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Techniques of assessing small airways dysfunction
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The small airways are defined as those less than 2 mm in diameter. They are a major site of pathology in many

lung diseases, not least chronic obstructive pulmonary disease (COPD) and asthma. The small airways are

frequently involved early in the course of these diseases, with significant pathology demonstrable often before

the onset of symptoms or changes in spirometry and imaging. Despite their importance, they have proven

relatively difficult to study. This is in part due to their relative inaccessibility to biopsy and their small size

which makes their imaging difficult. Traditional lung function tests may only become abnormal once there is

a significant burden of disease within them. This has led to the term ‘the quiet zone’ of the lung. In recent

years, more specialised tests have been developed which may detect these changes earlier, perhaps offering the

possibility of earlier diagnosis and intervention. These tests are now moving from the realms of clinical

research laboratories into routine clinical practice and are increasingly useful in the diagnosis and monitoring

of respiratory diseases. This article gives an overview of small airways physiology and some of the routine and

more advanced tests of airway function.
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T
he airways consist of approximately 23 genera-

tions of dichotomously branching tubes from the

trachea to the alveoli (1) (Fig. 1). The main func-

tion of the airways is to ventilate the gas exchanging units

of the lung. They also play a role in the conditioning of

inhaled air, removal of particulate matter, and immune

defence within the lung.

The first 15 generations of airways are called the

conducting airways and take no part in gas exchange.

They constitute the anatomical dead space, which is

approximately 100�150 ml in a human adult (2). Beyond

this region lie the respiratory bronchioles which have

occasional alveoli budding from them. These continue to

divide until they reach the alveolar sacs with a total

surface area of 70�80 m2 (3). These airways take part in

gas exchange and comprise the acinar airways.

The small airways refer to those airways less than 2 mm

in diameter (4). These occur from approximately genera-

tion 8 and include a portion of the conducting airways as

well as all the acinar airways. They have important struc-

tural and physiological differences from large airways.

First, they lack the cartilaginous support seen in large air-

ways and lack mucous glands. They are lined by surfactant

which reduces surface tension and helps prevent them

from closing on expiration and at low lung volumes (5).

Throughout successive airway generations, there is a

reduction in the length and diameter of the airway.

Because of the exponential increase in airway numbers,

there is a rapid increase in cross-sectional area with each

subsequent generation. This has two major effects on

airway physiology. First, for any given flow, the velocity

of gas transit within the lung decreases with increasing

airway generation. The result of this is high velocity flow

in the proximal airways which is turbulent and hence

density dependent. In the small airways of the lung,

flow is laminar and therefore independent of gas density

(6). At the interface of the conducting and acinar airways,

there is a change from bulk convective flow to diffusion

down a concentration gradient. However the distance

for diffusion is small, approximately 0.2 mm (7). Second,

the resistance to airflow in the small airways is low in

health, comprising between 10 and 25% of total airways

resistance (8, 9). However, small airways resistance is sig-

nificantly increased in disease (10). Small airways resis-

tance is largely independent of lung volume whilst large

airways resistance is altered significantly with change in

lung volumes (8). These arrangements in the human lung

help to achieve as equitable ventilation to lung units as

possible, whilst maintaining low airflow resistance and

minimal work of breathing.
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The small airways in disease
Both in chronic obstructive pulmonary disease (COPD)

and asthma, the small airways have been shown to be the

major site of airflow obstruction (9, 11, 12). The small

airways may be more prone to pathology because of their

size. Small inhaled particles and pathogens may be

deposited here and pathological changes in airways disease

make the small airways susceptible to occlusion. There-

fore, small airways may require inhaled therapeutic aero-

sols of smaller size to be able to penetrate the airways tree

and reach the distal lung region (13). Pouseille’s law states

that the resistance to flow is inversely proportional to the

fourth power of the radius. Hence, airway obstruction can

have profound effects on lung physiology. The obstruction

of small airways can occur through a number of mechan-

isms, including luminal occlusion by mucus, reduction in

luminal diameter from inflammatory infiltrates, smooth

muscle hypertrophy, or airway wall thickening. In addi-

tion, loss of structural airway supports may enhance

collapsibility of airways.

Asthma
In asthma, the small airways are thickened with a chronic

inflammatory infiltrate affecting all layers of the airway

(14). Inflammatory changes are present throughout the

airways, although differences in the extent and composi-

tion of the inflammatory infiltrate exist between large

and small airways. The small airways are the major

site of inflammation in asthma (15, 16) with a chro-

nic inflammatory infiltrate consisting of eosinophils, T-

lymphocytes, neutrophils, and macrophages. In addition,

there is smooth muscle thickening and luminal occlusion

by mucus (17�19). In small airways, the density of the

lymphocytes and eosinophils is greater in the outer walls

compared to large airways where more central airway

wall inflammation predominates (15, 20). Mast cells are

found more commonly in the periphery of the lung (21)

than the central airways and more marked neutrophilic

inflammation may be seen in the peribronchiolar lung

parenchyma in fatal asthma (15). The severity of inflam-

matory changes correlates with lung function in nocturnal

asthma (22), severe asthma (21), and is more marked

in patients with fatal asthma compared to non-fatal

asthma (23).

Chronic obstructive pulmonary disease
COPD is characterised predominately by neutrophilic

and lymphocytic small airway infiltration along with the

presence of (24�26). Lymphocytic infiltration and smooth

muscle hypertrophy are more prominent in COPD than in

Fig. 1. Airway generations (adapted from ref. 1).
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asymptomatic smokers (25). In addition, there is airway

remodelling with peribronchial fibrosis, smooth muscle

hypertrophy, and luminal occlusion from mucus (27, 28).

The extent of airway inflammation correlates with disease

severity in COPD (24, 29, 30). However, it is airway wall

thickness, rather than the severity of inflammatory

changes, that is more strongly associated with disease

progression in COPD (30). This suggests that regulation

of the remodelling pathways through tissue growth factors

may be altered in susceptible patients. Interestingly,

smoking has been shown to increase tissue levels of

growth factors that promote airway remodelling prior to

the onset of inflammatory changes (31). Emphysematous

destruction of lung tissue may also affect the small

airways by disruption of the elastic fibres supporting

airway walls. The extent of airway inflammation corre-

lates with the degree of disruption (32) suggesting that

peribronchiolar inflammation may drive the protease-

mediated disruption of airway attachments. Indeed, small

airways disease may precede emphysematous changes

identified by computed tomography (CT) (33).

Inflammatory small airways disease may exacerbate

small airways injury and dysfunction through mechanical

stresses of cyclic opening and closing of airways during

tidal breathing.

Physiological assessment of the small airways
Small airways obstruction may lead to a reduction in

airflow, increased airways resistance, gas trapping, and

inhomogeneity of ventilation. Consequently, physiological

tests measuring these variables can detect and quantify

small airways disease (34). Table 1 summarises the tech-

niques available for the assessment of small airways

disease.

Spirometry
Spirometry is the most widely used lung function test

both in the diagnosis and stratification of severity of lung

disease. A diagnosis of obstructive lung disease is made

when the ratio of the Forced Expiratory Volume in 1 sec

(FEV1) to Forced Vital Capacity (FVC) is less than 70%

(35). Whilst a reduction in FEV1 may reflect airflow

obstruction, it is also dependent on lung volumes, elastic

recoil, respiratory muscle strength, and patient effort

(36). In health, the main site of airways resistance occurs

in the 4th�8th airway generations. Thus, FEV1 largely

reflects large airways obstruction, and a significant

amount of small airways disease must accumulate before

FEV1 becomes abnormal.

Examination of the mid-portion of expiratory flow

may offer more information on small airway pathology.

The Forced Expiratory Flow between 25 and 75% of the

FVC (FEF25�75) is one of the most commonly cited

measures of small airways pathology. McFadden and

Linden postulated that the latter part of the vital capacity

was affected by increased resistance in small airways

as lung volume fell. Pathology in these airways causes

excessive airway narrowing and collapse at an earlier time

and closer to the alveolus during exhalation. This results

in a reduction in the maximum expiratory flow that can

be achieved (37). However, FEF25�75 is dependent on the

FVC and therefore changes in FVC will affect the portion

of the flow-volume curve examined. If FEF25�75 is not

adjusted for lung volume, there is poor reproducibility

(38). Another disadvantage is the sensitivity of the

FEF25�75, as it is frequently normal if the FEV1/FVC

ratio is �75% (39). In addition, there is poor correlation

with other markers of small airways disease such as gas

trapping (40) and histological evidence of small airways

inflammation (41). The Forced Expiratory Volume in 3

sec (FEV3) to FVC ratio has been suggested as an

alternative measure of small airways disease. The fraction

of air not expired in the first 3 sec (1-FEV3/FVC) is also

calculated to estimate the growing proportion of long

time constant lung units. As FEV1/FVC falls, the FEV3/

FVC falls and the 1-FEV3/FVC rises. These measures

have a better accuracy than FEF25�75, particularly in

advancing age (42).

Gibbons et al. (43) suggested that the change in FVC

following a histamine provocation is a better measure of

small airway dysfunction in asthmatic patients than the

fall in FEV1. A fall in FVC suggests small airway closure

and gas trapping. Other spirometric markers that have

been suggessted for assessment of small airways disease

have included the ratio of the FVC to slow vital capacity

(SVC) (44).

Plethysmography
Plethysmographic assessment of lung volumes provides a

sensitive measure of gas trapping and lung hyperinflation.

Hyperinflation may be defined as an abnormal elevation

of lung volumes at the end of expiration (45). It is a

function of airflow limitation, lung elastic recoil, and chest

wall compliance. Airway narrowing results in a prolonged

time constant for expiration, and airways may close

resulting in gas trapping. The residual volume (RV) is an

important measure of small airways dysfunction and may

be raised before the onset of abnormal spirometry in

asthma (46, 47). The RV correlates with the degree of

inflammatory changes in small airways in COPD (24) and

with peripheral airway resistance in asthma (48). Indeed,

improvement in asthma symptoms following treatment

with monteleukast correlated with the reduction in RV but

not spirometric parameters (49).

The residual volume/total lung capacity (RV/TLC) ratio

may be a more useful marker of gas trapping as the TLC

is frequently raised in obstructive lung disease. Sorkness

et al. demonstrated that the RV/TLC ratio is higher in

patients with severe asthma compared to non-severe
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asthma and correlates inversely with FVC (40). However,

the upper limit of normal value varies with age and sex and

therefore the predicted value may provide a better measure

of gas trapping than the absolute value.

Airways resistance (Raw) may also be measured by

assessing pressure and flow at the mouth during body

plethysmography. Airways resistance is increased in

obstructive lung diseases and is more sensitive to changes

than spirometry in detecting bronchodilation (50). How-

ever, it is not specific for the small airways which limits its

application in diagnosing and monitoring distal airways

disease (51).

Table 1. Summary of physiological and imaging techniques for assessing the small airways

Measures Pros Cons

Lung function

Spirometry FEV1, FEF25�75, FEV1/FVC,

FEV3/FVC, FEV/SVC

Widely available

Reproducible

Standardised criteria

Relatively insensitive to early

disease and subtle changes

Effort dependent

Not specific to small airways

changes

Plethysmography RV, RV/TLC, airways

resistance

Widely available

Reproducible

Relatively easy to perform

Sensitive to early change

Not specific for small airways

disease

Effort dependent

Relatively time consuming

IOS Z, Rrs, Xrs Non-invasive and easy to perform

Effort independent

Reproducible

Intra-breath analysis

Equipment not widely available

Interference from swallowing and

upper airway artefact

Inert gas washout Closing capacity and closing

volume

Phase III slope: SIII, Sacin,

Scond

Sensitive to early change

Can distinguish between distal and

proximal airways disease

Difficult to perform, requiring

specialist equipment

Restricted to research settings

Exhaled nitric oxide FENO Easy and quick to perform

Hand-held analysers available

Sensitive to changes with treatment

in asthma

Unclear role in COPD

Affected by smoking status

Imaging

High resolution computed

tomography

Assessment of airway

changes

Assessment of gas trapping

(MLDE/I)

Widely available

Quick and easy to perform

Unable to visualise small airways

directly

Specialist software may be

required

No standardised measurements

Radiation dose

Hyperpolarised magnetic

resonance imaging

Apparent diffusion

co-efficient

Regional ventilation defects

Allows assessment of

heterogeneity in distribution of

disease

No radiation dose

Expensive Limited to research

applications

Nuclear medicine (scintigraphy,

SPECT, and PET)

Ventilation

Inhaled drug or receptor

distribution

Allows assessment of

heterogeneity in distribution of

disease

Can help target drugs to site of lung

Can be tailored to study individual

drugs or receptors

Radiation dose

Difficult to identify small airways

Some isotopes can be expensive

SPECT and PET not yet widely

available

FEV1�forced expiratory volume in 1 sec; FEV3�forced expiratory volume in 3 sec; FVC�forced vital capacity; Rrs�respiratory system

resistance; Xrs�respiratory system reactance; Z�impedance; SVC�slow vital capacity; RV�residual volume; TLC�total lung

capacity; FEF25�75�forced expiratory flow at 25�75% of vital capacity; FENO�fractional expired nitric oxide; Sacin�DCDI contribution to
SnIII; Scond�CDI contribution to SnIII; SIII�slope of phase III; MLDE/I�expiratory to inspiration mean lung density; SPECT�single photon

emission computed tomography; PET�Positron emission tomography.
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Impulse oscillometry
Impulse oscillometry (IOS) applies oscillating pressure

variations in the form of random noise to the respiratory

system in order to determine the mechanical properties

of the lung. The multiple frequencies between 3 and 20 Hz

are applied over normal tidal breathing from a loudspeaker.

The resulting pressure and flow changes are measured

at the mouth and analysed in a Fourier transforma-

tion to determine the impedance (Z) of the respiratory

system. This is composed of the in-phase or ‘real’ part of

the impedance, known as resistance (Rrs), and the out of

phase or ‘imaginary’ part, called reactance (Xrs). In health,

Rrs is independent of oscillation frequency but becomes

frequency dependent in the presence of airways obstruc-

tion. Reactance is determined by the elastic and the

inertial properties of the lung and is frequency dependent.

At low frequencies, Xrs is negative and largely represents

the elastic forces within the lung. At high frequencies, Xrs

is positive and is determined by inertiance within the lung

resulting from acceleration of airflow. At a point where the

elastance and inertiance are equal and opposite, Xrs is 0.

This is known as the resonant frequency (Fres) and occurs

between 8 and 12 Hz in healthy patients (52).

Higher frequency signals (�15 Hz) are absorbed by

the respiratory system before reaching the small airways

and hence reflect the contribution of large airways. Low

frequencies (5 Hz) penetrate deep into the lung and

therefore represent the whole lung. The contribution of

the distal airways may be determined by the difference

between R5 and R20, and therefore can give insight

into small airways pathology. However, the anatomical

location of the transition between the small and large

airways has not been determined (53). Despite this, there

is evidence that low frequency resistance and reactance

measurements correlate strongly with transpulmonary

resistance measured by oesophageal manometry (54) and

other traditional small airways measures (55).

When airway obstruction is present, Rrs becomes

frequency dependent with a predominant increase in low

frequency resistance. This has been shown to identify

patients with asthma (56�59) and COPD (56, 60, 61).

Whilst Rrs does increase in early stage COPD (60),

reactance measures are better at identifying severity of

disease (62) and are more closely associated with other

parameters including FEV1 and measures of hyperinfla-

tion (61). Dyspnoea scores and health status correlate

significantly with R5�20 and X5 quality of life in stable

COPD and are sensitive to improvements following

exacerbations (63).

IOS also allows for the discrimination of inspiratory

and expiratory resistance and reactance. Inspiratory

minus expiratory reactance at 5 Hz (DX5) has been

shown to help discriminate between asthma and COPD

(64). In addition, it has also been shown to be a sensitive,

non-invasive method of detecting expiratory flow limita-

tion (EFL) in COPD. Expiratory reactance falls when

EFL is present as the pressure signals cannot pass the

choke point with in the airway (65, 66). This is likely to

be due to the enhanced collapsibility of airways in

expiration and is a major factor in the development of

dynamic hyperinflation. Indeed, recent studies using R5�20

as an index of distal airway abnormality have shown the

presence of small airways dysfunction even in patients

with mild-moderate asthma (67).

Studies examining the effect of inhaled therapies on

lung mechanics have demonstrated that IOS is sensitive

to bronchodilation in both COPD (50, 68) and asthma

(69, 70). It has also been used in the assessment of lung

transplant recipients for bronchiolitis obliterans (71) and

following environmental exposure to dusts (72, 73).

IOS has the advantage of being simple to use and is

effort independent. It provides continuous measurement

of pulmonary mechanics giving a high temporal resolution

allowing intra-breath analysis. As IOS does not rely on

forced manoeuvres, it may be more suitable for patients

who cannot perform these easily such as children or those

with severe lung diseases. This may also reduce the effects

of premature airway closure seen during forced spiro-

metry manoeuvres. Interference from upper airways arte-

facts such as tongue movement or swallowing can make

assessment difficult. Patients undergoing IOS do need

some coaching for accurate measures to be made.

Inert gas washout
Gas washout techniques were introduced in the 1950s as a

way of measuring the efficiency of gas mixing within the

lungs. This is dependent on the structure of both the large

and small airways and hence information regarding these

can be inferred from the tests. The most commonly

employed technique is the single breath nitrogen washout

(SBNW) and more recently the multiple breath nitrogen

washout (MBNW). Other gases may be used including

helium and sulphur hexafluoride (SF6) whose physical

properties determine gas flow within the lung.

Single breath nitrogen washout
The SBNW is performed by inhaling 100% oxygen from

RV to TLC followed by a SVC exhalation. The exhaled

volume and nitrogen concentration is measured and the

resulting trace can be broken down into four distinct

phases.

In phase I, the nitrogen concentration is close to 0% as

this represents anatomical dead space where there is no

gas mixing. During phase II, there is a sharp rise in the

expired nitrogen concentration as dead space gas mixes

with resident alveolar gas. Phase III represents alveolar

gas and the expired nitrogen concentration begins to

plateau, although there is a slight rise from the start

to finish of this phase due to ventilation heterogeneity.
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This occurs whenever two lung units are ventilated to a

different degree and the best ventilated unit will empty

preferentially before a less well-ventilated lung unit. In

health, this occurs to a degree because of asymmetry in

lung structure and due to the effects of gravity on the

base of the lung resulting in longer time constants for

emptying. Finally, in phase IV, there is a steep rise in

expired N2 concentration as the most poorly ventilated

areas (with little O2 mixing) empty. This is also the point

at which the small airways start to close as a result of

gravity-dependent collapse and is known as the closing

volume (CV). The CV and RV together are known as the

closing capacity (CC). Normally, small airways closure

occurs close to RV. However, small airways disease may

cause premature airway collapse resulting in an increased

CV and gas trapping. CV may be expressed as a ratio of

VC and should not exceed 25% (74). The CC may be

expressed as a ratio of TLC and is useful in obstructive

lung diseases.

Analysis of the slope of phase III (SIII) provides infor-

mation on the ventilation heterogeneity in the lung.

Airways diseases do not affect the lung uniformly and

this results in disparities in the ventilation of individual

subunits. This may occur in the conducting airways where

gas flows by convection (convection-dependent ventila-

tion inhomogeneity, CDI) and results from narrowing of

airways or increased stiffness in the subtended lung units.

It may also occur in the very distal acinar airways where

the diffusion�convection front arises (diffusion�convec-

tion-dependent inhomogeneity, DCDI). Here, it occurs as

a result of structural asymmetry between lung units (75).

Thus, where airways disease occurs, those affected lung

units mix less well with the inspired oxygen (and thus have

a higher nitrogen concentration) and empty more slowly.

This causes an increase in SIII.

SBNW indices have been used in the assessment and

response to treatment in both asthma and COPD.

Asthmatic patients with a normal FEV1 have increased

CV and phase III slope compared to healthy controls. In

addition, the frequency of exacerbations correlates with

SIII suggesting it may be a sensitive measure of patients

with poor control (76). Indeed, increased CV in patients

with severe asthma has been shown to be a risk factor for

predicting an exacerbation (77). Levels of exhaled mar-

kers of airway inflammation including nitric oxide

correlate with SIII and CC/TLC ratio in asthma (78, 79).

Furthermore, severe, steroid-dependent asthmatic pa-

tients have more marked changes in SBNW indices than

patients with mild to moderate asthma (79). These

markers have also been used to assess changes following

both inhaled and oral therapies for asthma (80�83).

Over 35 years ago, the SIII of the SBNW was recognised

as being more closely related to histological small airways

inflammation in COPD than FEF25�75 (29). Further

evidence of its association with small airways inflamma-

tion in COPD came from the examination of bronchial

biopsies and bronchoalveolar lavage (BAL) specimens

(84). COPD severity may also be predicted by changes in

SBNW indices as the SIII correlates with FEV1 (85) and

TLCO in alpha-1 antitrypsin deficiency (86).

SBNW is sensitive to early changes in airways in

smokers with an increase in CV (87), but its use is

controversial in COPD. Buist et al. demonstrated that

many smokers with normal spirometry, but abnormal

small airway indices, did not go on to develop obstructive

spirometry over a 9�11 year follow-up. However, of those

that did, the CC/TLC ratio predicted the rate of decline

in FEV1 suggesting it may be useful in identifying at risk

smokers (88). Stănescu et al. similarly found that in a

group of smokers and ex-smokers with normal spirome-

try, over half had abnormal small airway indices, yet most

still had normal spirometry 13 years later. In their cohort,

a high SIII predicted accelerated decline in FEV1 (89).

Despite its sensitivity, the SBNW is not specific to

small airways pathology. Changes in any of the genera-

tions of the conducting airways will also affect the

slope of phase III. Thus, whilst it is possible to infer

that a normal SIII indicates no small airways disease, the

test is unable to locate the anatomical site of the

pathology (34).

Multiple breath nitrogen washout
The MBNW is a modification of the single breath

technique. The patient inhales 100% O2 from FRC with a

fixed tidal volume and respiratory rate to wash out the

resident nitrogen from the lungs. The test continues until

the exhaled nitrogen is less than 1/40th of the original

concentration (approximately 2%) for three successive

breaths. The speed and efficiency of gas mixing is deter-

mined by tidal volume, breath frequency, and ventilation

heterogeneity. Thus, by keeping breath frequency and tidal

volume relatively constant, inferences about ventilation

heterogeneity can be made (90). Figure 2 demonstrates the

nitrogen washout curves from a MBNW test.

This technique allows for measurement of the effi-

ciency of gas mixing in the whole lung through the lung

clearance index (LCI). It is defined as the number of lung

turnovers (FRC equivalents) required to wash out the

tracer gas to 1/40th of the original concentration. This is

calculated by measuring the cumulative expired volume

(CEV) required to washout the resident nitrogen and

dividing it by FRC:

LCI ¼ CEV

FRC

FRC may be calculated during the MBNW from the

following formula, whereby the volume of tracer gas (i.e.

N2) is divided by the end-tidal concentration of the tracer
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Fig. 2. (a) Multiple breath nitrogen washout curve with individual breaths demonstrating Phase III slope (SnIII) from 1st (b)

and 10th (c) breaths.
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gas in the first breath minus the end-tidal concentration

of the tracer gas in the last breath:

FRC ¼
V½tracer�

Cint � Cend

The LCI has been used extensively as a measure of

airways function in cystic fibrosis and asthma, particu-

larly in the paediatric population (91).

As a MBNW progresses, the SIII of each breath changes

throughout the test, becoming steeper with successive

breaths. In order to compare breaths within a test, the

slopes must be normalised for the mean expired nitrogen

concentration for each breath (SnIII). In normal lungs, the

DCDI is the major determinant of the SnIII and reaches its

maximum at approximately 1.5 lung turnovers. After this,

the increase in SnIII is diffusion independent and hence

reflects CDI (92). This allows for the quantification of

the contribution of the CDI component, referred to as

Scond, and the DCDI component, referred to as Sacin (75).

Thus, these indices have the ability to anatomically locate

the site of the airway pathology that result in ventilation

inhomogeneity.

These indices have proven very sensitive, becoming

abnormal in smokers with more than a 10-year pack

history. In contrast, spirometric abnormalities only be-

come abnormal after a 20 pack-year history of smoking.

For smokers with a �30 pack-year history and TLCOB

60% predicted, there were proportionately larger changes

in Sacin than Scond, reflecting parenchymal destruction

(93). Smokers without COPD who were able to stop

smoking showed sustained reversibility in Scond (94).

This supports the hypothesis that the major site of

pathology in smoking-related lung disease starts in the

peripheral airways.

These abnormalities have been further described in

both asthma and COPD. Verbanck et al. demonstrated in

COPD patients that both Scond and Sacin are raised yet

reflect different pathologies. Scond correlated with airways

measures such as FEV1 and specific airways resistance

whilst Sacin was more closely associated with diffusing

capacity (95). Asthmatic patients also have raised Scond

and Sacin, although acinar ventilation heterogeneity is less

pronounced than in COPD, presumably reflecting the

degree of parenchymal destruction in COPD. In addition,

asthmatic patients demonstrated bronchodilator reversi-

bility in both Sacin and Scond, whilst COPD patients did

not (96). In asthma, Sacin is more closely associated with

airway inflammation (97) and severity in unstable

patients (98). It has recently been shown that measures

of ventilation heterogeneity are associated with levels of

asthma control and may also predict the response to

inhaled therapy (99, 100). With their sensitivity to small

airways disease, they have been used in a variety of

research settings. These include the assessment of inhaled

treatments in both asthma (101, 102) and COPD (103),

assessment of airway hyper-responsiveness (104, 105),

and monitoring of lung transplant recipients (106).

However, they are not yet used in routine clinical practice

as there are few commercially available machines, and

interpretation of results can be difficult. Theoretically,

abnormalities in any of the conducting airways from the

first generation can cause abnormalities in Scond and

therefore it is not specific to small airways. Interpreting

the results with information from spirometry will help

clarify this. In addition, theoretical modelling for locali-

sation of airways disease was performed in normal

subjects. It is possible that the convection�diffusion front

is different in disease states and hence anatomical

localisations may not be precise.

Helium and Sulphur hexafluoride washout tests
Other inert gasses including helium and SF6 may be used in

small concentrations as tracer gasses. These require a

wash-in period and specialised analytical equipment.

However, they have the added benefit that the physio-

chemical properties can be exploited to gain further

information from the SIII. The diffusion front of helium

lies more proximally than SF6 and therefore changes in the

helium SIII compared to SF6 SIII suggest more proximal

acinar changes. Where both SIII change so that the

difference between them is still the same, the possibilities

are either a change in the conducting airways or con-

comitant effects in the proximal and distal parts of the

acinus (34). There are fewer clinical studies reporting SF6

as a tracer gas and these have largely been performed in

children with cystic fibrosis (107�109).

Exhaled nitric oxide
Nitric oxide is produced in both the resident airway

cells and the inflammatory cells in the lung and has a

role in the regulation of airway function. Fractional

exhaled nitric oxide (FENO) may be measured in a single

exhalation during tidal breathing. It reflects levels of

inflammation, particularly eosinophillic inflammation,

within the lung (110). Exhaled nitric oxide (eNO) exhibits

flow rate dependency, with an inverse correlation between

flow rate and FENO (111). This reflects both the transit

time of exhaled gas and diffusion from the tissue as well

as the compartment of the lung from which the NO was

produced. Under low flow conditions, FENO largely

reflects central airways and at higher flows it represents

alveolar NO (112�114). This may help to localise the site

of inflammation within the lung. Indeed, Lehtimäki et al.

demonstrated that patients with alveolitis had higher

levels of alveolar NO than asthmatic patients, who in

turn have higher bronchial NO. In patients with alveolitis,

alveolar NO correlated with transfer factor and alveolar

volume, whilst bronchial NO correlated with airways’
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hyper-responsiveness in asthmatic patients. Both groups

of patients showed an improvement in FENO with steroid

treatment, suggesting it is responsive to intervention

(115). However, back-diffusion of NO between the

alveolar and airway compartments complicates the inter-

pretation of results. It has been recognised that NO will

diffuse from the airways down a concentration gradient

into the alveoli, thus elevating alveolar NO and reducing

measured airway NO (116, 117). Models to correct this

have been developed, however, in disease states where

airways are narrowed or occluded; less NO can back-

diffuse, resulting in higher FENO and lower alveolar

concentrations (118). It should also be noted that current

smoking reduces FENO levels and thus the smoking

status of a patient needs to be taken into account when

interpreting results (110).

FENO has been used extensively in asthma clinical

research and practice. Central airways appear to be the

major sites of production of NO in asthma both in stable

populations and during exacerbations (119). Alveolar

NO concentrations are raised in severe asthmatics where

they correlate with alveolar eosinophillic inflammation

(120) and other measures of small airways dysfunction

(121). Recently, it has also been shown that alveolar NO

is also raised in patients with mild asthma (122). FENO is

improved by both oral (123, 124) and inhaled corticos-

teroids (ICS) (125) and a raised FENO level before ICS

treatment predicts an improvement in asthma control

(126). This has made FENO an attractive prospect for

adding to asthma treatment algorithms. However, the

results of studies assessing impact of measuring FENO

have been mixed. Meta-analyses suggest no overall benefit

to asthma control and quality of life, but there is a

reduction in ICS use in adults although an increase in

ICS use in children (127, 128).

The role of FENO in COPD is less clear. FENO may be

raised in COPD (129�131), although it is lower compared

to asthmatic patients. An inverse correlation with FEV1,

transfer factor, and oxygen saturations has been reported

(129). Contrary to this, Gelb et al. found no difference in

baseline alveolar or airway NO levels between healthy

controls and aged-matched COPD patients. Despite this,

the addition of salmeterol 50 mcg/fluticasone 250 mcg

combination inhaler significantly reduced airway, but not

alveolar NO. There was no correlation between emphy-

sema score and exhaled NO parameters (119). Higher

FENO levels may help predict a clinical response to ICS

as assessed by FEV1 reversibility (132) and this is

associated with a higher sputum eosinophil count (133).

Imaging of the small airways
Imaging already plays an extensive role in the management

of airways disease and can be used as a non-invasive

measure of small airways function. Where global measures

of lung function such as spirometry may classify patients

of the same severity, imaging is useful in separating

different phenotypes and localising heterogeneity. How-

ever, direct measurement of small airways is difficult as

they are largely beyond the resolution of CT and MRI

scanners. Nevertheless, both large airways have been

assessed directly and the smaller airways by their impact

on gas trapping and ventilation distribution. This pro-

vides both anatomical and functional information to the

physician.

High resolution CT
The small airways are beyond the resolution of CT

scanners and difficult to assess directly (134). Airways

as small as 2�2.5 mm in diameter can be visualised.

McDonough et al. found fewer of these airways in

patients with COPD undergoing CT lung cancer screen-

ing. The reduction in airway number worsened as COPD

severity increased by stage, consistent with pathological

findings in lung specimens (135). However, the accuracy

of measurement of smaller airways may be problematic

due to measurement error and artefact from breathing or

cardiogenic oscillations. Nakano et al. demonstrated that

measurement of intermediate-sized airways could predict

the small airway dimensions measured by histology (136);

thus, assessment may still prove useful in estimating the

extent of small airways disease. Quantitative assessment

of more proximal airway luminal diameter and airway

wall thickening measured by CT correlate with lung func-

tion in COPD (137�140), with the strength of correlation

increasing for more distal airways (139).

Small airways disease results in gas trapping and may

be seen as areas of low attenuation distal to the site of

obstruction. Mosaic attenuation reflects localised areas

of gas trapping and suggests heterogeneous distribution of

airways disease. It may be seen in both asthma (141) and

COPD (142). However, gas trapping is best assessed on

expiratory scans and may provide an indirect measure of

small airways function (143). Comparing the mean lung

density between expiratory and inspiratory CT provides a

quantitative measure called MLDE/I. In asthma, MLDE/I

correlates strongly with FEV1, FEV1/FVC ratio, FEF25�75,

and RV/TLC, suggesting that it reflects small airways

disease (144). In children, gas trapping has been shown to

be associated with improvements in post-bronchodilator

R5 and X5 measured by IOS (145). Gas trapping is more

marked during acute exacerbations of asthma and shows

responsiveness to steroids (146). Asthmatic patients with

gas trapping are more likely to have had asthma-related

hospital admissions, intensive care treatment, high levels

of airway neutrophils, and more severe airflow obstruction

than those without (147). ICS have been shown to improve

gas trapping in asthma, although in these small studies no

significant benefit in lung function or spirometry was seen

(148, 149).

Techniques of assessing small airways

Citation: European Clinical Respiratory Journal 2014, 1: 25898 - http://dx.doi.org/10.3402/ecrj.v1.25898 9
(page number not for citation purpose)

http://europeanclinicalrespiratoryjournal.net/index.php/ecrj/article/view/25898
http://dx.doi.org/10.3402/ecrj.v1.25898


The assessment of gas trapping in COPD is more

complicated as both small airways disease and emphyse-

ma give rise to low attenuation areas. Visual estimation of

emphysema provides better correlation with lung func-

tion measures such as TLCO, whereas MLDE/I correlates

well with lung function measures of gas trapping (150). In

a large cohort of patients in the COPDGene study,

expiratory scans with a threshold of �856 Hounsfield

units (HU) for assessment of gas trapping had a stronger

correlation with airflow obstruction than emphysema

scores measured by the area of lung with �950 HU on

inspiratory scans. The volume change between inspira-

tory and expiratory scans also reduced as COPD severity

increased, reflecting more severe airway obstruction and

gas trapping (151). Using MLDE/I scores to assess gas

trapping and the 15th percentile of lung density to assess

emphysema, Hartley et al. demonstrated that small air-

ways disease contributes more strongly than emphysema

to severity of COPD (152). MLDE/I also correlates with

inflammatory changes measured by sputum neutrophils,

adding further support to the inflammatory nature of

small airways disease in COPD. MLDE/I is sensitive to

early small airways changes and correlates with SIII in

SBNW in a group of asymptomatic, non-smokers (153).

However, MLDE/I can show considerable variation

between scans in individual patients and therefore may

be difficult to use as a marker of response to treatment.

Recently, in the research arena, static images obtained

with CT have been made more functional by means of

computational fluid dynamics (154) and biomarkers

based on CT imaging have been developed that allow

an assessment of functional small airways disease (155).

Whilst CT is a useful, non-invasive tool for indirectly

assessing small airways function, it has a number of

limitations. The exposure to radiation means that re-

peated assessment for monitoring is not feasible. There is

no standardised measure of gas trapping at present and

different authors have used different density thresholds

for assessing gas trapping, making comparison more

difficult. Gas trapping is not diagnostic for specific

airways diseases and patterns such as mosaic attenuation

are also seen in pulmonary vascular disease (156).

Hyperpolarised helium magnetic resonance
imaging
Hyperpolarised helium magnetic resonance imaging (3He

MRI) allows for the assessment of distribution of

ventilation and morphometry of the distal airways and

lung parenchyma without exposure to ionising radiation

(157). Diffusion imaging visualises the movement of 3He

in the peripheral airspaces, bound by alveolar and air-

ways walls. This is calculated as the apparent diffusion

co-efficient (ADC) and gives insight into the microstruc-

ture of the distal airspaces (158). ADC is increased in

healthy smokers with normal lung function and correlates

with smoking history (159, 160), suggesting it is a

sensitive marker of early damage. It is increased further

in COPD where it correlates with lung function (161) and

emphysematous destruction (162). Indeed, ADC corre-

lates well with CT-derived emphysema scores and more

strongly with TLCO than CT-derived emphysema scores

(163). In COPD patients observed over 26 months, ADC

and other parameters derived from 3He MRI have been

shown to decline whilst FEV1 remained stable, suggesting

it is also sensitive to change over time (164). Measuring

diffusion over longer periods allows the assessment of

collateral ventilation in emphysema (165, 166).

Quantification of regional ventilation can be achieved

by both static and dynamic assessment of 3He distribu-

tion within the lung. Ventilation defects are present in

asthma (167, 168) and COPD (169, 170), resulting from

airway narrowing or obstruction and uneven ventilation.

In a group of asthmatic patients, the areas of ventilation

defects were persistent or recurred in the same locations

over time (169). Inflammatory cells obtained at bronch-

oalveolar lavage were more numerous in lobes with higher

ventilation defects that those without, suggesting that the

defects are the result of inflammatory airway narrowing

(171). Dynamic ventilation is a more recent advance that

allows imaging and assessment of ventilation with a high

spatial and temporal resolution over the course of a

respiratory cycle (161, 172). In asthma, areas of differ-

ential gas clearance have been observed that corroborat

with evidence of airflow obstruction and gas trapping on

CT (173).

Hyperpolarised MRI has the ability to assess regional

lung function which makes it a useful tool in assessing

airways diseases which have a heterogeneous distribution.

However, the technique is still largely restricted to

research applications and its role in the clinical manage-

ment of airways disease is not yet clear.

Nuclear medicine techniques

Two-dimensional gamma scintigraphy
Two-dimensional (2-D) gamma scintigraphy has been in

use for several decades. Gamma-emitting radionucleides

deposited within the lung can be imaged as they decay. This

allows for an assessment of the overall lung deposition and

to some extent, regional differences in deposition. Incor-

porating radionucleide into drug compounds is challen-

ging and hence an isotope bound to the drug such as 99mTc

is more commonly used. These techniques must be

validated to ensure that the addition of a radiolabel does

not significantly change the behaviour of the drug (174).

2-D gamma scintigraphy has been used to assess the

effect of particle size on deposition within the lungs.

Usmani et al. studied three particle sizes of radiolabelled

salbutamol and found that whilst small particle (1.5

micron) salbutamol was associated with a higher total
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lung dose and more peripheral deposition, it was the

large particles (6 micron) deposited in the more proximal

airways that had the greatest effect on bronchodilation

(13). In addition, the effect of late inhalation of a dry

powder demonstrated that a higher proportion reaches

the periphery of the lung without a change in the total

lung dose (175).

Whilst scintigraphy does involve exposure to ionising

radiation, the dose is low and is estimated at 0.15 mSv per

study (176). However, 2-D imaging does not allow precise

localisation of drug deposition as both central and small

airways as well as alveolar distribution may contribute to

gamma counts for any given area. Whilst assessment of

deposition is a useful marker of drug distribution, it does

not itself provide an assessment of clinical or physiological

response. Hence, these studies must be assessed along with

clinical and physiological data in order to evaluate efficacy.

Single photon emission computed tomography
Single photon emission computed tomography (SPECT) is

a 3-D imaging modality using multiple gamma detectors

that rotate around a supine patient. Reconstruction of the

images can demonstrate the radionucleide distribution in

three dimensions, thereby offering superior assessment of

regional lung ventilation or particle distribution. SPECT

may be combined with X-ray CT to relate the radionuclide

distribution to anatomical information (177, 178). SPECT

can be used to image ventilation using either radiolabelled

gasses or ultrafine particles such as Technegas†. This is an

ultrafine carbon particle labelled with 99mTc that has been

shown to have a similar inhaled distribution in healthy

patients to gases (179). This allows measurement of the

extent of regional distribution of airflow. In healthy

patients, airway closure measured with SPECT correlates

with CC measured by SBNW. However, in asthmatic

patients this correlation is lost, possibly due to regional

heterogeneity in airway closure (180). Technegas SPECT

has also been shown to identify regional EFL in asthma

even when flow measurements or negative expiratory

pressure techniques are insensitive to it (181). In COPD,

Technegas SPECT can identify regional differences in

emphysema which correlates with lung function and

emphysema scores (182, 183). The technique can be

combined with perfusion imaging to assess ventilation�
perfusion relationships in the lung (184).

SPECT has proven a useful tool in defining the

deposition of inhaled drugs and can allow for treatments

to be more specifically targeted to areas of the lung.

Ciclesonide has been shown to have good peripheral lung

deposition, with low oropharyngeal deposition in both

health (185) and asthma (186). Limitations of SPECT

scanning include higher radiation doses to patients and a

longer acquisition time. This limits the assessment of

deposition of molecules with a fast clearance. However,

fast SPECT protocols have been developed with image

acquisition times under 1 min. This allows for assessment

of both deposition and clearance of tracers (187).

Positron emission tomography
Positron emission tomography (PET) is an emerging

technique for assessment of airways disease. It can be

used to assess drug deposition (188), inflammation (189),

and ventilation perfusion relationships in the lung (190).

However, PET scanners and the facilities to produce

radioisotopes are expensive. The radioisotopes used often

have a short half-life and incorporating them into drugs

is a complex process. However, it has the ability to

produce higher resolution images than SPECT and allows

for targeting of radioisotopes to specific receptors and

targets within the lung. Therefore, it is likely to be an area

of exciting research in the assessment of small airways

disease and treatment (191).

Conclusions
An understanding of the role of small airways in COPD

and asthma is increasingly important as it becomes

necessary to distinguish individual phenotypes of the

diseases. This will lead to a more tailored approach to

assessment and treatment of patients with the aim of

improving symptoms and function (192). It may also

allow us to reduce unnecessary exposure to treatments

that carry significant side effects. Given the anatomical,

functional, and physiological information that can be

obtained from these different tests, it is likely that a

combination of investigations will be required to give the

clearest picture of an individual’s phenotype. At present,

however, many of these investigations remain in the realm

of the research laboratory and further work is required to

understand their significance and interpretation in the

management of these diseases.
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