both intensity and the seasonal dynamics of
malaria incidence. As shown in Figure 1, the subzones were
stratified according to the level of incidence rates by non-
hierarchical clustering. Table 1 shows the detailed list of
subzones categorized with their respective clusters.

3.3. Validity Test of the Stratified Subzone Clusters.
Ideally, the recommended number of clusters for stratifi-
cation is 3 to 5. However, in this study, three cluster
stratification was not suitable because in the iteration history
(change in cluster centers), only one cluster showed the
maximum absolute coordinate change. +e five cluster
stratification was not applied because, although all clusters
showed the maximum absolute coordinate change, there was
no significant difference between clusters four and five in the
post hoc test. Hence, the four cluster stratification was used.
Validity of this clustering was checked by looking at the
maximum absolute coordinate change, and all clusters had a
coordinate center of 0.001. Validity was also performed by
one-way ANOVA with a post hoc test using a conservative
Bonferroni test to determine the difference of mean in-
cidence rates between the four clusters. As shown in Table 2,
there was strong significant difference between all clusters.
(P< 0.001).

3.4. Autocorrelation and Partial Autocorrelation of Monthly
Malaria Incidence of Stratified Clusters. In all clusters, the P

value of the Ljung-Box Q Statistic of each lagged month was
less than 0.05. In the high-risk cluster, the absolute values of
the autocorrelation and partial autocorrelation coefficients
showed strong associations during the first three lagged
months and the first two lagged months of rainfall for the
PAC. In the moderate-risk cluster, there was a strong au-
tocorrelation of monthly malaria incidence during the first
two lagged months for the AC and first five months for the
PAC was found. For the low-risk cluster, there was a strong

autocorrelation of monthly malaria incidence during the
first three lagged months for the AC and first twomonths for
the PAC. Similarly, in the very low-risk cluster, there was a
strong autocorrelation of monthly malaria incidence during
the first three laggedmonths for the AC and first twomonths
for the PAC.

3.5. Cross-Correlation between Monthly Malaria Incidence
and Rainfall. Cross-correlation analyses showed that the
monthly incidence of malaria in the high-risk cluster was not
associated with monthly precipitation. In moderate-risk
cluster, the monthly incidence of malaria was correlated
with previous 1, 2, 3, and 4 lagged months of rainfall. In low-
risk cluster, the monthly incidence of malaria was correlated
with previous 2, 3, and 4 lagged months of rainfall, whereas
in the very low cluster, with previous 1, 2, and 3 lagged
months (Table 3).

3.6. Time-Series Analysis

3.6.1. Model Building. Using data from 2012 to 2016, the
monthly malaria incidence and rainfall modeling was per-
formed using a seasonal autoregressive integrated moving
average (SARIMA) model.

With model type of ARIMA (1, 0, 0) (0, 0, 0), the model
for the high-risk cluster fitted well as it explained 73% of the
variability of the monthly malaria incidence by rainfall. +e
Normalized Bayesian Information Criteria also showed the
model was a good fit for the given data. +e Ljung-Box test
for this model was not significant (LB� 14.218, p � 0.652),
indicating suitability of the model. In the moderate-risk
cluster, a simple seasonal adjustment model fairly fitted as
the model explained 43.3% of the variability of the monthly
malaria incidence by rainfall. +e Normalized Bayesian
Information Criteria (8.462) showed the model was a good
fit for the given data.+emodel suitably fitted the data as the
Ljung-Box test for this model was not significant
(LB� 21.899, p � 0.146). Similarly, the models for the low-
risk and very low-risk clusters fairly fitted the data with the
nonsignificant Ljung-Box value. Table 4 shows details of the
fitted (SARIMA) model of malaria prevalence and rainfall of
the stratified clusters.

3.6.2. Model Validity. Model validity was done by building a
model using the 2012–2016 data and tested the predicted
incidence of 2016 with its actual (observed) values using
Pearson’s correlation coefficient and paired samples t-test.
+e Pearson’s correlation coefficient showed statistically
significant correlation between the predicted and observed
incidences. +e t-test for all clusters was nonsignificant,
indicating the malaria incidence of each month in the ob-
served and predicted incidences was not statistically sig-
nificant (Table 5).

Figure 2 shows predicted cases comparing with the
observed cases in the best-fit model of the high-risk cluster.
In this model, the predictions made in the first year were
less than the actual number of observed cases. +e number
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of cases predicted at the end of the third year (2014) and
first-quarter of the next year was higher than the actual
number of cases.

Figure 3 shows predicted cases comparing with the
observed cases in the best-fit model of the moderate-risk
cluster. In this model, the predictions made in this model
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1. High incidence (January peak incidence)
Average 539.1 to 1717.15 cases/100,000 population/month
Peak incidence in January with the second peak in December
Includes subzones Ghindae (NRS) and Mogolo (Gash Barka)

(i)
(ii)
(iii)

3. Low incidence (October peak incidence)

Peak incidence in October with the second peak in August
Icludes subzones Selae, Kerkebet, Hamelmalo (Anseba), Masawa
(NRS), Adi Quala, May Ayni, Mendefera, Tsorona, Segeneyti
(Debub), Agurdet, Dige, Shambuko, Forto, Laelay Gash, and Gogne
(Gash Barka)

Average 87.42 to 548.05 cases/100,000 population/month(i)
(ii)
(iii)

2. Moderate incidence (October peak incidence)

Peak incidence in October with the second peak in November
Icludes subzones May Mine (Debub) and Gash Barka subzones
Molqui, Goluj, Teseney, and Barentu

Average 132.24 to 1113.54 cases/100,000 population/month(i)
(ii)
(iii)

4. Very low incidence (October peak incidence)

Peak incidence in October with the second peak in September includes
subzones of Maekel (North West, Serejeka, Gala Nelih, North Easter,
South Eastern, and Berik), SRS (Areta, Central Denkalia, and Southern
Denkalia), Anseba (Adi Tekelezian, Halhal, Keren, Hagaz, Asmat, Elabered,
Habero, and Gelalo), NRS (Foro, Karora, Afabet, Naakfa, Shieb, Adobha,
Dahlak, and Gelalo), Debub (Dekemhare, Emni Hayli, Seneale, Adi Keyih,
Dharwa, and Areza), and Gash Barka (Mesura, Haycota, and Logo Anseba)

Average 26.05 to 123.1 cases/100,000 population/month(i)
(ii)

Figure 1: Eritrea malaria stratification map by monthly malaria incidence at subzone levels.

Table 1: Stratification of subzones by nonhierarchical clustering.

Cluster number Subzones Malaria incidence M∗ (IQR)∗∗

High incidence rate Ghindae and Mogolo 99.65 (265.675)
Moderate incidence rate May Mine, Molqui, Goluj, Teseney, and Barentu 73.79 (139.515)

Low incidence rate
Selae, Kerkebet, Hamelmalo, Masawa, Adi Quala,
May Ayni, Mendefera, Tsorona, Segeneyti, Agurdet,
Dige, Shambuko, Forto, Laelay Gash, and Gogne

40.71 (75.755)

Very low incidence rate

North West, Serejeka, Gala Nefih, North Easter,
South Eastern, Berik, Areta, Central Denkalia,

Southern Denkalia, Adi Tekelezan, Halhal, Keren,
Hagaz, Asmat, Elabered, Habero, Geleb, Foro,
Karora, Afabet, Naakfa, Shieb, Adobha, Dahlak,

Gelalo, Dekemhare, Emni Hayli, Seneafe, Adi Keyih,
Dbarwa, Areza, Mesura, Haycota, and Logo Anseba

8.49 (12.997)

∗Median; ∗∗interquartile range.

Table 2: Comparison of mean difference of incidence rates by clusters using the post hoc test (Bonferroni as multiple comparisons).

Cluster Comparison cluster Mean difference Significance
95% confidence interval

Lower bound Upper bound

High risk
Moderate risk 3215.37∗ <0.001 2165.4269 4265.3065

Low risk 6117.46∗ <0.001 5143.6194 7091.3006
Very low risk −5927.09∗ <0.001 −7628.1869 −4225.9931

Moderate risk Low risk 2902.09∗ <0.001 2271.8722 3532.3145
Very low risk −9142.46∗ <0.001 −10672.9938 −7611.9195

Low risk Very low risk −12044.55∗ <0.001 −13523.9201 −10565.1799
∗Mean difference is significant at p< 0.001.
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were slightly lower than the observed cases except in the
fourth-quarters of the fourth year.

Figure 4 shows predicted cases comparing with the
observed cases in the best-fit model of the low-risk cluster. In
this model, the predictions made were roughly similar with
the observed cases except in the third-quarters of the fourth
year and first-quarter of the fifth year.

Figure 5 shows predicted cases comparing with the
observed cases in the best-fit model of the very low-risk
cluster. Predictions made were roughly similar with the
observed cases except in the third-quarters of the fourth year
and first-quarter of the fifth year.

3.6.3. Forecasting Malaria Incidence of Clusters for the Years
2017 and 2018. +e SARIMAmodels constructed were used

to make future forecasting of malaria incidence rates for the
year 2017 (Table 6).

4. Discussion

Using a five-year surveillance data, this study described the
malaria risk stratification at a subzone level and explored
the potential effect of rainfall on malaria incidence in
Eritrea.

Nationally, the malaria incidence showed a decreasing
trend during 2012–2016. +e results of our study con-
firmed that the malaria intensity and seasonality in Eritrea
vary in different areas and during different years, which
was consistent with other studies [27, 41, 42]. Early at-
tempts to stratify malaria incidence for Eritrea have been

Table 3: Cross-correlation analysis by cluster with CCF and SE.

High-risk cluster Moderate-risk cluster Low-risk cluster Very low-risk cluster
Lagged months CCF SE CCF SE CCF SE CCF SE
−7 0.017 0.137 −0.159 0.137 −0.218 0.137 −0.140 0.137
−6 0.188 0.136 −0.020 0.136 −0.093 0.136 −0.016 0.136
−5 0.318∗ 0.135 0.147 0.135 0.046 0.135 0.182 0.135
−4 0.305∗ 0.134 0.365∗ 0.134 0.308∗ 0.134 0.389∗ 0.134
−3 0.297∗ 0.132 0.585∗ 0.132 0.566∗ 0.132 0.556∗ 0.132
−2 0.300∗ 0.131 0.474∗ 0.131 0.575∗ 0.131 0.567∗ 0.131
−1 0.282 0.130 0.290∗ 0.130 0.451∗ 0.130 0.365∗ 0.130
0 0.029 0.129 0.066 0.129 0.211 0.129 0.009 0.129
1 −0.007 0.130 −0.284∗ 0.130 −0.141 0.130 −0.266∗ 0.130
2 −0.043 0.131 −0.492∗ 0.131 −0.358∗ 0.131 −0.323∗ 0.131
3 −0.153 0.132 −0.506∗ 0.132 −0.341∗ 0.132 −0.262∗ 0.132
4 −0.061 0.134 −0.392∗ 0.134 −0.271∗ 0.134 −0.190 0.134
5 −0.099 0.135 −0.182 0.135 −0.211 0.135 −0.142 0.135
6 −0.108 0.136 −0.028 0.136 −0.139 0.136 −0.080 0.136
7 0.028 0.137 0.146 0.137 −0.041 0.137 0.020 0.137
CCF: cross-correlation coefficient; SE: standard error; lag: the number of lagged months. ∗Significant cross-correlation of the lagged month between the
monthly malaria incidence and rainfall.

Table 4: Best-fitted seasonal autoregressive integrated moving average (SARIMA) model of malaria incidence and rainfall of the stratified
clusters.

Cluster SARIMA model
Model fit Model diagnosis (Ljung-Box Q test)

S.R2 N.BIC Value Significance
High risk ARIMA (1, 0, 0) (0, 0, 0) 0.731 10.806 14.218 0.652
Moderate risk Simple seasonal 0.463 8.462 21.899 0.146
Low risk Simple seasonal 0.534 6.787 21.029 0.177
Very low risk Simple seasonal 0.507 3.377 15.833 0.465
S.R2: stationary R-squared (coefficient of determination); N.BIC: Normalized Bayesian Information Criteria.

Table 5: Cluster validity test of the best-fitted model of malaria incidence and rainfall.

Cluster SARIMA model
Model validity

Pearson’s correlation Paired samples t-test
Value Significance Value df Significance

High risk ARIMA (1, 0, 0) (0, 0, 0) 0.597∗ 0.041 0.036 11 0.972
Moderate risk Simple seasonal 0.647∗ 0.023 −0.688 11 0.506
Low risk Simple seasonal 0.746∗ 0.005 −0.586 11 0.570
Very low risk Simple seasonal 0.873∗ 0.001 −0.809 11 0.436
∗Significant at P< 0.05.
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made by Ceccato et al. using the 1998–2003 malaria case
reports. In their study, they reported a five cluster map as
an ideal stratification system and identified distinct sea-
sonality and malaria dynamics at subzone levels—where
most of them were in the high malaria-risk area category
[20]. Our study made an update of this map and found out
that the number of malaria incidence has reduced sig-
nificantly. Consequently, the number of subzones who
were categorized in the high- and moderate-risk areas was
now under the “very low-risk category”. Investing in the
high burden, poorly served, or densely populated areas
aids to direct limited resources to where they are needed
for a more efficient malaria intervention to reach different
measurable milestones. In this regard, Omumbo et al.
noted that unless stratification information is used to

ensure the evidence-based added value in planning control
strategies, and for a more rational basis of financing, the
successes of the recent investment in malaria control may
be lost [43]. Hence, our findings indicate that public health
resource allocation should focus on the areas and months
with the highest malaria risk.

In this study, rainfall was found to be an important
meteorological factor for prediction of malaria incidence.
+e SARIMA model was used based on biological consid-
eration because rainfall can affect malaria transmission not
only in the same month as the rainfall occurs but also in
several continuous months. Except in the high-risk cluster
subzones, all of the constructed models followed a simple
seasonal adjustment method. After testing five methods
using incidence data in Ethiopia, Abeku T. and his
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Figure 2: Graphs of the observed and predicted cases for high-risk cluster prediction model.
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Figure 3: Graphs of the observed and predicted cases for the moderate-risk cluster prediction model.
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colleagues argue that a seasonal adjustment method pro-
duces the best forecasts and concludes that forecasting in-
cidence from historical morbidity patterns alone have

limitations and underscores the need for incorporating
external predictors such as meteorological factors in model
building [44].
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Figure 4: Graphs of the observed and predicted cases for the low-risk cluster prediction model.
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Figure 5: Graphs of the observed and predicted cases for the very low-risk cluster prediction model.

Table 6: Cluster level malaria incidence forecast for the year 2017.

Forecasted malaria incidence
per 100,000

High-risk cluster
subzones

Moderate-risk cluster
subzones

Low-risk cluster
subzones

Very low-risk cluster
subzones

January 131.30 74.11 71.36 20.28
February 0 43.17 58.55 18.50
March 0 16.1 62.30 18.02
April 0 12.8 54.11 17.12
May 0 12.17 50.76 17.38
June 0 91.88 41.10 15.01
July 0 159.41 93.08 18.20
August 0 165.69 128.85 25.93
September 51.97 208.43 124.73 33.23
October 32.19 198.04 133.22 34.42
November 0 128.59 120.24 28.07
December 128.02 74.11 79.31 25.25
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+e modeling results in this study showed that 73.1%,
46.3%, 53.4%, and 50.7% of the variance in malaria
transmission were explained by rainfall in the high-risk,
moderate-risk, low-risk and very low-risk clusters, re-
spectively. Because of the high cross-correlations found
between rainfall and malaria time-series data, this study
adds to the argument that rainfall is a driver of malaria
seasonality. Similarly, a study conducted by Devi and
Jauhari [45] suggested that monthly malaria incidence is
related to rainfall changes. Using a simple linear re-
gression, one study from Burundi found negative corre-
lation of malaria incidence and rainfall on similar months
[46]. However, since the researchers assumed a simple
linear correlation between malaria epidemics and climate
factors without testing the linearity of the relationship,
these conclusions have been questioned by some re-
searchers [47]. In many studies, positive correlations be-
tween rainfall and malaria incidence have been reported
[47–51]. However, due to the complex relationship be-
tween the rainfall and entomological variables and malaria
incidence, the efforts to build statistical models using
rainfall to predict malaria have not been successful in many
cases [18, 52–54].

Considerable variation on incidence of malaria and
rainfall variability was observed between time interval (lag
time) of the present study and similar other studies. In most
studies, the impact of this variable has been correlated with a
monthly lag time [55, 56], one to two months lag time
[40, 42, 57], and one to 9weeks lag time [42]. Although a
causal relationship is biologically plausible at a lag of two to
four months, it is increasingly less at longer lag times [58].
Yet, some studies found significant relationship even at six to
seven lagged months [59]. However, in this study, the
highest positive correlation between rainfall and malaria was
seen with a lag time of 2, 3, and 4months. +ese variations
could be associated with the difference between the climatic
conditions, differences in malaria incidence rates, climate
variables examined, and number of years used for modeling.
Also, these studies are difficult for comparison as they have
been conducted in varied geographic, climatic conditions,
source of climatic data, type of parasite under investigation,
and endemicity contexts. Sources of climate data and area
coverage were also varied in different studies. In this study,
rainfall data were obtained from ground meteorological
stations.+e past temporal records of the number of malaria
cases are the most important variables of the models in this
study.+ese variables were significant in the monthly cluster
models and have had a considerable effect on model fit. In
fact, the number of previous malaria cases may reflect the
interaction of all the current factors effective in malaria
incidence, including meteorological, social, and economic
variables.

Due to some limitations, the findings of the present
study should be interpreted with caution. First, the time
period used to build the model in this study was relatively
short and apart from rainfall data, and other important
meteorological variables like temperature and relative hu-
midity were not available for model building. Despite these
limitations, this study can be considered as a step towards

clarifying the relationship between rainfall and incidence of
malaria in Eritrea and statistical models to consider for
future prediction.

5. Conclusion

+e spatial distribution of malaria varied in different
subzones during the study period. Rainfall was an im-
portant meteorological factor for prediction of malaria
incidence. +e highest positive correlation between rainfall
and malaria was seen with 2, 3, and 4 lagged months of
rainfall. +e modeling results showed that 73.1%, 46.3%,
53.4%, and 50.7% of the variance in malaria transmission
was explained by rainfall in the high-risk, moderate-risk,
low-risk and very low-risk clusters, respectively. +us, the
statistical models can be used in line with a Malaria Early
Warning System to predict malaria incidence. Further
research considering modeling of malaria incidence on
other meteorological variables like temperature and rela-
tive humidity is recommended. Further modeling and
forecasting of malaria incidence should be implemented at
a village or health facility level.
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