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The resolution of inflammation is a temporally and spatially coordinated process that in its
innate manifestations, primarily involves neutrophils and macrophages. The shutdown of
infection or injury-induced acute inflammation requires termination of neutrophil
accumulation within the affected sites, neutrophil demise, and clearance by phagocytes
(efferocytosis), such as tissue-resident and monocyte-derived macrophages. This must
be followed by macrophage reprogramming from the inflammatory to reparative and
consequently resolution-promoting phenotypes and the production of resolution-
promoting lipid and protein mediators that limit responses in various cell types and
promote tissue repair and return to homeostatic architecture and function. Recent studies
suggest that these events, and macrophage reprogramming to pro-resolving phenotypes
in particular, are not only important in the acute setting, but might be paramount in limiting
chronic inflammation, autoimmunity, and various uncontrolled cytokine-driven
pathologies. The SARS-CoV-2 (COVID-19) pandemic has caused a worldwide health
and economic crisis. Severe COVID-19 cases that lead to high morbidity are tightly
associated with an exuberant cytokine storm that seems to trigger shock-like pathologies,
leading to vascular and multiorgan failures. In other cases, the cytokine storm can lead to
diffuse alveolar damage that results in acute respiratory distress syndrome (ARDS) and
lung failure. Here, we address recent advances on effectors in the resolution of
inflammation and discuss how pro-resolution mechanisms with particular emphasis on
macrophage reprogramming, might be harnessed to limit the universal COVID-19
health threat.

Keywords: resolution of inflammation, macrophage reprogramming, apoptosis, efferocytosis, COVID-19, IFN-b
Abbreviations: IFN-g, interferon-g; LPS, lipopolysaccharide; GM-SCF, Granulocyte-macrophage colony-stimulating factor;
CIITA, class II major histocompatibility complex transactivator; CXCL, chemokine (C-X-C motif) ligand; iNOS, inducible
nitric oxide synthase; ROS, Reactive oxygen species; IL, interleukin; Arg, Arginase; SRs, scavenger receptors; MR, mannose
receptor; Retnla/Fizz1, Resistin-like molecule alpha1; CCL, Chemokine (C-C motif) ligand; TGF-b, Transforming growth
factor-b; Chil3/Ym1, Chitinase-like protein 3; IC, immune complexes; TLR, Toll-like receptor; GC, Glucocorticoid; SPM,
Specialized Pro-resolving mediator; PPAR-g/d, Peroxisome proliferator-activated receptor-g/d; SLAM, signaling lymphocytic
activation molecule; MGL1, macrophage galactose-type lectin-1; AnxA1, Annexin A1; PGE2, Prostaglandin E2; PAF, Platelet
Activating Factor; IFN-b, interferon-b; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; DAMPS, Damage-
associated molecular pattern; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; TNF, Tumor necrosis
factor; ARDS, Acute respiratory distress syndrome.
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INTRODUCTION

Macrophages are a major immune cell type that, since their
unveiling in the 1880s by Eli Metchnikoff, were found to execute
phagocytosis and be key effector cells in combating foreign
invaders as well as in regulating homeostatic functions (1).
Although phagocytosis is associated mainly with the
containment and eradication of invading pathogens, it also
serves constant housekeeping functions. Macrophages are
myeloid-derived immune cells involved in regulating both the
humoral and cellular immune responses. Moreover, they are also
responsible for the clearance of approximately 2 × 1011

erythrocytes every day, a crucial contribution to red blood cell
homeostasis without which the host would not survive.
Macrophages also clear cellular debris, thereby serving as
crucial homeostatic “janitors” (2). Notably, the clearance of
cellular debris under homeostatic conditions, and particularly
during the resolution of inflammation, leads to significant
phenotypic and functional changes in these cells; a
phenomenon which results in their reprogramming to new
fates and tasks. This review will focus on recent advances in
the understanding of macrophage function and the effector
molecules they produce during the resolution of inflammation,
and will discuss how this information can be harnessed for
potential treatment of various aspects of COVID-19.
MACROPHAGE PHENOTYPES IN
INFLAMMATION AND ITS RESOLUTION

Macrophage Ontogenesis
and Differentiation
While it was originally believed that mammal macrophages are
derived from bone marrow-originating circulating monocytes, it
is now well-accepted that two distinct macrophage origins exist
(3). The first form of ontogenesis takes place prenatally, of which
the resulting mesoderm-derived macrophages reside in tissues
and self-maintain locally via longevity or limited self-renewal,
independent from definitive hematopoiesis (4). Examples of
these yolk-sac-derived primitive macrophages are microglia (in
the brain) (5), Kupffer cells (liver) (6, 7), as well as peritoneal and
alveolar macrophages (6, 8). These embryonic macrophages
constitute the majority of the human macrophage population
and persist quantitatively into adulthood (3, 9).

The second form of macrophage ontogenesis involves tissue-
infiltrating monocytes of bone marrow origin, which differentiate
into adult macrophages. This type of macrophage is the focus of
this review, for these monocyte-derived-adult-macrophages are
the ones involved, for the most part, in pathology, inflammation,
and restoration of homeostasis (10–13).

It is important to note the interplay of tissue resident and
monocyte-derived macrophages. For although self-maintaining,
resident macrophages are known to readily adapt to their tissue
of residence and become essential for their respective organ
homeostasis in addition to operating as quiescent sentinels ready
to mount an immune response (14, 15). Resident macrophages
Frontiers in Immunology | www.frontiersin.org 2
have also been found to be joined and sometimes replaced by
recruited monocyte-derived macrophages under inflammatory
conditions (14, 15). An example of this interplay is the microglia,
the resident macrophage within the central nervous system
(CNS), which, once activated, also recruit peripheral immune
cells to the brain (14). Thus macrophages regulate both innate as
well as adaptive components of immunity, both in the steady-
state form of microglia regulation of CNS homeostasis through
removal of damaged or unnecessary neurons and synapses, as
well as recruiting CNS-infiltrating macrophages in response to
inflammatory or pathological insults (16–18).

Monocytes play an active role in innate immunity as they
differentiate into either macrophages or dendritic cells (DCs), two
phagocytosing cell types that share certain functions, such as
antigen presentation, yet differ in their specialization. However,
in addition to being a mere progenitor to professional antigen-
presenting cells (APCs), monocytes were found to phagocytose
and present antigens on their own (19). Moreover, neutrophils or
B cells transfer particulate antigens to monocytes in the bone
marrow, a sampling that consequently initiates their
differentiation into DCs (20). These mature DCs possess the
ability to “remember” the antigen that had been phagocytosed
by their progenitors because these monocytes exhibit a less
proteolytically destructive nature than professional APCs which
results in intracellularly retained antigen peptides. As professional
APCs, DCs preserve a relative proteolytic inefficiency and retain
phagocytosed antigen for at least two days, whereas macrophages
degrade peptides rapidly, a phenomenon which can interfere with
T cell priming (20). The efficiency of macrophage antigen
degradation can be attributed to lysosomal cathepsins, the main
enzymes responsible for intracellular protein degradation (21).
Monocyte progenitors of macrophages also contain cathepsin,
albeit in the endosomal compartment, potentially explaining their
decreased proteolytic activity relative to mature macrophages (20).
Although APC differentiation is regulated by monocyte cathepsin
expression and localization, the process of monocyte
differentiation into their terminal phenotypes is ultimately
dependent on the microenvironment to which they are
recruited. Thus, signals from cytokines and other effector
molecules would ultimately drive their differentiation into
macrophages or DCs (22). An additional factor that has the
potential to affect the phenotype of the mature macrophage after
initial differentiation has been postulated to be the stage of
maturation at which the monocyte is recruited to the tissue
from the bloodstream (2). Monocytes undergo maturation in
the blood, so the time interval they spend circulating before
migrating into tissues may define their function. In mice,
distinct monocyte populations, termed ‘inflammatory’ and
‘resident’ monocytes, have been identified based on their
expression of cell surface markers. Thus, inflammatory
monocytes are defined as CX3CR1

loCCR2+Gr1+, whereas
resident monocytes are defined as CX3CR1

hiCCR2−Gr1−

(analogous to the human CD14+CD16− and CD14loCD16+

monocyte populations, respectively, which share phenotypes and
homing behaviors with that of their murine counterparts) (2, 23,
24). The expression of these markers and subsequent
May 2022 | Volume 13 | Article 863449
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categorization of murine monocyte populations is primarily based
on whether the monocytes exit the blood stream quickly or spend
more time in the circulation following their release from the bone
marrow. The former subset is recruited to inflamed tissues and the
latter to non-inflamed tissues in a CX3CR1-dependent
manner (23).

Macrophage plasticity does not end with ontogenetic
differentiation. Throughout their lifespan, macrophages both
release and respond to multiple signals, which shape the
heterogeneity of their functions and phenotypes. Recent data
suggest that in addition to external signals and cues, the density
of a particular macrophage subpopulation regulates its own
continued collective activation (25). This process, termed
Quorum Licensing, proposes a heterogeneous immune cell
activation role for intercellular communication that occurs in
primary macrophages and mediates a nonlinear relationship
between a potent activating stimulus and population-level
cytokine production (25). Single-cell tracking and dynamic
modeling indicated the differentiation of only a subset of cells
into a particular phenotype based on the population’s experience
of cell density, a mechanism which can potentially “amplify local
responses to threats and prevent false alarms” (25).

The M1-M2 Paradigm
A simplified model of the full spectrum of macrophage activation
suggests that functional macrophage phenotypes can be categorized
into three distinct groups based on their respective physiological
functions: classically activated, alternatively activated or wound
healing, and regulatory macrophages (2). Mills et al. proposed a
supplementary categorization based on investigations into factors
that regulate macrophage arginine metabolism (26), theM1 andM2
subsets. M1 and M2 macrophages express distinct metabolic
programs and consequently differ in their abilities to be activated,
as well as in their respective qualitative responses to the same
stimuli, resulting in opposite influences on inflammatory reactions
(26). TheM1 andM2 classification, after much subsequent research
and elaboration, denotes the bookends of a conceptual continuum
on which most macrophage phenotypes fall (26, 27). This spectrum
includes all macrophage functional states between pro-
inflammation and pro-resolution, or M1 and M2, respectively.
The M2 phenotype undergoes additional field conversions into
specialized functions, resulting in M2a, M2b and M2c
subpopulations (27). Furthermore, in response to the ambiguity
that unavoidably arises from the multiple categorizations of
macrophage subpopulations and corresponding nomenclature, an
additional approach has been proposed, which adduces the basic
manipulators of macrophage differentiation; namely post-
differentiation stimulation by effectors, like the cytokines IFN-g or
IL-4 (28). Notwithstanding potential equivocacy, we offer here an
overview of expanded macrophage phenotype definitions to
account for the idea that macrophage activation exists over a
spectrum and cannot be bottled into compact categories (Figure 1).

Classically activated, or M1 macrophages, produced during cell-
mediated, or Type I, immune responses, possess enhanced
microbicidal and tumoricidal capacities (2). In response to the
characteristic activating stimuli IFN-g and LPS, M1 macrophages
Frontiers in Immunology | www.frontiersin.org 3
secrete high levels of pro-inflammatory cytokines and mediators,
such as inflammatory CC and IFN-g-responsive chemokines, which
drive recruitment of Th1, Tc1 and NK cells to infected tissues
(27, 29). Alternatively activated, or M2a macrophages develop after
exposure to type II cytokines IL-4 or IL-13, and generate chemokine
agonists for CCR3, CCR4 and CCR8, which consequently recruit
eosinophils, basophils and Th2 cells (29). M2a macrophages also
secrete growth and angiogenic factors, as well as components of the
extracellular matrix, thereby enhancing wound healing (2, 30).
These macrophages are less efficient than classically activated
macrophages at killing intracellular pathogens via the production
of toxic radicals and pro-inflammatory cytokines. The third
category, regulatory macrophages (which is further divided into
reparative and pro-resolving subpopulations), are responsible for
immunosuppression or the resolution of acute inflammatory
episodes. Though these macrophages do have inflammatory
capacity, upon encounter with immunomodulatory agents their
anti-inflammatory activity is induced. Parasitic, bacterial and viral
pathogens appear to exploit this macrophage population to weaken
host defense (2). Reparative, or M2b macrophage polarization is
dependent on the recognition of immune complexes in
combination with stimulation by TLR or IL-1R agonists (27).
M2b macrophages are characterized by selective production of
CCL1 and consequent recruitment of Tregs (29). Their unique
cytokine profile indicates that these cells are not anti-
inflammatory per se, a notion supported by observations of both
their protective and pathogenic roles in various diseases (31). The
other regulatory macrophage subpopulation is M2c, otherwise
known as deactivating, suppressive, or pro-resolving macrophages.
Polarization toward M2c is elicited by IL-10, TGF-b, apoptotic cells
or glucocorticoids (27). M2c macrophages produce CCL16 and
CCL18, which consequently promote recruitment of eosinophils
and naive T cells, respectively (29). M2cmacrophages are associated
with deactivation programs, such as downregulation of pro-
inflammatory cytokine production, increased debris scavenging
activity, and the initiation of pro-healing functions (27). The
distinct macrophage properties during their differentiation are
depicted in Figure 1.

The transition of macrophages through this continuum is
confined to and differs between tissues, a critical quality that
distinguishes macrophages from dendritic cells. Although also
defined as being immune sentinels, dendritic cells translocate to
draining lymph nodes to activate T cells and trigger adaptive
immunity (32). Macrophages are the chaperones and defenders
of localized tissue homeostasis and are befittingly equipped with
an extensive spectrum of sensing molecules that vary among
tissue macrophages based on signals expected to be present in
their respective tissues of residence. These local tissue-derived
polarization cues offer a plausible explanation for the
heterogeneity of tissue macrophages (3). As an example of a
tissue-specific macrophage population that shifts between
phenotypes in injured skeletal muscle tissue, Sciorati and his
colleagues refer to the dynamic macrophage phenotype
transition as being “causally connected to and representing
limiting steps for muscle healing” (33). It becomes increasingly
clear that macrophage phenotypic transition both regulates and
May 2022 | Volume 13 | Article 863449
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reflects the progression of the inflammatory response from
initiation to healing. This offers room for speculation as to
whether this process can be actively manipulated.
Fascinatingly, macrophages can regulate their own phenotype
and shape immune responses via mechanisms that include, but
are not limited to resolution feedback circuits (34) and release of
growth factors and microvesicles following phagocytosis (35).
For example, annexin A1 (AnxA1, also known as lipocortin-1)
an endogenous glucocorticoid-regulated protein that functions
to restore homeostasis by counter-regulating inflammatory
events (36, 37), is an anti-inflammatory mediator as well as an
inducer of macrophage polarization towards the pro-resolving
phenotype (38). Additional pro-resolving agents and
macrophage reprogramming enhancers are detailed in Table 1.
Frontiers in Immunology | www.frontiersin.org 4
EFFEROCYTOSIS: MECHANISMS AND
OUTCOMES

Role of Apoptosis in Homeostasis
and Pathology
Pro-inflammatory macrophages phagocytose damaged cells
(which have undergone necrosis, or uncontrolled cell death) or
pathogens to induce inflammation. Pro-resolving macrophages,
however, are instrumental in anti-inflammatory responses, i.e.
the phagocytosis of cellular debris or apoptotic cells and the
production of anti-inflammatory/suppressive cytokines and pro-
resolving lipid mediators (39, 40). Apoptosis refers to a form of
programmed cell death (PCD) that promotes elimination of
FIGURE 1 | The phenotype continuum of monocyte-derived macrophages. Monocytes migrate into inflamed tissues and differentiate into macrophages that
undergo polarization and acquire distinct functional properties in response to environmental signals. Classically activated or type I macrophages (M1) are polarized
and generated after exposure to GM-CSF or IFN-g along with microbial components, such as LPS, or TNF-a. M1-polarized macrophages express the prototypic
markers CD80 and CD86, as well as MHC II along with its transactivator, CIITA. M1 macrophages produce pro-inflammatory mediators, including TNF-a, Interleukins
(IL) 1, IL-6, and IL-23, as well as CXCL9. The macrophage phenotype dichotomy is underscored by their iNOS/arginase 1 and IL-12/IL-10 balance. Consequently,
M1 express high levels of iNOS and IL-12 and low levels of arginase (Arg) 1 and IL-10. M1 polarization results in Type I inflammation, characterized by heightened
microbicidal and tumoricidal activities, which are associated with a low efferocytic rate, ROS production and glycolysis. Conversely, alternatively activated or type II
macrophages (M2 phenotype) are generally associated with immunoregulatory and tumor-promoting functions. M2 polarization is subdivided into M2a, M2b, and
M2c with nuanced immunoregulatory characteristics. The M2a polarization is induced by IL-4 and IL-13, and characterized by expressesion of CD36, CD206 and
CD163, MHC II, Arg-1 and scavenger receptors (SR). M2a macrophages produce anti-inflammatory mediators, including high amounts of IL-10, CCL17, TGF-b,
Chil3/Ym1 and Retnla/Fizz1. M2a polarization results in Type II inflammation and tissue repair, and is associated with b-oxidation, a high efferocytic rate, and fibrosis.
Immune complexes in concert with TLR or IL-1R agonist induce M2b polarization with the markers CD86 and MHC II. M2b macrophages produce immunoregulatory
mediators, including IL-1 and IL-6, high amounts of IL-10, and low amounts of IL-12, TNF-a and CCL1. M2b macrophages are involved in the recruitment of Treg
cells and undergo b-oxidation. The M2c polarization is induced by IL-10, glucocorticoids (GCs), specialized pro-resolving lipid mediators (SPMs), TGF-b, apoptotic
cells or PPARg/d ligands, leading to deactivation programs. M2c macrophage markers are CD206, CD163 and high levels of CD11b, as well as SLAM, Arg-1,
dectin1 and macrophage galactose-type lectin (MGL) 1. M2c macrophages produce immunoregulatory mediators, including high levels of IL-10, TGF-b, CXCL13,
CCL16 and 18, PGE2 and platelet activating factor (PAF). M2c macrophages exhibit high efferocytic and anti-inflammatory activities and are involved in tissue repair
and fibrosis and undergo b-oxidation. Pro-resolving macrophages are a population, which while displaying M1 or M2 properties underwent an additional phenotype
conversion to the CD11blow phenotype. This polarization is induced by exposure to IL-10, GCs, IFN-b, SPMs, galectin-1, or uptake of high-burden apoptotic cells.
Pro-resolving macrophages express high levels of CXCR4 and 12/15-lipoxygenase (LO) and release IL-10, IFN-b, SPMs and AnxA1. This macrophage subset is
immunoregulatory and anti-fibrotic, and exhibit oxidative phosphorylation, reduced levels of ROS production and glycolysis.
May 2022 | Volume 13 | Article 863449
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TABLE 1 | Pro-resolving effectors and macrophage reprogramming enhancers.

Molecule Key Mechanisms on macrophages Effects on Pathology Reference

Annexin A1 ↑ monocyte recruitment
↑ efferocytosis
↓ production of proinflammatory cytokines
↑ macrophage reprogramming toward a resolving phenotype

↑ tissue homeostasis
↓ inflammation

(34, 35)

Peptide Ac 2-26 (from
Annexin A1)

↑ Macrophage accumulation ↓ inflammation (36)

LXA4, 15-epi-LXA4, ↑ efferocytosis ↑ resolution
↑ bacterial clearance
↑ survival

(37–40)

Resolvin D1 ↑ efferocytosis
↓ TLR-mediated activation of macrophages
↑ M2 polarization
↑ efferocytosis
↑ autophagy
↑ heme oxygenase 1
↓ apoptosis

↓ inflammation
↓ fibrosis
↑ renal function

(32, 41–46)

17-epi-resolvin D1 ↑ efferocytosis ↑ resolution
↑ bacterial clearance

(40)

Resolvin D2 ↓ classically activated macrophage
↑ M2 polarization
↑ Heme Oxygenase 1

↓ inflammation
↑ survival

(47–49)

Resolvin D3 ↑ macrophage reprogramming toward M2 phenotype
↑ Efferocytosis
↑ Phagocytosis

↓ inflammation
↑ resolution

(50–52)

Resolvin D4 ↓ macrophage recruitment to thrombus
↑ efferocytosis

↓ inflammation
↑ resolution

(53, 54)

Resolvin D5 ↓ macrophage- derived pro-inflammatory genes ↑ resolution
↑ survival

(55)

Resolvin E1 ↑ efferocytosis
↑ Heme Oxygenase 1
↑ anti-inflammatory
cytokine production

↓ inflammation
↓ tissue injury
↑ resolution
↑ survival

(32, 39, 41, 56–58)

Resolvin E2 ↑ anti-inflammatory cytokine production
↑ phagocytosis

↓ inflammation
↑ resolution

(59)

Maresin 1 ↑ efferocytosis
↑ Heme Oxygenase 1

↓ inflammation
Organ protection
↓ tissue hypoxia
↓ edema

(41, 60, 61)

Protectin D1 ↓ TLR-mediated activation of macrophages
↑ efferocytosis
↑ Heme Oxygenase 1

↑ renal function
↓ fibrosis
↑ resolution

(39, 41, 42, 62)

Protein S/GAS6 ↑ efferocytosis ↑ resolution (63)
DEL-1 ↑ efferocytosis ↑ resolution

↓ inflammation
(64)

Galectin-1 ↑ efferocytosis
↑ IFN-b induction
↑ macrophage reprogramming toward pro-resolving phenotype

↑ resolution
↓ inflammation

(65–67)

Interferon-b ↑ efferocytosis
↑ macrophage reprogramming
toward pro-resolving phenotype
↑ transcriptomic transition that resists tissue fibrosis and oxidative damage

↓ fibrosis
↑ resolution

(29, 68)

Elafin (PI3) ↑ macrophage reprogramming toward M2 phenotype
↑ efferocytosis
↑ Annexin A1

↑ resolution (69)

TGF-b ↑ macrophage recruitment regulation
↑ IFN-b induction
↑ efferocytosis

↑ resolution
↑ wound healing

(21, 29, 45, 70, 71)

IL-10 ↑ macrophage reprogramming toward M2 phenotype ↓ inflammation
↑ homeostasis

(21, 72)

Arginine ↑ efferocytosis ↑ resolution (73)
IL-4 or IL-13 +
apoptotic cells

↑ induction of classical anti- inflammatory and
tissue repair genes

↓ inflammation
↑ wound healing

(74)

(Continued)
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excess cells generated during development (39, 41, 42), aging
cells that have reached the end of their lifespan (39, 41, 43), cells
associated with tissue remodeling (33, 39) and cells that have
been damaged due to a plethora of microenvironmental factors
(33, 39, 44). Apoptosis is mediated via the extrinsic or intrinsic
pathways, also termed type I and type II apoptosis, respectively
(45–47). The pathway is activated by the ligation of “death
receptors” on the cell surface, with ligands such as Fas or
TNF–a (45, 48–50). The intrinsic pathway is mitochondria-
dependent and associated with cytotoxic or oxidative cellular
stress, cytokine deprivation, or damage to the genome (48, 51).
Both pathways result in activation of the caspase cascade, leading
to activation of effector caspases, which induces intracellular
substrate degradation, nuclear condensation, cell membrane
blebbing, cell shrinkage, and outer membrane cellular changes
(47, 48, 52). Failure of immediate removal of apoptotic cells may
lead to post-apoptotic cytolysis, or secondary necrosis (39).
Necrosis results in the release of cell constituents that generate
pro-inflammatory signals. Therefore, removal of apoptotic cells
via efferocytosis, the term which refers to the phagocytic
engulfment of apoptotic cellular corpses by macrophages and
their consequent production of pro-resolving signals, is critical
for maintaining homeostatic turnover (53, 54).

Neutrophil Apoptosis
Human circulating neutrophils have a short half-life (55, 56).
Mature neutrophils undergo constitutive apoptosis that
renders them unresponsive to exogeneous stimuli and
facilitates their removal by macrophages via efferocytosis (57–60).
At sites of inflammation, neutrophil survival and apoptosis is
profoundly influenced by opposing cues from the inflammatory
microenvironment, including PAMPs, DAMPs and environmental
factors (61, 62). Extended neutrophil lifespan through delayed
apoptosis is associated with increased disease severity or poor
outcome, as observed in patients with asthma (63), sepsis (64), or
acute coronary artery disease (65). Preclinical studies showed that
delaying neutrophil apoptosis can amplify and perpetuate the
inflammatory response (66, 67). For example, myeloperoxidase
released from neutrophils triggers a feedforward loop to delay
neutrophils apoptosis and consequently resolution of
inflammation (66). Conversely, treatment with cyclin-dependent
kinase inhibitors (68), 15-epi-lipoxin A4 (69) or IFN-b (70)
efficiently counter pro-survival cues, redirects neutrophils to
apoptosis and facilitates efferocytosis. Typically, phagocytosis of
bacteria also accelerates neutrophil apoptosis (62). Consistently,
Frontiers in Immunology | www.frontiersin.org 6
impaired phagocytosis is associated with reduced capacity to clear
bacteria and prolonged neutrophil survival. For example, TLR9
ligation with bacterial or mitochondrial DNA leads to degranulation
of primary granules, and neutrophil elastase and proteinase 3-
mediated cleavage of complement C5a receptor, which together
with Mac-1 (or complement receptor 3/CD11bCD18) mediates
phagocytosis, resulting in impaired phagocytosis both in vitro and
in mice (71). Aspirin triggered 15-epi-LXA4 and 17-epi-RvD1
signaling through the formyl peptide receptor 2/lipoxin A
receptor was shown to counter TLR9 signaling, to restore
phagocytosis and accelerate neutrophil apoptosis and resolution of
bacterial infections (71). Furthermore, RvD1, acting through the
LTB4 receptor BLT1 (72), and RvD5, signaling through GPR32 (73)
can enhance phagocytosis by naïve neutrophils to promote the
resolution of bacterial infections. Of note, neutrophils carrying
certain types of bacteria (e.g. toxoplasma or leishmania) that they
cannot destroy, may serve as “Trojan horses” to disseminate the
infection on macrophage engulfment (74, 75).

Facilitating neutrophil apoptosis is critical to minimizing
damage to the surrounding tissue and is an important
mechanism to assure removal of emigrated neutrophils from
the site of infection or tissue damage. Uptake of apoptotic
neutrophils by macrophages influence their function and
phenotype, which in turn could modulate the fate of
neutrophils (61, 62). For example, IFN-b secreted by
macrophages satiated with apoptotic neutrophils mediates both
feedback and bidirectional crosstalk between non-phagocytic
macrophages, phagocytic macrophages and neutrophils to
enhance resolution of inflammation (70).

Efferocytosis
Efferocytosis is a key process in the resolution of inflammation,
which requires selective recognition. The immune system is
constantly screening the body for pathogenic invaders by way
of ensuring host defense. Therefore, it is of utmost importance to
differentiate between phagocytosing in order to trigger acute
inflammation or to maintain homeostasis, a process which is
responsible for removing over 1011 cells daily in the healthy adult
without inducing inflammation (76). This dichotomy in
“decision making” is resolved by “find me/eat me” signals
released by apoptotic cells, which recruit phagocytes to their
vicinity and identifies them as efferocytic targets (77, 78). The
“find me” signals include the nucleotides ATP and UTP, and the
lipid mediators lysophosphatidylcholine (LPC) and sphingosine
1-phosphate (S1P). Proteins, such as the chemokine CX3CL1,
TABLE 1 | Continued

Molecule Key Mechanisms on macrophages Effects on Pathology Reference

IGF1 ↑ macrophage reprogramming toward M2
phenotype

↑ resolution
↓ inflammation

(75)

Lactate ↑ macrophage reprogramming toward M2 phenotype
↑ efferocytosis

↓ inflammation (76, 77)

Plasminogen/plasmin ↑ annexin A1 induction
↑ macrophage reprogramming toward M2 phenotype
↑ efferocytosis

↑ resolution
↓ inflammation

(78, 79)
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ribosomal protein S19 (RPS19, in its dimeric form), endothelial
monocyte activating polypeptide II (EMAP II/AIMP1), and
tyrosyl tRNA synthetase (TyrRS) are also released from
apoptotic cells and exert chemoattractant properties. Notably,
all these effectors bind to GPCRs on phagocytes and
consequently attract them to the apoptotic cell designated for
engulfment. In addition to governing the directional movement
of macrophages, some of these mediators also regulate
macrophage activation and/or polarization, highlighting the
ability of apoptotic cells to influence phagocyte activity before
and/or after efferocytosis. The most-studied apoptotic cell “eat
me” signal is a component of the cell plasma membrane,
phosphatidylserine, which is found on the inner lipid bilayer
leaflet in healthy cells and becomes exposed on the cell surface
when the cell undergoes apoptosis (due to altered functionality of
scramblases and flippases) (54). It is plausible that this plasma
membrane alteration physically enables phagocytosis
independent of chemical signaling (45). Indeed, insertion of
phosphatidylserine into erythrocytes allows macrophages to
recognize and engul f red blood ce l l s , ident i fy ing
phosphatidylserine as a central “eat me” signal for phagocytes
(78). Furthermore, healthy cells also express “don’t eat me”
signals, for example CD47, which repels phagocytes (39).
CD47 engagement of SIRPa on macrophages was identified as
an important phagocytosis-inhibiting signal (54). In addition to
the “find me” signals just described, mediators, such as
lactoferrin, released from apoptotic cells were identified as
possible mediators that limit the recruitment of inflammatory
leukocytes, including neutrophils and eosinophils, thereby
enhancing inflammation resolution (45). Perry et al. have
identified a solute carrier 12A2 (SLC12A2)-dependent
chloride-sensing pathway, which regulates chemotaxis of
phagocytes to apoptotic cells as well as their subsequent
phenotype-related anti-inflammatory response, providing a
mechanistic link between macrophage emigration and
efferocytosis (40). This differentiation is considered an
efferocytosis-induced physiological “switch” from macrophage-
mediated inflammation to macrophage-mediated resolution.
This phenotype conversion can be identified by engulfment-
dependent production of anti-inflammatory mediators,
adenosine, and prostaglandin E2 (79). Intriguingly, post-
efferocytotic macrophages, termed “satiated/CD11blow

macrophages”, were suggested to promote “changing of the
guards” by upregulating the chemokine receptor CXCR4 on
macrophages following apoptotic engulfment (37, 77, 80).
CD11b down-regulation and CXCR4 expression are associated
with decreased phagocytic capacity (a characteristic feature of
the M2-like phenotype) (37) as well as with macrophage
egression via the draining lymph nodes to remote organs in
response to CXCL12, the CXCR4 ligand (81). Considering the
phenomenon of satiated macrophages upregulating CXCR4
expression (50), a likely scenario emerges in which
macrophages that lost their capability for efferocytosis make
way for macrophages with intact phagocytic capacity. CXCL12/
CXCR4-dependent migration of satiated macrophages is also
operational for monocyte recruitment (34, 82). This would likely
Frontiers in Immunology | www.frontiersin.org 7
ensure continued clearance of cell corpses during the resolution
of inflammation, as has been proposed to occur in the presence
of the pro-resolving lipid mediator resolvin E1 (RvE1),
dexamethasone, or the pro-resolving cytokine IFN-b (34, 36).
Thus, removal of satiated macrophages from the front lines
represents a supplementary mechanism to the primary
outcomes of efferocytosis , namely : terminat ion of
inflammation, activation of pro-resolving pathways, and
promotion of self-tolerance (83). Furthermore, efferocytosis
also leads to downregulation of proinflammatory cytokine
expression, inhibition of inducible nitric oxide synthase
(iNOS), and enhanced generation of angiogenic growth factors
(83–86).

A key route by which pro-resolving pathways are activated
include the production of specialized pro-resolving mediators
(SPMs) (87), as well as the upregulation of genes involved in the
generation of Treg cells, which were shown to enhance
macrophage efferocytosis through the IL-13-IL-10 axis (88).
Bonnefoy and his colleagues refer to the secreted anti-
inflammatory and pro-resolving mediators collectively
recovered from efferocytic macrophages as SuperMApo;
Supernatant of Macrophages eliminating Apoptotic cells (89).
These mediators are adept at limiting autoimmunity in various
organs primarily through TGF-b signaling (90, 91). Inefficient
priming of CD4+ T cells and the diversion of autoantigens
towards recycling endosomes and away from the MHC class
II-loading compartment promote self-tolerance. Together, these
two processes result in the evasion of T cell responses in favor of
apoptotic fragment engulfment (83). Even if this mechanism was
impaired, peptides originated from apoptotic cells would still be
rendered unsuitable for MHC class II presentation since
phagosomes in pro-resolving macrophages are more prone to
acidification than those in pro-inflammatory macrophages,
resulting in a more efficient proteolysis of apoptotic cell-
derived-peptides (92).

Autoimmunity and Autoinflammation
The ability of resolution-phase macrophages to prevent immune
responses and their proficient antigen-presentation evasion
would imply that failure in efferocytosis promotes the
development of autoimmunity (83). Inefficient apoptotic cell
engulfment by macrophages, which can result from an uneven
ratio of macrophage to apoptotic cell populations has been
suggested as a potential etiology of autoimmunity. Thus, upon
inefficient (or lack of) engulfment, apoptotic cells may undergo
secondary necrosis, or post-apoptotic cytolysis, which results in
the expression of alarmins, a diverse set of endogenous molecules
that are released upon unregulated cell death and/or
degranulation or damage-associated molecular patterns
(DAMPS) (93). When phagocytic cells are unable to
distinguish between damage and pathogen-associated
molecular patterns, or DAMPS and PAMPS, respectively,
autoreactive inflammation can occur as a result of DAMPS
activating the inflammatory process generally induced by
PAMPS ; a c t i v a t i on o f comp l emen t and soma t i c
hypermutation-induced in autoreactive B-cells (46, 94).
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Moreover, undigested necrotic cell DNA can promote the
formation of large immune complexes, which trigger the
production of high levels of inflammatory cytokines, such as
TNF-a and type I interferon, thereby promoting autoimmune
diseases (48). Several studies have shown that apoptotic cell-
stimulated interleukin-10 (IL-10), a major immunoregulatory
cytokine, plays a crucial role in the prevention of autoimmunity
(95, 96). Originally perceived as a Th2 cytokine that suppresses
cytokine production by Th1 cells, IL-10 plays a central role in
restricting inflammatory responses in vivo. Macrophages
produce large amounts of IL-10 following cell-to-cell contact
with apoptotic cells, but not phagocytosis (95). This underscores
the ability of organisms to anticipate potential failure (i.e.
autoimmunity that can evolve from flawed efferocytosis) and
prepare itself via production of immunoregulators, accordingly
(95). In addition to IL-10 regulation, compensatory mechanisms
such as the CD24-Siglec G pathway can protect the host from
apoptotic-debris-induced-autoimmunity by discriminating
between DAMPS and PAMPS (46, 94).
PRO-RESOLVING EFFECTORS
CAN LIMIT INFECTION-ASSOCIATED
CYTOKINE STORM

Defining the Cytokine Storm
Autoimmunity or a cytokine storm (also known as cytokine
release syndrome (CRS), or Hypercytokinaemia) are two
potential disastrous outcomes of an uncontrolled immune
response. Cytokine storm is currently defined as markedly
elevated levels of inflammatory cytokines in body fluids,
resulting in vascular damage, immunopathology, and
deteriorating clinical outcomes (97). Under ideal conditions,
the defensive inflammatory response is proportional to the
severity of infection. The balance is achieved by regulatory
mechanisms, such as resolution of inflammation, which limits
hyperreactivity in space and time. Failure to enter the phase of
resolution and repair may lead to further increases in levels of
inflammatory cytokines, which characterize the Cytokine Storm.
These cytokines include IL-1, IL-2, IL-6, GM-CSF, IFN-g, and
TNF-a and their transcription is predominantly driven by NF-
kB. These cytokines interact with the complement and
coagulation systems to induce disseminated intravascular
coagulation (DIC), acute respiratory distress syndrome
(ARDS), hemophagocytic lymphohistiocytosis (HLH), and
ultimately multiorgan failure (97, 98). This phenomenon is
induced by enhanced innate recognition via elevated
production of IL-2, IFN-g, and TNF-a, highlighting that
protective immunity can become deleterious when it is
dysregulated or when T cells escape many of the cell-extrinsic
checkpoints (97, 99). Genetic defects, leading to disproportionate
inflammasome activation and sustained IL-1 production by
macrophages, may also contribute to the development of the
cytokine storm (97). Moreover, the generation of reactive
oxygen/nitrogen species (ROS/RNS) in the lungs as well as in
the mitochondria provokes inflammatory responses. Oxidative
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and/or nitrosative stress activates signaling pathways, including
NF-kB, which leads to the upregulation of proinflammatory
cytokines and chemokines, thereby contributing to the
development of the cytokine storm (100, 101).

Resolution Cues
Therapeutic attempts to limit the cytokine storm can harness the
reprogramming of M1 macrophages to the M2 phenotype. In
addition to apoptotic cell-induced production of pro-resolving
cytokines, like TGF-b and IL-10, reprogramming is
accomplished via resolution cues, which operate in autocrine/
paracrine manners, and result in downregulation of pro-
inflammatory mediators (also termed immune-silencing) (95,
96, 102). These resolution cues were originally shown to be
mediated by prostaglandin E2 (PGE2) and platelet activating
factor (PAF) (103), with more recent studies elucidating their
intricate and potentially opposing actions (104–107),
underscoring the dynamism of homeostatic maintenance. Key
pro-resolving effector molecules include proteins, peptides,
SPMs and gaseous mediators. SPMs are derived from
arachidonic acid and omega-3-polyunsaturated fatty acids
including lipoxins, resolvins, protectins, and maresins (108,
109). SPMs do not compromise host defense, while they
actively promote resolution and the return to homeostasis (37,
110–112). Galectins, annexin A1 (AnxA1) and peptides derived
from AnxA1 serve various roles in counter-regulating
inflammatory events (38, 102).

With regard to resolution effector receptors, or immune-
silencing at the phagocyte receptor expression level,
stimulation of various phagocytic adenosine receptors was
found to inhibit inflammation by diminishing leukocyte
recruitment to the site of inflammation through inhibition of
both selectin- and integrin-mediated adhesive events (113).
Furthermore, five separate GPCRs; ALX, DRV1, ERV, BLT1
AND DRV2 (87), which selectively bind individual SPMs, are
upregulated during the acute inflammatory reaction (114),
counter-regulate proinflammatory pathways (115, 116) and
stimulate protective gene expression (117). These processes are
also driven by ligands on the surface of apoptotic cells, such as
ACKR2-bound CCL5 (118, 119), “eat me” signals (or the absence
of “do not eat me” signals), cognate receptors on the phagocytes,
and/or bridge molecules in the environment (85, 120).

CCR5 expression on late apoptotic human neutrophils was
found to modulate macrophage numbers and phenotype
reprogramming by clearing its inflammatory ligands during the
resolution of peritonitis (121). Accordingly, SPMs were shown to
upregulate CCR5 expression on apoptotic neutrophils, parallel
with downregulation of pro-inflammatory cues. Thus, CCR5+

apoptotic neutrophils may act as ‘terminators’ of chemokine
signaling during the resolution of inflammation (121, 122).
Resolution mediators also include effector cytokines, such as
the macrophage-derived IFN-b. IFN-b is a type I interferon that
regulates anti-viral and anti-bacterial immune responses (123).
Resolution phase macrophages that have lost their phagocytic
capacity express a distinct IFN-b-related gene signature in mice
compared to their phagocytic ancestors (34). Correspondingly,
elevated levels of IFN-b have been reported in resolution-phase
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peritoneal and broncho-alveolar exudates in mice, and IFN-b, in
turn, enhances bacterial clearance, neutrophil apoptosis,
efferocytosis, and consequent macrophage reprogramming
(34). An additional master-regulator of resolving inflammation
is the pro-apoptotic protein ARTS. ARTS is a mitochondrial
protein that limits neutrophil survival and possesses pro-
resolving actions similar to those of SPMs and cyclin-
dependent kinases (68, 124), namely promoting neutrophil
apoptosis , efferocytosis , and the reprogramming of
macrophages to the pro-resolving phenotype (124).

Resolution Pathologies
Whereas the above-mentioned mechanisms represent the ideal
outcome of inflammation, in the “real-life” immune battlefield,
disturbances can and do occur, which may underlie diseases.
Given the plethora of molecules, signaling pathways, and
cascades involved in the immune response, the potential
disturbances and resulting pathologies are numerous. We will
discuss the molecular mechanisms underlying multiple
pathological conditions that are associated with incomplete
resolution of inflammation, fibrosis, Macrophage Activation
Syndrome (MAS), and autoimmunity.

In the case of abnormal resolution-phase tissue repair involving
the deficient generation of pro-resolving macrophages and
resulting in uncontrolled production of inflammatory mediators,
growth factors and ECM components, pathological fibrosis may
occur when endothelial cells, fibroblasts, and stem or tissue
progenitor cells collectively reinforce a state of persistent injury
and/or exaggerated repair (125). This pathological fibrotic state
begins with the recruitment of fibroblasts to the inflamed tissue,
and consequently their differentiation into extracellular matrix
(ECM)-producing myofibroblasts that assist in repairing the
damaged tissue. This innocent, commonplace process may take
a sinister turn in the prolonged presence of pro-fibrotic mediators
that elicit disproportionate, and long-lasting recruitment, and
activation of myofibroblasts (126). Pathological fibrosis is
characterized by the excessive deposition of ECM, including
type I and III collagens, fibronectin, and laminin (127). TGF-b
induces upregulation of collagen synthesis, epithelial-
mesenchymal transition (EMT), and myofibroblast trans-
differentiation; consistent with fibroblast activation. Curiously,
inhibition of TGF-b1 requires mediators that can be produced
by macrophages following apoptotic cell uptake (i.e. when they
became satiated), implying an antifibrotic role for these
macrophages under certain settings (127, 128). Some
myofibroblasts can remain plastic and naturally convert to
different cell types, representing a renewal potential that
depends on their origin (126, 129). These findings challenge the
widely held notion that fibrosis and wound healing are opposing
processes. Furthermore, studies on hair follicle neogenesis support
the concept that the mechanisms of scarring and normal tissue
remodeling are not distant from one another, and that wound
repair can be redirected to promote regeneration following injury
by modifying tissue signals (130).

Synonymous with secondary hemophagocytic lymphohistiocytosis,
MAS is an umbrella term for systemic hyper-inflammation that
can potentially be life-threatening. Markedly elevated levels of
Frontiers in Immunology | www.frontiersin.org 9
the acute-phase reactant C-reactive protein, IL-6, IL-7, TNF-a
and hyperferritinemia (excess of the iron storage protein
ferritin), are the key diagnostic criteria for MAS (131).
Concentrations of the a-chain of the IL-2 receptor (132) are
also increased. The pathogenesis of MAS is thought to involve a
defect in lymphocyte cytolytic activity, which results from a pro-
inflammatory environment. Decreased cytolytic activity likely
amplifies the pro-inflammatory cytokine cascade, resulting in a
cytokine storm (133). A plausible etiological cause for MAS is
macrophage phagocytosis of red blood cells, which, although
critical for the clearance of infected cells, results in continuous
production of IFN-g and TNF-a. The sustained pro-
inflammatory environment and the resulting decreased
cytolyt ic act iv i ty enhance the probabi l i ty of MAS
occurrence (97).

Autoimmunity refers to the immune system targeting host
cells. Failed efferocytosis, or inefficient apoptotic cell engulfment
by macrophages, can result in autoimmunity following
secondary necrosis, and release of DAMPs. DAMPs can, in
turn, trigger inflammation through activation of their cognate
pattern recognizing receptors (PRR) that cannot differentiate
between PAMPs and DAMPs. The generation and deposition of
immune complexes, and activation of the inflammasome,
contribute to development of autoimmune diseases (46, 48,
83, 94).
IMPLICATIONS FOR COVID-19

Harnessing the Resolution of Inflammation
to Limit COVID-19
The emergence of COVID-19 as a worldwide pandemic and the
appearance of associated pulmonary pathology similar to that of
lung fibrosis, coupled with deficiencies in pro-resolving
mediators, raise the possibility of utilizing satiated
macrophages and/or their products for the treatment of this
infection. Curiously, SARS-CoV-2 infection remains
asymptomatic or causes mild flu-like symptoms in 80% of
people, whereas others develop overt pneumonia that is
associated with high mortality (134). COVID-19 offers a
fascinating window into the mechanisms by which the
immune state of the host may affect disease progression.
Viewing COVID-19 from the macrophage phenotype
continuum to cytokine expression perspective, it appears that
the host immunological predisposition and potential deficiencies
may be critical for determining mild or severe disease
manifestations. Marked changes in immune cell compositions,
phenotypes, and cross-talk were identified in SARS-CoV-2-
infected individuals, and clear distinguishing features were
observed between mild and severe cases (70, 98, 123, 132,
134, 135).

To comprehend the difference between the onset of mild and
severe disease, one may consider COVID-19 as a two-phase
disease, in which virus pathology dominates the early phase and
immunopathology dominates the latter. The early phase of
infection involves SARS-CoV-2 binding to angiotensin-
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converting enzyme 2 (ACE2) (93) and the activation of the type I
interferon response, which inhibits viral replication (98, 136). In
most infected people, this phase is characterized by mild or
moderate symptoms (which arise from virus-associated tissue
damage and antiviral activity of the adaptive immune system)
and is successfully resolved through a regulated antiviral
immune response (93). The second phase develops only when
the immune response becomes dysregulated, with release of
alarmins and DAMPS, coupled with the host’s inability to
resolve the viral infection (98). At this point, the looming
cytokine storm breaks loose, forming a destructive feedforward
loop, in which the inflammatory reaction damages tissues, and
the lungs in particular, which then triggers further inflammation
(93). The lethal trajectory of ARDS, sepsis-like stage, and
ultimately organ failure is initiated if the hyperinflammatory
feedforward loop is not restrained (93, 97).

Insofar as the early phase of COVID-19 has now become a
manageable condition with commercially-available vaccines,
current major challenges involve the management of the second
phase of the disease, namely the secondary complications in
different organs resulting from immunopathology. One such
organ is the brain. There are several case reports documenting
COVID-induced-demyelination of both peripheral and central
nervous systems (137, 138). Demyelination underlies many
COVID-19-associated CNS pathologies, including but not
limited to encephalitis, acute disseminated encephalomyelitis,
meningitis, ischemic and hemorrhagic stroke, venous sinus
thrombosis, endothelialitis, anosmia, hyposmia, Parkinsonism,
Alzheimer’s diseases and psychiatric symptoms (139, 140).
These CNS complications have been attributed to a variety of
mechanisms, including virus-induced hyperinflammatory and
hypercoagulable states, and post-infectious immune mediated
processes. However, as numerous neuropathologies can denote
either a direct viral invasion of the CNS, virus-induced
hyperinflammatory and hypercoagulable states, or postinfectious
immune-mediated processes which may develop as a mere sequel
of hypoxia affecting the CNS, from which direct causality cannot
be readily inferred (139, 141). Nonetheless, from accumulating
evidence indicates that SARS-CoV-2 and several proinflammatory
cytokines, including IL-1b, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-a,
and IFN-g, can cross the blood–brain barrier, suggesting a highly
probable para- or post- infectious immune-mediated etiology of
COVID-19-associated CNS injuries (142, 143). A plethora of
mechanisms have been identified via which viruses can cross
into the CNS, including the transmigration of macrophages or
T cells carrying viral particles (144–146). Accumulation of diverse
subsets of lymphocytes and inflammatory mediators in the CNS
provides an ideal setting for a perfectly orchestrated cytokine
storm, as well as an opportunity to explore the role of
macrophages cross-talk with the adaptive immune system.

Multiple sclerosis (MS) represents a useful model for
understanding COVID-19-associated neuropathology, for it is
an immune-mediated demyelinating disease characterized by the
accumulation of immune cells in the CNS (147). Its
pathogenesis , which evolved through analogy with
experimental autoimmune encephalomyelitis (EAE), involves
Frontiers in Immunology | www.frontiersin.org 10
CNS-infiltrating myelin-specific Th cells that induce monocyte
conversion to an M1-like phenotype via pro-inflammatory
mediators, such as GM-CSF. GM-CSF, in turn, aggravates CNS
inflammation, and ultimately leads to myelin damage and
neuronal loss (148–152). Amplification of this autoimmune
neuroinflammation by a feedback loop between monocytes and
Th cells can be attenuated by IFN-b therapy, which results in
indirect suppression of GM-CSF production by Th cells via
increasing IL-10 expression by monocytes. This phenomenon
underscores the critical role of monocyte and macrophage
phenotype conversion in immune regulation (151).
Furthermore, in a study on how morphology and function of
both neutrophils and microglia affect the inflamed brain, a
crosstalk with neutrophils extravasating to the brain
parenchyma has been postulated to serve as an additional
primer of macrophage-induced neuroinflammation (153).
Thus, recruitment of immune cells into the CNS allows for
crosstalk between distinct cell types, leading to consequent
modulation of the inflammatory response.

Distinguishing Features Between Mild and
Severe Cases
Studies on bronchoalveolar lavage (BAL) fluid cells revealed
unaffected monocyte/macrophage antiviral and phagocytic
functions in patients with mild COVID-19 (134). In critically
ill patients, these monocytic cells activate excessive inflammation
in response to sensing PAMPs and DAMPs, which may
further be exacerbated by the reduction in monocyte-
originated macrophages whose role is to phagocytose the
ensuing debris (134, 154, 155). An additional signal to trigger
hyperinflammation underlying severe illness is the release of
neutrophil extracellular traps (NET) and NET-stimulated
coagulopathy (156). NETosis is likely initiated by both direct
(through angiotensin-converting enzyme 2, serine protease, virus
replication, and PAD-4 (157)) and indirect (through activated
platelets and COVID-19-triggered cytokines and chemokines
which stimulate NETosis (158)) mechanisms. This results in
enhanced coagulation with decreases in lymphocyte counts, an
abundance of inflammatory myeloid cells, endothelial cell
damage, thrombus formation, and ensuing fibrosis, all of which
is associated with a poor COVID-19 prognosis (97, 134, 141,
159). The success of treatment with cytokine receptor antagonists
(160) and cytokine neutralization (161) in patients with severe
COVID-19 lends further support to the notion of dysregulated
inflammatory response being the distinguishing a feature
between mild and severe cases (135).

Although it is of utmost importance to understand the
pathophysiology underlying severe COVID-19, from the clinical
point of view, it will be important to identify differences in the
mechanisms underlying mild versus severe disease in order to
develop more efficient therapies. While no consensus has emerged
to date as to the cause of the deleterious immune response arising
from a system intended to be protective, several possibilities
should be considered. Mangalmurti and Hunter argue that the
key distinguishing factor underlying COVID-19 pathogenesis
seems to be preexisting conditions that affect vascular health,
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including diabetes, hypertension, and other cardiovascular
diseases. These comorbidities may decrease resilience and lower
host ability to tolerate systemically released cytokines (97). An
alternative explanation is a distinct phenotype of an impaired IFN
type I response in patients with severe COVID-19. In these
patients, viral clearance is disrupted, generating a welcoming
environment for hyperinflammation (98, 123). However, other
studies detected a robust type I interferon response in association
with severe COVID-19 (70). We propose that these apparently
conflicting observations can be explained by the two-phase
approach toward COVID-19. Thus, deficiency in type I IFN
response can dramatically inhibit viral clearance in the first
phase where protective inflammation is crucial, whereas
excessive production of type I IFN during the second, hyper-
inflammatory phase has the potential to hamper the host’s attempt
to activate anti-inflammatory and pro-resolving processes.

Calming the Storm
When it comes to calming a cytokine storm and restoring
dysregulated immunity, both inhibition of proinflammatory
mechanisms as well as activation of anti-inflammatory processes
are of critical consequence. The findings that elevated levels of
both IL-6 and IL-10 are predictive of disease severity supports this
notion, given that IL-6 is key proinflammatory cytokine, whereas
IL-10 is a prototypical anti-inflammatory cytokine whose presence
may suggest a protective role in disease progression (143).
Frontiers in Immunology | www.frontiersin.org 11
Timeliness of initiating therapy appears to be critical, for
immunosuppression during the antiviral phase of the COVID-
19 can have detrimental effects, whereas it could potentially break
the propagating feedforward loop and even initiate resolution
during the hyperinflammatory stage.

With regard to activation of anti-inflammatory processes, it is
important to note the innate inclination of the immune system to
elevate the levels of inhibitory cytokines, including but not limited
to IL-1RA and IL-10 at early stages of infection in order to prevent
potential development of hyperinflammation (162). Moreover,
satiated or CD11blow macrophages are perceived to be central
effectors in the restoration of dysregulated immunity given their
capacity to regulate and induce expression of anti-inflammatory
effectors (37) (Figure 2). This perspective coupled with the
capacity of glucocorticoids to regulate pro-resolving
macrophages is supported by the Randomized Evaluation of
COVID-19 Therapy (RECOVERY) clinical trial, which reported
very promising results with dexamethasone, a synthetic
glucocorticoid in patients with severe ARDS (93, 163).
Glucocorticoids exert extensive immunomodulating effects via
cell-specific changes in the transcriptome by binding to
intracellular glucocorticoid receptors (GRs) (164). Consequently,
GRs translocate to the nucleus to modulate transcription, while
simultaneously affecting non-transcriptional processes via plasma
membrane interactions and intervention with cytoplasmic
signaling cascades and mitochondrial translocation (93). This
FIGURE 2 | Potential role of efferocytic macrophages in COVID-19 pathogenesis. Schematic representation of potential mechanisms by which efferocytic
macrophage-produced mediators could affect COVID-19 pathogenesis. Anti-inflammatory effectors IL-10, PGE2, and PAF all restrict the inflammatory response
which, while crucial for inhibiting the progression of viral infection and immunopathology, have the potential to promote fibrosis. SPMs and AnxA1 can inhibit fibrosis
by promoting macrophage reprogramming towards the CD11blow phenotype, parallel with inhibition of the feedforward hyperinflammatory loop. The cytokines TGF-b
and IFN-b (at low concentrations and when temporally restricted) have the ability to inhibit fibrosis, due to their ability to restrict the inflammatory response as well as
to promote macrophage reprogramming to the CD11blow phenotype. On the other hand, chronic exposure to high doses of TGF-b or IFN-b may result in pathologic
fibrosis or autoinflammatory disorders. In the light of IFN-b’s anti-viral and anti-inflammatory properties, IFN-b deficiency during phase I of COVID-19 infection and
excess IFN-b production during phase II can have deleterious consequences in disease progression and inflammation resolution.
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wide array of physiological effects results in activation of a
multitude of pro-resolution and anti-inflammatory mechanisms,
including downregulation of genes associated with TCR, BCR,
and TLR7 signaling (93, 164–166), significant increases in
apoptotic neutrophil phagocytosis by macrophages (167) and
monocyte-derived iDCs (168), inhibition of DC antigen
presentation and expression of costimulatory molecules (93),
upregulation of the anti-inflammatory cytokine IL-10 (93, 169),
and the inhibition of production of pro-inflammatory cytokines
(i.e. IL-1, TNF-a, and IL-6), chemokines, and other soluble
mediators (leukotrienes, and histamines) (93, 168). The
relevance of these anti-inflammatory properties to COVID-19-
induced immunopathologies is further highlighted by the
accumulating evidence showing association of markedly elevated
levels of IL-6 and other pro-inflammatory cytokines in patients with
severe COVID-19 clinical outcomes (170).

AnxA1 and its mimetic peptides, including peptide Ac2-26,
have been shown to drive the resolution of inflammation not
only as facilitators of efferocytosis, but also by inducing
macrophage reprogramming to the CD11blow phenotype and
modulating subsequent monocyte recruitment. A notable pro-
resolving effect observed with dexamethasone, resolvin D1 and
resolvin E1 is the decreased threshold of engulfment-related-
events required for inflammatory macrophages to undergo
immune silencing and differentiate into the CD11blow

phenotype (37). This enhances immune-silencing events and
thereby increases the rate of apoptotic cell clearance, providing a
mechanism to interrupt the inflammation-damaged tissue-
inflammation feedforward loop that maintains cytokine storms
(38, 93, 171). It is important to note that glucocorticoids have
also been found to drive pro-inflammatory processes (168),
highlighting the complexity of their actions in a context, cell
type, dose, and timing of exposure-dependent fashion (168).

An alternative approach for calming the cytokine storm is the
administration of type I IFN (98). Since hyperinflammation may
arise as a consequence of inefficient efferocytosis (which can be
the result of a hampered antiviral response and/or reduced IFN-
b production (46)), administration of type I IFN can
hypothetically prevent hyperinflammation in patients with an
impaired ability to generate an antiviral immune response in the
initial phase of the disease (98). Indeed, four clinical trials
reported a favorable response to early IFN-b use in COVID-19
patients, and other studies are underway to test the timing and
clinical efficiencies of IFN-a or IFN-b (70). However,
considering the potential danger of propagating lymphocytic
immune responses into a long term hyperinflammatory state,
appropriate supplementary inhibitors, as well as nuanced dosing
and timing of treatment, would be critical to firmly establish this
therapy (70).

Regulatory T cells (Tregs) have also been identified as
important coordinators of immune regulation in COVID-19
(172). Thus, COVID-19 patients exhibit an exhausted T cell
phenotype as evidenced by the elevated expression of inhibitory
immune checkpoints and reduced expression of cytokine and
cytolytic molecule genes (173). These findings open new avenues
for potential therapeutic interventions aimed to improve
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antiviral T‐cell responses against SARS‐CoV‐2. These
approaches include adoptive T‐cell therapies, T‐cell response-
activating vaccines, recombinant cytokines, Th1 activators and
Th17 blockers, and immune checkpoint inhibitors used alone or
in combination with anti‐inflammatory drugs (173). A plethora
of additional repurposed anti-inflammatory therapies for
COVID-19 have been proposed, with major emphasis on the
critical necessity for vigilance for cardiotoxicity as well as other
possible off target effects (163, 174, 175). Table 2 summarizes
multiple immunopathological mechanisms associated with a
dysregulated immune system together with potential
alternative therapies.

On a broader scale, therapies intended to regulate
macrophage polarization have been proposed and displayed
promising potential. Relevant examples are decursinol angelate,
which inhibits M1 polarization viamodulation of the NF-kB and
MAPK signaling pathways (188) and docosahexaenoic acid,
which enhances M2 polarization through the p38 MAPK
signaling pathway and autophagy (189). Furthermore, infusion
of negatively charged, immune-modifying microparticles (IMPs)
have been shown to induce suicide in monocytes, thereby
preventing their maturation into inflammatory macrophages
(190). Taken together, modulation of macrophage phenotype
has critical consequences for a healthy, balanced immune system,
given the pivotal role resolution effectors play in immune
homeostasis. An illustrative scheme on the potential use of
resolution effectors for the treatment of COVID-19 pathologies
is depicted in Figure 2.
CONCLUSIONS

In conclusion, the reprogramming ability of macrophages into
efferocytotic and consequently satiated phenotypes emerge as
a central driving force for inflammation resolution, without
which all immune responses may take a sinister turn in the
form of hyperinflammation and ensuing chronicity. The
macrophage phenotype continuum provides a framework for
phagocyte plasticity in recognizing the host’s actual immune
state and consequently responding in an appropriate manner.
Understanding the mechanisms by which macrophages travel
through this continuum, and how their journey can be
manipulated, appears to be the clavis aurea, or golden key
through which homeostasis can be restored and sustained.

Due to the wide range of SARS-CoV-2 infection phenotypes
coupled with the relatively short period of time for research,
consistent and definitive correlations of disease stages and
precisely defined effectors have not been rigorously identified.
However, with these limitations in mind, it is becoming
increasingly clear that the state of the host`s immune system
may be a critical determining factor for disease progression and
eventual outcome. This growing awareness would imply shifting
the focus of our research and resources towards the host immune
system instead of the perpetrator, SARS-CoV-2. Such efforts,
directed at armoring our innate defense system with the
necessary manipulations to re-establish dysregulated immune
May 2022 | Volume 13 | Article 863449
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responses and direct them to resolution, will bring us closer to
the ultimate goal of homeostatic restoration and prevention of
grave immunopathologies, such as ARDS and other long
consequences of COVID-19 infection.
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