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Abstract

Biogenic copper nanoparticles (Cu NPs) were synthesized using the aqueous crude extract

of mangrove leaves, Avicennia marina (CE). GC-MS metabolite profiling of CE showed that

their carbohydrates are mainly composed of D-mannose (29.21%), D-fructose, (18.51%), L-

sorbose (12.91%), D-galactose (5.47%) and D-Talose (5.21%). Ultra-fine nanoparticles of

11.60 ±4.65 nm comprising Cu2O and Cu(OH)2 species were obtained with a carbohydrate

and phenolic content of 35.6±3.2% and 3.13±0.05 mgGA/g, respectively. The impact of the

biogenic Cu NPs on wheat seedling growth was dose-dependent. Upon treatment with 0.06

mg/mL of Cu NPs, the growth was promoted by 172.78 ± 23.11 and 215.94 ± 37.76% for

wheat root and shoot, respectively. However, the lowest relative growth % of 81.94 ± 11.70

and 72.46 ± 18.78% were recorded for wheat root and shoot, respectively when applying

0.43 mg/mL of Cu NPs. At this concentration, peroxidase activity (POX) of the germinated

wheat seeds also decreased, while ascorbic acid oxidase (AAO) and polyphenol oxidase

(PPO) activities increased. Higher uptake of copper was observed in the root relative to the

shoot implying the accumulation of the nanoparticles in the former. The uptake was also

higher than that of the commercial Cu NPs, which showed an insignificant effect on the

seedling growth. By treating the wheat leaves in foliar application with 0.06 mg/mL of Cu

NPs, their contents of Chlorophyll a, Chlorophyll b, and total chlorophyll were enhanced

after 21 days of application. Meanwhile, the high concentration (0.43 mg/mL) of Cu NPs

was the most effective in reducing the leaf content of chlorophyll (a, b, and total) after the

same time of application. The findings of this study manifest the potential of utilizing con-

trolled doses of the prepared biogenic Cu NPs for inhibition or stimulation of seedling

growth.
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1. Introduction

Marine plants have been recently the subject of a myriad of studies due to their diverse biological

activities. One plant of interest is the mangrove, which grows in small trees along tropical and sub-

tropical coasts. Asia has the largest amount (42%) of the world’s mangroves, followed by Africa

(21%), Northern, Central America and the Caribbean (15%), Oceania (12%), and South America

(11%) [1]. Two of the world’s mangrove species exist in Egypt, and are commonly known as gray

and red mangroves or scientifically as Avicennia marina and Rhizophora mucronata, respectively [2].

The former species shortly referred to as A. marina, is more abundant in Egypt as it thrives

along the Red Sea Coast lining from Ras Mohamed to Mersa-Halaib [3]. Nowadays, several

biological activities have been reported for mangroves such as antimicrobial [4], antioxidant

[5], antidiabetic [6], antibacterial [7] and anticancer activities [8], and these were owed to its

composition, which constitutes phytochemicals as alkaloids, phenolic compounds, steroids,

terpenoids, glucosides and flavonoids together with polysaccharides [9–11]. In addition to

their bioactivities, the mangrove extracts can be utilized as reducing agents for the synthesis of

metal/metal oxide nanoparticles (NPs) that are bioactive, probably due to their unique physi-

cochemical properties that are related to their high surface area, high reactivity, tunable pore

size, and particle morphology. Along with their role in bioreduction, the extracts form a stabi-

lizing layer around the NPs, preventing them from agglomeration and contributing to their

bioactivity through its active functional groups.

Biosynthesized NPs have been used in agriculture as fertilizers, insecticides, herbicides and

fungicides [12–14]. To evaluate the bioactivity of NPs for these applications, a seed germina-

tion phytotoxicity test is usually conducted. Germination generally refers to seeds’ emergence

and seedling growth of seedling shoots and root length [15].

One of the biosynthesized NPs that have not been extensively studied for their impact on seed

germination is Cu NPs, which is the focus of our work. In an earlier study, the germination of let-

tuce (L. sativa) seeds in aqueous medium containing Cu NPs showed that CuO NPs were slightly

more toxic than their Cu2O counterparts and this consequently led to reduction of seed germina-

tion and root elongation [16]. Another study showed that Cucumis sativus Cu NPs accumulated in

the roots of the cucumber plant and consequently reduced root length and root biomass [17]. The

reported toxicity of Cu NPs could stem from their chemical composition that might lead to release

of toxins and/or the stress stimulation they might cause due to their size, shape or surface [12].

This work aims to utilize a new green method for synthesizing biogenic Cu NPs using the

crude extract (CE) of A. marina as a reducing agent. The proposed synthesis method readily forms

NPs that are coated by a capping layer of CE with active functional groups which can potentially

affect plant growth. To determine the conditions necessary for the biogenic Cu NPs to function as

either growth inhibitors or stimulants, their effect on the germination of wheat seeds, grown in

petri dishes, was investigated under different NPs concentrations and was compared with that of

commercial Cu NPs as well as that of CE. The germinated wheat seedlings were tested for their

copper uptake, while their detoxification enzymes were studied to examine the phytotoxicity effect

of the biogenic NPs and the CE on them. In addition to the seed germination studies, pot experi-

ments were conducted where the wheat seeds were planted for 14 days after which a foliar spray of

CE or CuNPs (commercial and biogenic) was applied. Fig 1 depicts the outline of this work.

2. Materials and methods

2.1. Chemicals

For chemical analyses, phenol (BDH, England), sulfuric acid of concentration 98% (Penta,

Prague, Czech Republic) and Folin & Ciocalteu’s phenol reagent (Loba Chemie, Colaba,
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Mumbai, India) were used. For nanoparticle synthesis, copper sulfate pentahydrate

(CuSO4.5H2O) was purchased from Anachemia Ltd. (Montreal, Canada) and commercial

CuO nanoparticles (size < 50±7 nm as detected by TEM) were purchased from NanoTech

(Cairo, Egypt). For pot experiment, the fertilizer NPK (20/20/20) was purchased from Misr El-

Dawliya for Agricultural & Industrial Development Co. (Kwesna, Egypt) and dimethyl sulfox-

ide (DMSO) was purchased from Daejung Chemical & Metal Co., Ltd (Korea).

2.2. Sample collection

Fresh mangrove leaves (Avicennia marina (Forssk.) Vierh), were collected from Ras Moham-

med national park at southern Sinai coast (Gulf of Aqaba) during Winter 2017. Voucher speci-

mens of the plant were identified by Dr. Mohamed Massed Hejazi in the Botany Herbarium

lab of Marine Science Department, Suez Canal University, Ismailia, Egypt. Leaves were trans-

ferred into moist plastic bags, air-dried and ground in an electric mortar, then powdered sam-

ples were stored in the refrigerator at -20 0C for future use.

2.3. Aqueous crude extraction

Five grams of ground A. marina leaves were suspended in 100 mL of distilled water. The sus-

pension was heated for 20 min at 70˚C and subsequently filtered through a cheesecloth. The

filtrate was stored in the refrigerator for future use. Extraction was performed in triplicates

and the percent yield was 35.2% ± 1.5.

2.4. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of the

silylated primary metabolites in the crude extract

Primary metabolites analysis was carried out as follows. Briefly, 20 mg of extract were dissolved

with 5 mL of 100% methanol under sonication for 5 min with frequent shaking, followed by

Fig 1. Schematic outline of the work conducted in this study. FTIR: Fourier Transform Infrared Spectroscopy, GC-MS: Gas

Chromatography-Mass Spectrometry, XRD: X-ray Diffraction, EDX: Energy-dispersive X-ray spectroscopy, TEM: Transmission

Electron Microscopy, SEM: Scanning Electron Microscopy, UV-Vis: Ultraviolet-Visible spectrophotometry, Carb:

Carbohydrates, TPC: Total Phenolic Content.

https://doi.org/10.1371/journal.pone.0249764.g001
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centrifugation at 12,000 x g for 10 min. A volume of 100 μL of the methanolic extract was ali-

quoted in screw-cap vials and left to evaporate under a nitrogen gas stream until complete dry-

ness. For derivatization, 150 μL of N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA)

that was previously diluted to 1/1% with anhydrous pyridine was added to the dried methanol

extract and incubated at 60˚C for 45 min prior to analysis using GC-MS. Separation of silylated

derivatives was accomplished on a low-polarity fused silica column, Rtx-5MS (30 m length,

0.25 mm inner diameter, and 0.25 m film) [18]. Identification of silylated components was per-

formed by comparing their retention indices (RI) relative to n-alkanes (C6- C20), and their

mass spectral matching to that of the National Institute of Standards and Technology (NIST)

in Maryland, USA; as well as by using WILEY library database and standards when available.

The separation of the compounds onto the column was based on differences in their volatility

and polarity. Peaks were first deconvoluted using AMDIS software (2.70, NIST, Gaithersburg,

MD, USA, 2011) prior to mass spectral matching.

2.5. Synthesis of the biogenic copper nanoparticles

In a 250 mL Erlenmeyer flask, 10 mL of A. marina leaf extract was added to a 100-mL solution

of 4 mM of copper sulfate pentahydrate (CuSO4.5H2O) and the mixture was kept stirring for 3

h at 70˚C until its color changed from blue to green [19, 20]. The formation of the biogenic Cu

NPs was confirmed and its absorbance was monitored along with that of the commercial CuO

nanoparticles using a UV-Vis spectrophotometer (Varian, Cary 500 Scan, Palo Alto, Califor-

nia, USA). To obtain pure nanoparticles; the nano-solution was centrifuged (Heraeus-Christ,

GMBH336 Osteode Ma Harz No.39189, Hanau, Germany) for 10 min at -10˚C / 5500–6000

rpm. The precipitate was discarded and the supernatant was dialyzed to get rid of the

unreacted copper sulfate and obtain the purified nano-suspension.

2.6. Characterization of the biogenic copper nanoparticles

2.6.1. Fourier Transform Infrared (FTIR) spectroscopic analysis. CE and Cu NPs (bio-

genic and commercial) were mixed with potassium bromide to form 1-mm pellets. Analysis

was carried out using a Nicolet 380 Thermogravimetric Analysis/Fourier Transform Infrared

(TGA/FTIR) spectrometer range of 500 to 4000 cm-1 wavenumbers.

2.6.2. Transmission and Scanning Electron Microscopy with elemental analysis. The

size and surface structure of the biogenic nanoparticles were examined using Transmission

Electron Microscopy, TEM (Type JEOL-JEM-2100, Software: Gatan Digital Micrograph,

Akishima, Tokyo, Japan). Specimens of a few mgs of powdered samples were suspended in dis-

tilled water and were well dispersed in an ultrasonic bath for 15 min. Few drops of the suspen-

sion were poured onto previously prepared grids covered by a thin film of evaporated carbon,

and then the prepared grids were examined under the microscope.

Scanning Electron Microscopy, SEM (ZEISS- LEO SUPRA 55, Jena, Germany) was used to

examine the morphology of the biogenic nanoparticles, where a fine gold coat was deposited

on the samples under vacuum in a JFC-1100 sputter coater (JEOL) for 3 min at 15 mA. The

elemental composition of the biogenic nanoparticles was measured using Energy-dispersive

X-ray spectroscopy (EDX) onto a Bench Top SEM + EDX, JEOL, JCM 6000 plus, (Akishima,

Tokyo, Japan), under EDX conditions of 15 kV and a working distance of 19 mm.

2.6.3. Zeta potential and X-ray diffraction measurements. The Zeta potential of the bio-

genic and the commercial copper nanoparticles was determined using Dynamic Light Scatter-

ing (DLS) measurements (Malvern Zeta Sizer, Nano ZS, Malvern, UK), with a helium-neon

laser operating at 90˚ scattering angle and 633 nm wavelength at 25˚C.
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An X-ray diffractometer with Cu Kα radiation (Bruker D8 Discover, Karlsruhe, Germany)

at a wavelength of 1.54 A0 was used to examine the phase and constitution of the biogenic

nanoparticle powders which were precipitated on a silicon holder.

2.7. Chemical analysis of the crude extract and the biogenic Cu NPs

Total carbohydrate contents of CE and the biogenic Cu NPs were determined by the phenol-

sulfuric method using glucose as a standard. In addition, the total phenolic content was deter-

mined using the Folin-Ciocalteu reagent according to the method described by Singleton &

Rossi [21, 22], with minor modifications [23] and using Gallic acid as a standard.

2.8. Testing the biological activities of the crude extract, the biogenic and

the commercial Cu NPs

2.8.1. Seed germination assay. This assay was conducted to investigate the effect of CE and

Cu NPs (biogenic and commercial) on seed germination and seedling growth. Seeds of monocoty-

ledonous wheat plant (Triticum aestivum L.) of the Egyptian Sakha 93 cultivar were collected and

classified at the Agricultural Research Centre (ARC) in Egypt to be further examined. The test was

carried out according to the ASTM standard germination protocol (ATSM 2003) with slight mod-

ifications [24]. The CE, biogenic and commercial Cu NPs were serially diluted with distilled water

to the concentrations of 0.00 (control), 0.03, 0.22, and 0.43 mg/mL. Ten seeds of wheat were placed

on Whatman filter papers No. 10 in Petri dishes (10-cm diameter), and three mL of each concen-

tration were added per dish. Three replicates were used for each concentration such that the total

number of tested samples were 30 samples/treatment. All dishes were covered with a parafilm and

were incubated (Thermos Fisher incubator, Marietta, Ohio 45750, United States) at 25±2˚C in the

dark for 7 days; after which the root and shoot lengths were recorded. The dishes were monitored

regularly during the incubation period to ensure they were kept wet. The relative elongation %, rel-

ative germination rate and germination index were calculated as follows:

Relative germination rate ¼
Seeds germinated in tested sample

Seeds germinated in control

� �

� 100 ½1�

Relative shoot=root elongation ¼
Mean shoot=root length in tested sample

Mean shoot=root length in control

� �

� 100 ½2�

Germination index ¼
Relative germination rate � relative root elongation

100

� �

½3�

2.8.2. Antioxidant and oxidase enzymes assay for the crude extract and the biogenic Cu

NPs. This assay was used to quantify the enzyme activity in the wheat seeds that were germi-

nated in the petri dishes. The tests were only conducted for the seeds subjected to each of the

CE and the biogenic Cu NPs because the commercial Cu NPs did not show a significant effect

on the root and shoot growth as will be shown later.

2.8.2.1. Preparation of a crude enzyme extract. A crude enzyme extract was prepared by

grinding wheat seedlings (500 mg) that are 3–4 days old in a mortar with 5 mL of cold Na/K

phosphate buffer (0.1M) at pH 6.8. The homogenate was centrifuged for 20 min at 6000 rpm

and 4˚C. Then, the supernatant was used for measuring the activities of the following enzymes

spectrophotometrically (Jenway UV-Vis spectrophotometer, model no. 6405, Market Harbor-

ough, LE169AF, United Kingdom). The enzyme activity was expressed as μg /g fresh wt min-1.
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2.8.2.1.1. Peroxidase assay (EC.1.11.1.17). Peroxidase activity was measured by Guaiacol

method [25] with minor modifications. The 3-mL assayed mixture contained 2.2 mL of 0.1M

potassium phosphate buffer (pH 7.0), 0.5 mL of 0.018 mM guaiacol, 0.2 mL of H2O2 (30%)

and 0.1 mL of the crude enzyme extract. Color intensity was detected at 436 nm by recording

the changes in absorbance within 30 s to 3 min.

2.8.2.1.2. Catalase assay (EC.1.11.1.6). Catalase activity was measured using a hydrogen per-

oxide assay that is based on the formation of its stable complex with ammonium molybdate [26].

In this assay, 0.2 mL of the plant extract was incubated in a 1-mL reaction mixture containing 65

mM of hydrogen peroxide in 60 mM Na/K phosphate buffer, pH 7.4 at 25˚C for 4 min. The enzy-

matic reaction was stopped with 1 mL of 32.4 mM ammonium molybdate, and the concentration

of the yellow complex of molybdate and hydrogen peroxide was measured at 405 nm.

2.8.2.1.3. Ascorbic acid oxidase (AAO) assay (EC.1.10.3.3). Ascorbic acid oxidase activity

was measured according to a previously reported method [27]. To a quartz cuvette of a UV

spectrophotometer, one mL of 0.2 M phosphate buffer (pH 6.2), 0.2 mL of 1 mM ascorbic acid

and 0.2 mL of the enzyme extract were added. Distilled water was added to bring the final vol-

ume to 3.0 mL. The initial absorbance was recorded, and then the optical densities after 30 s to

3 min were measured in order to monitor the rate of disappearance of ascorbate at 265 nm.

2.8.2.1.4. Polyphenol oxidase (PPO) assay (EC.1.10.3.1). Polyphenol oxidase activity was

determined according to a previously reported method [28]. The assayed mixture constituted

3 mL of buffered catechol solution (0.01 M catechol, freshly prepared in 0.1 M phosphate

buffer of pH 6.0) along with one mL of the enzyme extract. Changes in absorbance were

recorded every 30 s to 5 min using a UV spectrophotometer at 495 nm.

2.8.3. Nanoparticles uptake in shoot and root of wheat seedlings. The copper uptake of

the wheat seedlings germinated in the petri dishes and subjected to each of the biogenic and

the commercial Cu NPs was determined using a Microwave Plasma Atomic Emission Spec-

trometer (MPAES, Agilent, Santa Clara, CA 95051, United States). The shoot and root ash

were separately placed into digestion vessels containing a mixture of 1: 0.2 of HNO3-H2O2 by

volume. These vessels were heated to 85˚C for 90 min to ensure digestion of the ash, then fil-

tered through a 0.45-μm nylon sealed filter membrane. The filtered sample was used for

(MPAES) analysis in shoots and roots at different concentrations of the biogenic and the com-

mercial Cu NPs.

The translocation factor (TF) was used to evaluate the translocation of copper from wheat

root to shoot [29]. This was calculated as the ratio of Cu concentration in wheat shoot to that

in plant root:

TF ¼
C plant shoot
C plant root

� �

½4�

2.8.4. Pot experiment. In a silt clay soil, Sakha 93 wheat seed (Triticum aestivum L.) was

planted during the 2018/2019 Winter season. It was thinned to 5 seedlings per pot. After 14

days of planting, a foliar spray of CE or Cu NPs was applied while irrigating the soil to keep it

at almost its field capacity for the growing season period. After 15 days from seedling, 2 g of

NPK fertilizer were added per pot area, since the rate of application of NPK fertilizer is 1 kg

per 1000 m2 of the field. NPK constitutes (20/20/20) by weight (on a dry basis) of Nitrogen/

Phosphorus/ Potassium elements. The process was repeated every week throughout the period

of the experiment (4 weeks). Foliar treatment was applied using each of CE and Cu NPs, with

concentrations of 0.00 (control), 0.06, and 0.43 mg/mL, along with a treatment volume of 15

mL. Fig 2 shows the steps of the pot cultivation process.
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2.9. Statistical analysis

The statistical analysis was performed using SPSS program, version 20 for Windows (SPSS Inc,

USA). A one-way analysis of variance (ANOVA) was conducted to test the significant differ-

ences (p< 0.05) between the treatment and control means. Duncan’s multiple range test

(DMRT) was also performed to determine the significant differences between the tested

groups.

3. Results and discussion

3.1. Chemical and phytochemical analyses

Chemical analysis of the CE and the biogenic Cu NPs showed that they have carbohydrate con-

tents of 50.3 ± 3.1% and 35.6 ± 3.2%, as well as phenolic contents of 27.5 ± 0.1 and 3.13 ± 0.05

mgGA/g, respectively. Obviously, the NPs have lower contents since they are capped by only a

layer of the extract. The carbohydrate content of CE was further confirmed by GC-MS analysis

as shown in S1 Fig and Table 1, where CE mainly constitutes the monosaccharaides of D-

Fig 2. Schematic outline of the pot cultivation. Physical and chemical characteristics of the soil used in this study as

well as the procedure used for Chlorophyll extraction and estimation of chlorophyll a, b and total chlorophyll contents

were previously reported by Essa et al. [20].

https://doi.org/10.1371/journal.pone.0249764.g002

Table 1. Identified contents of the crude extract (CE) as measured using metabolite profiling on GC/MS.

Peak no. rt� (min) m/z�� Area (%) Component

M1 4.6648 73 11.410 Propionic acid

M2 5.5986 147 9.118 Oxalic acid

M3 9.5346 205 5.963 Glycerol

M4 23.0428 217 18.510 D-Fructose

M5 23.2624 307 12.914 L- (-)-Sorbose

M6 23.3852 319 2.196 Ribitol

M7 23.5277 205 29.205 D-Mannose

M8 23.8882 73 5.473 D-Galactose

M9 23.8974 147 5.207 D-(+)-Talose

�retention time

��mass to charge ratio.

https://doi.org/10.1371/journal.pone.0249764.t001
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mannose (29.21%), D-fructose, (18.51%), L-sorbose (12.91%), D-galactose (5.47%) and

D-Talose (5.21%). To the best of our knowledge, this is the first report on the quantification of

sugars of Avicennia marina by GC/MS.

3.2. Synthesis and characterization of the biogenic Cu NPs

The formation of the biogenic Cu NPs was confirmed by UV-Vis spectroscopy and FTIR spec-

troscopy as depicted in (Fig 3A and 3B). Fig 3A shows the UV-visible spectra of the biogenic

Cu NPs along with their commercial counterparts. Both spectra exhibit an absorbance peak at

the range of 290–320 nm which is in good agreement with the previous literature reported for

Cu NPs synthesized through bio-reduction [30, 31]. To determine the functional groups pres-

ent in the layer capping the biogenic NPs, the FTIR spectrum of the NPs was analyzed then

compared to the spectra of CE and the commercial Cu NPs as depicted in Fig 3B. Clearly, CE

and both Cu NPs show bands in the range of 3500–3400 cm-1, corresponding to the stretching

vibration of the bound hydroxyl (O-H) groups. In addition, CE exhibits a band in the range of

1690–1630 cm-1 that could be attributed to the carbonyl stretch of the amide group, as well as

two peaks in the ranges of 1385–1380 cm-1 and 1200–1000 cm-1 that could be ascribed to ester

sulfate and acidic polysaccharides, respectively. Furthermore, the appearance of the vibration

band of Cu2O on the spectrum of the biogenic Cu NPs at 670 cm-1 confirms the formation of

Cu (I) oxide nanoparticles [32]. On the other hand, the vibration band of CuO shown on the

spectrum of commercial Cu NPs at 490 cm-1 indicates the presence of Cu (II) oxide nanoparti-

cles [32]. Comparing the spectra of CE and the biogenic Cu NPs, it can be deduced that most

of the peaks that were clearly exhibited by CE diminished in the Cu NPs implying that most of

the functional groups present in CE contributed to form the stabilizing layer onto the biogenic

Cu NPs. Previous studies reported that carbonyl groups from amino acid residues and proteins

have a strong ability to bind to metals and hence could contribute along with the polysaccha-

rides in capping the nanoparticles [33].

The composition and nano structure of the biogenic Cu NPs were examined by TEM,

XRD, SEM, and EDX as depicted in (Fig 4A–4D). The TEM micrograph of the biogenic Cu

NPs (Fig 4A) reveals regular homogeneous spherical shaped particles with an average diameter

of about 11.60 ± 4.65 nm which is similar to values reported in previous literature [34]. The

particles have a sponge like morphology with large surface area as shown in their SEM

Fig 3. UV-Vis spectra of the biogenic and commercial Cu NPs (a), together with the FTIR spectra of the CE, biogenic

and commercial Cu NPs (b).

https://doi.org/10.1371/journal.pone.0249764.g003
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micrograph (Fig 4C). The EDX elemental composition of the biogenic Cu NPs (Fig 4D) consti-

tutes 47.80% O, 8.86% C, 27.01% S and 16.34% Cu by mass. To determine the Cu phases pres-

ent in the structure of the NPs, XRD patterns (Fig 4B) of the biogenic and commercial Cu NPs

were studied. As clear from the spectrum of the biogenic Cu NPs, peaks are displayed at

approximately 11.46˚, 18.1˚, 22.9˚, 32˚ and 46˚ and hence could be attributed to a mixture of

Cu species [35–37], mainly the orthorhombic phase of Cu(OH)2 (JCPDS: #80–0656), and the

cubic phase of Cu2O (ICCD-JCPDS: #78–2076) which correspond to the crystallographic

planes of reflection of (020), (021), (111) and (200), respectively. Based on the presence of the

two major peaks of 18.1˚ and 22.9˚, the constituent ratio of Cu2O to Cu(OH)2 was estimated

from the relative percentage of each peak to be 2:1. Since the pH of the nano solution was 6–7

and according to Pourbaix diagram, copper oxide would more likely exist in the form of Cu (I)

species. Dynamic light scattering (DLS) measurements showed that the biogenic and commer-

cial Cu NPs are nearly neutral with a zeta potential of 1.02 and 0.02 mV, respectively at the

working pH range of 6–7.

3.3. Wheat seedlings root and shoot lengths

Fig 5A and 5B show the respective average root and shoot lengths of the germinated wheat

seeds (incubated in the petri dishes at 25±2˚C in the dark for 7 days) after their exposure to

CE, biogenic and commercial Cu NPs. Relative to the control, both CE and the biogenic Cu

NPs significantly enhanced the root and shoot lengths of wheat seedlings when applied at the

lower concentrations of 0.03 and 0.06 mg/mL. At these concentrations, the biogenic Cu NPs

had a stronger stimulant effect than that of CE on the root length of wheat seedlings, while it

showed a comparable effect to that of CE on the shoot length. In this respect, the root length

was promoted by 47.77and 52.22% relative to the control at 0.03 and 0.06 mg/mL of CE,

respectively; as opposed to 67.50 and 72.77% at the respective concentrations of the biogenic

Cu NPs. However, the effect was not signficant on the root and shoot lengths of the seedlings

upon their treatment with 0.22 mg/mL. Upon exposure to 0.43 mg/mL of CE, the root length

was unaffected while the shoot length decreased by 34.78% relative to the control. A previous

Fig 4. TEM image (a), XRD pattern (b), SEM image (c), EDX analysis (d) and of the biogenic Cu NPs.

https://doi.org/10.1371/journal.pone.0249764.g004

PLOS ONE Role of biogenic copper nanoparticles from Avicennia marina leaves in seed germination

PLOS ONE | https://doi.org/10.1371/journal.pone.0249764 April 15, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0249764.g004
https://doi.org/10.1371/journal.pone.0249764


study revealed that root elongation of Vulgaris phaseolus was promoted upon exposure to low

concentrations of 25-nm copper oxide nanoparticles [38]. The biogenic Cu NPs is the only

tested material that significantly inhibited the root and shoot lengths of wheat seedlings when

applied at the highest concentration of 0.43 mg/mL. This inhibitory behavior was previously

reported for copper nanoparticles (40–50 nm) that were applied on wheat seeds [39].

This dose dependent effect is in agreement with previous studies which recorded a signifi-

cant increase in root length of wheat seeds upon their exposure to low concentrations of Cu

NPs biosynthesized from Moringa oliefera, meanwhile an adverse effect was realized at higher

concentrations of Cu NPs that exceeded 0.075 mg/mL [40]. In addition, a similar dose depen-

dent effect has been reported in a previous study that examined the effect of copper oxide

nanoparticles (< 50 nm) on root and shoot elongation of soybean and chick pea seeds [15], as

well as another study that reported the impact of biogenic cuprous oxide nanoparticles (Cu2O

NPs) on Lycioersicum esculentum tomato seedling growth [41].

As for the commercial Cu NPs, they did not exhibit any significant effect on the root and

shoot lengths of wheat seedlings at all the applied concentrations. This behavior may be owed to

the difference in the oxidation states between the cupric oxide commercial Cu NPs (oxidation

state: +2) and the primarily cuprous oxide biogenic ones (oxidation state: +1). It is to be noted

here that the biogenic nanoparticles constitute mainly Cu (I) oxide as confirmed earlier by

XRD. In addition, the commercial Cu NPs do not have a capping layer of active functional

groups as in the biogenic Cu NPs. Furthermore, the biogenic Cu NPs have additional Cu(OH)2

species which might have enhanced the penetrability of the nanoparticles into the root [42].

3.4. % Relative shoot and root lengths and germination index of wheat

seedlings

Data pertaining to percent relative growth in shoot and root lengths of the petri dish- germi-

nated wheat seeds relative to the control is shown in (Fig 6A and 6B). Obviously, the CE and

Fig 5. Root (a) and shoot lengths (b) of the germinated wheat seeds after their incubation in CE, biogenic and commercial Cu

NPs.

https://doi.org/10.1371/journal.pone.0249764.g005
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the biogenic Cu NPs had an adverse effect on both shoot and root growth when applied at 0.22

and 0.43 mg/mL. The relative growth % of shoot and root decreased gradually with increasing

the concentration of the CE and the biogenic Cu NPs, recording their respective lowest values

of 65.22 ± 29.90 and 72.46 ± 18.78% alongside with 90.83 ±16.09 and 81.94 ± 11.70%, at the

highest employed concentration of 0.43 mg/mL CE or biogenic Cu NPs, respectively. Com-

mercial Cu NPs, on the other hand, showed no significant effect on both shoot and root

growth. Fig 6C depicts the germination index (GI) of wheat seedlings, which showed its

respective highest values of 117.09 and 123.61 upon exposure to the CE and the biogenic Cu

NPs at 0.06 mg/mL. At the highest applied concentration of 0.43 mg/mL for the CE and the

biogenic Cu NPs, GI recorded 59.39 and 37.82, respectively. Again, commercial Cu NPs had

no significant effect on the germination index of wheat seedlings due to the reasons alluded to

earlier.

From the above-mentioned results, it can be deduced that the biogenic Cu NPs could have

both positive and negative effects on seed germination and growth depending on the concen-

tration at which they are applied. This behavior was also observed with silver nanoparticles

that were applied to 11 species of wetland plant [43], while the reduction in germination index

with increasing the concentration of Cu NPs was also reported in previous work on wheat

seeds [44]. Similar inhibitory effects were observed on rice (Oryza sativa) (monocotyledon-

ous), when treated with copper oxide nanoparticles (< 50 nm) in both stages of seed germina-

tion and seedling growth due to the accumulation of Cu in root and leaf tissues. This was

indicated by the massive increase of Cu in roots (76–fold) and leaves (5.5–fold) in comparison

with the control [45], or the expression of OsCYCD and OsCDC2 genes which inhibited

growth [46], or alternatively significant reduction in lengths and weights of shoot and root

[47]. In addition, the adverse effect of Cu NPs could have been caused as a result of the oxida-

tive stress induced by the NPs due to their interference with the electron transport system,

affecting the biochemical pathways in the seeds through oxidation of proteins, lipids and

nucleic acids, or via changing in the phytohormones which alter plant metabolism, and/or

through regulation of reactive oxygen species (ROS) by producing antioxidant enzymes for

protection of the cellular and sub-cellular system from these cytotoxic effects [45, 46]. Several

factors could influence the toxicity of Cu NPs, including their applied concentration, particle

size, specific surface area, shape, stability and its physiochemical characteristics. Other

Fig 6. Effect of CE, biogenic and commercial Cu NPs on % relative growth of root (a) and shoot lengths (b) and

germination index of wheat seeds (c).

https://doi.org/10.1371/journal.pone.0249764.g006
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physiological and morphological factors related to the plant species could also be at play such

as plant type, age, life cycle, in addition to external growth factors as growth media, and dilut-

ing agents [48–51]. All these factors will dictate the extent of accumulation and uptake capacity

of the NPs onto the plant. The stimulatory effect of Cu NPs, on the other hand, could be owed

to the transfer of some NPs to the meristem where intensive cell division occurs. Thus, cell

growth was promoted. This is also supported by a study which showed that Cu NPs induce the

modulation of auxin related genes which play a significant role during the growth of apical

meristems [46, 52].

3.5. Detoxification enzymes activity in the petri dish-germinated wheat

seedlings

To gain more insight into the possible mechanism of inhibition, the effect of each of the CE

and the biogenic Cu NPs on the antioxidant and oxidase enzyme activities of peroxidase, cata-

lase, ascorbic acid oxidase, and polyphenol oxidase enzymes in wheat seeds was investigated.

(Fig 7A–7D) shows the antioxidant activities after applying the CE and the biogenic Cu NPs

on wheat seeds, once in a low concentration of 0.06 mg/L and again at a high concentration of

0.43 mg/mL. These two concentrations were chosen since the former stimulated the plant

growth while the latter inhibited it. Commercial Cu NPs, however, were not tested as they did

not show any significant effect on the seedlings growth and the germination index of the

wheat seeds as discussed earlier.

Peroxidase (POX) and catalase (CAT) are antioxidant enzymes that can detoxify H2O2 and

scavenge free radicals and oxygen intermediates [53]. As clear from Fig 7A, applying the low

concentration (0.06 mg/mL) of the CE or the biogenic Cu NPs to wheat seeds significantly

(P< 0.05) increased CAT activity relative to the control. In addition, the effect of the biogenic

Cu NPs is more pronounced than that of the CE at the low concentration. This behavior is

consistent with the promotion in root and shoot growth observed at this concentration. On

Fig 7. Effect of CE and Cu NPs on CAT (a), POX (b), PPO (c) and AAO (d) activities in wheat germinated seeds (μg/g fresh wt

min-1) at the 4th day of germination.

https://doi.org/10.1371/journal.pone.0249764.g007
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the other hand, applying the high concentration (0.43 mg/mL) of CE reduced the activity,

while employing the same concentration of Cu NPs did not significantly affect the activity rela-

tive to the control. This again is in agreement with the inhibition of root and shoot exhibited at

this concertation. A similar dose-dependent effect was previously reported for TiO2 NPs on

CAT enzyme during the seed germination of onion [54]. As for POX activity shown in Fig 6B,

it decreased significantly relative to the control upon the application of either the low or high

concentration of CE, or the high concentration of Cu NPs. A similar inhibitory effect for chito-

san NPs in reducing POX activity of broad beans was previously reported [55].

The effect of each of the CE and the biogenic Cu NPs on the activities of PPO and AAO

enzymes is shown in (Fig 7C and 7D). The high concentration of Cu NPs (0.43 mg/mL) signif-

icantly (P< 0.05) enhanced PPO and AAO activities in the wheat germinated seeds as com-

pared to the control (Fig 7C and 7D), while the same concentration for CE did not

significantly affect the activities. This finding is in line with the seed germination results which

showed inhibition in seedling growth at the higher concentration of 0.43 mg/mL Cu NPs. The

phenolics oxidation reaction is enhanced by PPO in plants, and the relation between phenolic

content and PPO activity was reported to be inversely proportional in many plants, such as

watermelon and tomato plants subjected to heat and cold stresses [56]. Hence, increasing PPO

and AAO activities can result in decreasing the antioxidant activity and this might conse-

quently lead to growth inhibition.

3.6. Copper uptake and translocation factor in the petri dish-germinated

wheat seedlings

Fig 8A depicts the copper uptake in root tissue at different applied concentrations of the bio-

genic and the commercial Cu NPs. Relative to the control, the copper uptake increased with

increasing the concentration of the biogenic as well as the commercial Cu NPs. It is to be

noted that the copper detected in the control is the copper mineral already present in the plant

[57]. A respective increase of 1.57 and 1.36–fold in the Cu content was observed in the root

treated with 0.43 mg/mL of the biogenic and the commercial Cu NPs as compared to the con-

trol. This finding is in agreement with a previous study conducted on copper oxide nanoparti-

cles taken up in Oryza sativa leaves [58]. The copper uptake in roots treated with 0.43 mg/mL

of the biogenic Cu NPs (467.06 ± 6.89 mg/kg) is greater than that observed in roots treated

Fig 8. Cu uptake in wheat seedlings (a) and Translocation factor of wheat seedlings (b).

https://doi.org/10.1371/journal.pone.0249764.g008
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with the commercial Cu NPs (403 ± 3.48 mg/kg). This might explain the enhancement in root

lengths observed earlier (Fig 6A and 6B) in addition to the stimulation in the activities of the

antioxidant enzymes of CAT and POX (Fig 7A and 7B). Previous work reported that copper is

a necessary element for plant growth (micronutrient), since it stimulates numerous enzymes

and has a role in the synthesis of RNA, therefore it promoted the seedlings growth at a less

than 50 μM concentration [59]. Other studies attributed the stimulation of seed germination

by NPs to the increase in the expression levels of a gene encoding catalase, and suggested that

CAT is the vital enzyme that controls the recovery of seed vigor in aged seeds [60]. On the

other hand, applying the higher concentration of 0.43 mg/mL of the biogenic Cu NPs signifi-

cantly decreased shoot and root lengths due to the higher accumulation of Cu in the roots as

well as the higher PPO and AAO enzyme activities (Fig 6C and 6D) obtained relative to the

control.

The translocation of copper from wheat root to shoot is shown in (Fig 8B). Obviously, TF

of Cu was less than unity (<1) in all treatments which explains the lower concentrations of Cu

observed in shoots than roots as shown in (Fig 8B). The root has the ability to accumulate

some metals to protect the aerial parts (edible parts) besides its main functions of fixing the

plant in the soil and absorption of water and dissolved minerals [61].

3.7. Chlorophyll contents in the wheat leaves treated with foliar spray

Fig 9 shows the contents of chlorophyll a, b and total chlorophyll in wheat leaves upon their

treatment with a foliar application of CE and biogenic Cu NPs. As clear from the figure, chlo-

rophyll a, b and total chlorophyll contents of CE were insignificantly changed as compared to

the control at a concentration of 0.06 mg/mL, recording 2.80, 1.94, and 4.74 mg/g fresh weight

after 21 days from application. A previous study has reported similar trends where the effect of

low concentrations of cyanobacterial extracts on chlorophyll b of lettuce plants was examined

during two different seasons [62]. Similarly, the treatment with biogenic Cu NPs followed the

same behavior as that of CE at the same concentration resulting in 3.02, 2.15, and 5.17 mg/g

fresh weight of chlorophyll a, b, and total chlorophyll contents, respectively after 21 days from

application. This behavior resembles that previously reported for the effect of Fe3O4 nanoparti-

cles (25 nm) on chlorophyll (a) and total chlorophyll contents of Rocket (Eruca sativa) at con-

centrations of 1 and 2 mg/L after 5 weeks from the application [63].

Fig 9. Chlorophyll a, b and total chlorophyll contents upon exposure to CE and Cu NPs.

https://doi.org/10.1371/journal.pone.0249764.g009

PLOS ONE Role of biogenic copper nanoparticles from Avicennia marina leaves in seed germination

PLOS ONE | https://doi.org/10.1371/journal.pone.0249764 April 15, 2021 14 / 20

https://doi.org/10.1371/journal.pone.0249764.g009
https://doi.org/10.1371/journal.pone.0249764


On the other hand, the previous growth parameters in wheat leaves decreased insignif-

icantly at the highest concentration of 0.43 mg/mL of CE. Meanwhile, treatment with biogenic

Cu NPs showed an inhibitory effect on chlorophyll a, b, and total chlorophyll at the same con-

centration since it reduced the chlorophyll a, b and total chlorophyll contents relative to the

control by 16.85, 26.42, and 20.69%, respectively. The inhibitory effect of Cu NPs was previ-

ously examined when studying the impact of 1 mg/L of CuO nanoparticles on total chlorophyll

content, as well as chlorophyll (a) and (b) of Arabidopsis thaliana seedlings [64].

This current study of biogenic Cu NPs highlights the dose-dependent effect of the nanopar-

ticles in both seed germination and foliar application. Similar findings were reported for the

effect of copper oxide nanoparticles on seedlings lengths, germination percentage, and chloro-

phyll contents of soybean (Glycine max (L.) [65]. Racuciu and Creange [66] found that the

content of chlorophyll in maize plants was enhanced at a low concentration of Ag NPs (10–50

μL/L), but the chlorophyll content was reduced with a high concentration treatment of NPs. In

addition, Gohari et al. [67] found that the high concentration (i.e, 200 mg/L) of titanium diox-

ide nanoparticles (TiO2 NPs) decreased the chlorophyll content of Dracocephalum moldavica
seedlings as opposed to the lower concentration (i.e, 100 mg/L), which enhanced the pigment

content.

The nanoparticles were proposed to have the ability to penetrate the coat of the seeds and

enhance the uptake and use of water. Consequently, the enzyme systems would be stimulated,

and the seed germination and growth would be improved [68]. Additionally, Suriyaprabha

et al. [69] explained the role of nano-SiO2 in enhancing maize germination by providing better

growth conditions such as nutrients, pH, and conductivity. In another study, Lu et al. [70]

owed the enhancement in soybean seed germination by nano-SiO2 and nano-titanium dioxide

(nano-TiO2) to the improvement in the nitrate reductase activity. This result was confirmed

by Yang et al. [71] and Mishra et al. [72] who found that TiO2 NPs controlled the activity of

the nitrogen metabolism enzymes. Nitrate reductase, glutamate dehydrogenase, glutamine

synthase, and glutamic-pyruvic transaminase supported the plants’ uptake of nitrate and aided

in the conversion of inorganic nitrogen to organic nitrogen which forms protein and chloro-

phyll, and this probably increased the fresh and dry weights of the plant. In addition, the nano-

particles of metals can stimulate the efficacy of photosynthetic systems and their chemical

energy production, since the chlorophyll in the reaction center combines with metal nanopar-

ticles as Ag or Au, forming a unique hybrid system. This new system may produce more

excited electrons by plasmon resonance [73].

However, the tendency of the NPs to penetrate walls and interact with cellular structures is

owed to their properties as high reactive surfaces and small size. Therefore, they provide cellu-

lar capacity and genetic toxicity by oxidative stress introduction [74]. The inhibitory effect

exhibited by the high doses of nanoparticles may be related to their phytotoxicity, which is cor-

related to the dissolution of toxic ions from the NPs [75], production of radicals through NPs

reactions with plants, or direct reactions of NPs with plants [76]. Previous work also reported

that Cu nanoparticles inhibit the growth of root hairs; these being important for the uptake of

immobile nutrients such as phosphorus [74]. To sum up, plant nanotoxicity may depend on

the dose, species of plant, and treatment conditions (substrate, temperature, and

environment).

4. Conclusion

Biogenic Cu NPs of Cu(OH)2 and Cu (I) oxide species were successfully synthesized using the

crude aqueous extract of A. marina. The nanoparticles exhibited a dose-dependent effect on

the growth of wheat seedlings. Applying low concentrations of the biogenic Cu NPs onto the
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seedlings enhanced their growth, while treating the seedlings with high concentrations of the

nanoparticles suppressed the seedling growth relative to the control. At 0.43 mg/mL, the root

and shoot growth was inhibited relative to the control by 81.94 ± 11.70 and 72.46 ± 18.78%,

respectively. Further in foliar application, the chlorophyll content was either enhanced or

inhibited depending on the concentration of Cu NPs which was applied on the wheat leaves

(21-days old). Low Cu NPs concentration (0.06 mg/mL) had the tendency to improve the chlo-

rophyll content but the higher one (0.43 mg/mL) suppressed it. These results are consistent

with those of seedling growth. Copper uptake by the petri-dish germinated wheat seedlings

was also dose dependent; and it reached its maximum value, 467.06 ± 6.89 mg/kg at the highest

applied concentration of the biogenic Cu NPs (0.43 mg/mL) with a translocation factor of less

than unity indicating the accumulation of Cu in the root. The impact of the biogenic Cu NPs

on seedling growth was compared to that of the commercial Cu NPs which showed no signifi-

cant effect on the growth of shoot or root relative to the control. This was attributed to the dif-

ference in the nature of the Cu species present in the biogenic and commercial nanoparticles.

The inhibition of wheat seedling growth by the biogenic Cu NPs may be related to the activity

of the antioxidant enzymes of catalase, peroxidase, ascorbic acid oxidase and polyphenol oxi-

dase and their role in the antioxidant detoxification. The phytotoxicity of the biogenic Cu NPs

on seed germination and plant growth, when applied at a high concentration, suggests their

potential to be utilized as natural herbicides whose action can be promoted by inhibition of

the peroxidase enzyme activity and enhancement of the ascorbic acid oxidase and polyphenol

oxidase activities. However, they can also be used to stimulate seedling growth when applied at

low concentrations.
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