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Abstract: E. coli O157:H7 is a pathogenic bacterium producing verotoxins that could lead to serious
complications such as hemolytic uremia syndrome. Fast detection of such pathogens is important.
For rapid detection, aptamers are quickly gaining traction as alternative biorecognition molecules
besides conventional antibodies. Several DNA aptamers have been selected for E. coli O157:H7.
Nonetheless, there has not been a comparative study of the binding characteristics of these aptamers.
In this work, we present a comprehensive analysis of binding characteristics including binding
affinity (Kd) and binding capacity (Bmax) of DNA-based aptamers for E. coli O157:H7 using qPCR.
Our results show that aptamer E18R has the highest binding capacity to E. coli 157:H7 and the highest
specificity over non-pathogenic E. coli strains K12 and DH5α. Our study also finds that the common
biotin-tag modification at 5′ end typically changes the binding capacity significantly. For most of
the selected aptamers, the binding capacity after a biotin-tag modification decreases. There exists
a discrepancy in the binding capability between the selected aptamer and the aptamer used for
detection. Our study also shows that a lower concentration of Mg2+ ions in the binding buffer leads
to a decrease in the binding capacity of E17F and E18R, while it does not affect the binding capacity
of S1 and EcoR1.

Keywords: DNA aptamers; E. coli O157:H7 detection; aptamer binding characteristics; biotin modifi-
cation; ionic buffer strength

1. Introduction

Escherichia coli (E. coli) is a gram-negative bacterium which forms the normal flora
in human and animal gastrointestinal tracts [1]. While most strains are harmless, some
strains could be harmful such as Shiga toxin producing E. coli (STEC), of which E. coli
O157:H7 is the most important serotype due to its involvement in several outbreaks [2]. E.
coli O157:H7 produces verotoxins that cause severe damage to the lining of the intestines,
leading to bloody diarrhea. In more vulnerable groups, such as young children and
elderly, verotoxins could develop more serious conditions as hemolytic uremia syndrome
(HUS) [3,4]. According to the WHO, 10% of people infected with STEC could develop
HUS.

Although antibodies have been widely used in the detection of pathogens, the need
for a portable, fast and low-cost detection instrument has directed research in recent
years towards exploring alternative biorecognition molecules like aptamers. Aptamers are
oligonucleotides, DNA or RNA, capable of binding to target molecules based on their nu-
cleic acid sequences that fold into the three-dimensional structures. The three-dimensional
structure is also dependent on the binding conditions used (e.g., temperature and ionic
concentration) [5–7]. The use of aptamers as alternatives to antibodies in biorecognition
and detection has grown rapidly due to their advantages, such as ease of synthesis, low
cost, no or minimum variation among batches and long shelf life. Aptamers are also easy
to modify chemically, making them more versatile [8].
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Using the SELEX technique [9], aptamers for various pathogens have been actively
searched for in recent years [10–12]. Active research has been performed for E. coli O157:H7
as well [13–15]. Besides the search, some of these studies also incorporated the selected
aptamers with biosensors based on different sensing principles such as quartz crystal
microbalance (QCM), fluorescent based detection using quantum dots [14,15]. Most of
these studies have either focused on the selection of aptamers or their application in
biosensors. None of them has systematically studied the binding characteristics of the
selected aptamers.

The dissociation constant (binding affinity-Kd) and the maximum binding capacity
(Bmax) are the two most important parameters for quantifying the aptamers binding to a
target [16]. Their characterization relies on the precise measurement of the associated
concentrations. Different methods have been applied to perform such measurement,
such as flow cytometry [13], quantitative PCR [17], fluorescent spectroscopy [18], En-
zyme Linked Oligonucleotide Assay (ELONA) [19] or custom designed biosensors [14].
Also, these binding characteristic measurements were often performed under different
conditions that could lead to analytical difficulties in their application into other biosen-
sors [20]. Aptamer binding is sensitive to the ionic environment [21,22]. Importantly, in
most of these measurements, aptamers were attached to labels for quantification. As the
binding is sensitive to the aptamer structure, the labels could affect the measurements
significantly [23,24]. Thus, the reported binding characteristics vary significantly. In
this work, we perform a systematic characterization of DNA-based aptamers for E.
coli O157:H7 based on real time or the quantitative polymerase chain reaction (qPCR).
The study included all major E. coli O157:H7 DNA aptamers reported in the literature
AM6 [13], S1 [14], EcoR1 [15], E17F, and E18R [25]. E17F and E18R have also been used
to develop biosensors [26–28]. The list of DNA based aptamers used in this study along
with their reported Kd values for E. coli O157:H7 are given in Table 1. Quantitative PCR
(qPCR) is a simple, sensitive and quantitative technique and is considered the golden
standard in quantitative analysis of nucleic acids [29]. The experiments were performed
under uniform condition. The effect of biotin-tag modification on the 5′ end of the ap-
tamer on binding characteristics of the aptamers was studied. The effect of monovalent
and divalent cations, K+ and Mg2+, in the binding buffer on the binding characteristics
of these aptamers was also studied. The nonspecific binding characteristics of these
aptamers against other non-pathogenic strains of E. coli (K12 and DH5α) were also inves-
tigated. We believe this study provides a clearer picture about the binding performance
of aptamers with E. coli O157:H7. This study could be important in the development of
new aptamers and their application to biosensors.
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Table 1. Aptamers analyzed in this study with its primers.

bp Reported Kd Sequence Primers

AM6 [13] 117 107.6 ± 67.8 pmol

CGTGATGATGTTGAGTTGGGGTGAT
GGGTGCATGTGATGAAAGGGGTT

CGTGCTATGCTGTTTTGTC-
TAATAATACTA

GTCCTTGCCAAGGTTTATTC
CAGTAATGCCAACCAATCT

FP-

CGTGATGATGTTGAGTTG RP-

AGATTGGTTGGCATTACTG

S1 [14] 90 10.30 nM

CAGTCCAGGACAGATTCGCGAG
TGGTCGTGGTGAGGTGCGTG-

TATGGG
TGGTGGATGAGTGTGTGG

CCACGTGGATTTCATTCAGCGATT

FP-CAGTCCAGGACAGATTCGCGAG

RP-
AATCGCTGAATGAAATCCACGTG

EcoR1 [15] 88 41 ± 2 nM

ATTAGTCAAGAGGTAGACGCACAT
ATCATCACAGCCGCAGCCGCCC-

CTTCCATTC
ACATGCCAGCTTCTGG
TCGTCGTGACTCCTATA

FP-
ATAGGAGTCACGACGACCAGAA

RP-
ATTAGTCAAGAGGTAGACGCACATA

E17F [25] 72

ATCCGTCACACCTGCTC
TATCAAATGTGCAGATATCAA-

GACGATTTGT
ACAAGATGGTGTTGGCTCCCG-

TAT

FP-

ATCCGTCACACCTGCTCT RP-

ATACGGGAGCCAACACCATC

E18R [25] 72
ATACGGGAGCCAACACCATTCTATCGT
TCCGGACGCTTATGCCTTGCCAT
CTACAGAGCAGGTGTGACGGAT

FP-

ATACGGGAGCCAACACCA RP-

ATCCGTCACACCTGCTCT

RS 80

ATCCAGAGTGACGCAGCATGCTTAA
GGGGGGGGCGGGT-
TAAGGGAGTGGG

GAGGGAGCTGGTGTGGACACG-
GTGGCTTAGT

FP-

ATCCAGAGTGACGCAGCA RP-

ACTAAGCCACCGTGTCCA

2. Results and Discussion
2.1. Qualitative Analysis

After the qualitative PCR experiment, S1, EcoR1, E17F, and E18R showed single
amplification bands of 90 bps, 80 bps, 72 bps and 72 bps respectively on 1.5% agarose gel
after electrophoresis. However, the amplification product of AM-6 showed an additional
band at 500 bps as shown in Figure 1. A possible explanation is that the primers of AM-6
amplify E. coli genomic DNA of around 500 bps. In order to confirm the binding of AM-6
primers to bacterial genomic DNA, negative control experiments as described in Section 3.3
were performed without the step of cell-aptamer binding. By performing PCR with selected
primers on this binding-free assay, it is expected that no significant band can be found in
the gel electrophoresis as no bound aptamers should be present in these assays. This is
true for all listed aptamers except AM-6, which confirmed the nonspecific amplification of
genomic DNA of E. coli O157:H7 with AM-6 primer. Hence, aptamer AM-6 was excluded
from further analysis. RS also showed an amplification band suggesting some degree of
binding to bacterial cells.
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strongest signal for biosensors. EcoR1 shows the least amount of binding sites.  

Figure 1. Agarose gel electrophoresis (1.5%) of aptamer amplicons by PCR lane 1—20 bp DNA
marker, lane 2—AM6 aptamer, lane 3—S1 aptamer, lane 4—EcoR1 aptamer, lane 5—E17F aptamer,
lane 6—E18R aptamer.

Minimum free energy structure of the aptamers predicted by mfold software are given
in Supplementary Figure S1 (binding buffer ionic conditions at 37 ◦C). Similar structures
have also been reported by refs. [13–15]. The difference in the minimum free energy of
all the aptamers is not very considerable. Additionally, sequence homology analysis did
not show any conservative motifs in all the aptamers (Supplementary Figure S2). All the
aptamers present bulges and hairpin loop structures.

2.2. Quantitative Analysis (Kd Analysis by qPCR)

The quantitative study was performed by qPCR. As opposed to Scathard plots, non-
linear regression was used to measure Kd by fitting the data to the equation below [16]:

[BA] =
[A]Bmax

Kd + [A]

where Bmax is defined as the maximum binding capacity when all receptors are fully
saturated with aptamers. [BA] is the concentration of the bound aptamer, while [A] is the
incubated aptamer concentration.

2.2.1. Quantitative Binding Analysis with E. coli O157:H7

The binding affinity and capacity of the selected aptamers (S1, EcoR1, E17F, and E18R)
with E. coli O157:H7 (≈108 cells) were measured. Aptamer concentrations ranging from
0.1 nM to 1000 nM were incubated with E. coli O157:H7. Figure 2 shows the binding
isotherms of the selected aptamers for target E. coli O157: H7. The Kd and Bmax values, as
derived from the fitting curve technique are listed in Table 2. Compared to the random
sequence control, all the aptamers showed higher binding to the bacterial cells. The random
sequence has a Bmax of 0.6 nM. This confirms that the binding of the aptamers to the target
is based on the formation of secondary structures. Approximate binding sites per bacterial
cell were calculated using the Bmax value and are listed in Table 2. Among the selected
aptamers, E18R exhibited the highest Bmax (=54.3 nM). The lowest value is shown by EcoR1
(=3.4 nM). As compared to the random control sequence, these values are higher by a factor
of approx. 85× and 5×, respectively. The relative Bmax as compared to the control for the
rest of the aptamers are listed in Table 2. S1 shows the lowest Kd of 25.7 nM, while E18R
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has the highest Kd of 151 nM. On average, an E. coli O157:H7 cell has thousands of binding
sites for these aptamers.
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Figure 2. Binding isotherms for aptamers and random sequence (RS) with E. coli O157:H7.

Table 2. Measured dissociation constant (Kd) and binding capacity (Bmax) values for the four selected
aptamers for E. coli O157:H7 and their comparison with the Bmax of the RS. Data represent Mean ±
SD of 3 independent experiments.

Aptamer Kd (nM) Bmax (nM) Binding Sites Per
Bacteria

Bmax
Compared to RS

S1 25.7 ± 12 6.61 ± 1.1 1980 10×
EcoR1 45.5 ± 17 3.42 ± 0.5 1030 5×
E17F 135 ± 72 30.17 ± 4.4 9050 47×
E18R 151 ± 80 54.30 ± 10 16,290 85.64×

Each of these sites may possess a different binding affinity. Thus a higher Bmax does
not necessarily translate into a higher binding affinity (low Kd), and vice versa [17,30].
E18R shows the largest amount of binding sites on the cell, which could correspond to the
strongest signal for biosensors. EcoR1 shows the least amount of binding sites.

In [14], Kd of S1 was measured to be 10.3 nM based on QCM, which is approximately
2.3× lower than our measurements. Nonetheless, measurements in [14] were made on
different QCM sensors due to the reusability issue, which showed larger variation range
than our measurements. Our measurements based on qPCR have a smaller error margin.

2.2.2. Non-Specific Aptamer Binding Analysis with E. coli K12 and DH5α

To evaluate the specificity of selected aptamers against nonspecific bacterial strains,
we tested their cross reactivity by performing binding assay against E. coli K12 and E. coli
DH5α. Both are commonly used non-pathogenic lab strains of E. coli. Figure 3 shows
the binding isotherms of aptamers against E. coli K12 and DH5α. The Bmax of each of the
aptamers for E. coli K12 and DH5α along with approximate binding sites per bacterial cell
are listed in Table 3. Comparative Bmax for E. coli O157:H7, K12 and DH5α are shown in
Figure 4. It is clear that both E17F and E18R show excellent specificity. The Bmax for E17F
against E. coli O157:H7 is about 3.4x and 2.7x higher than the values against E. coli K12 and
E. coli DH5α, respectively. Similarly, for E18R, the Bmax is 16.7× and 5.4× higher than the
values against E. coli K12 and E. coli DH5α, respectively.
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Figure 3. Binding isotherms for four DNA based aptamers with (a) E. coli K12 and (b) E. coli DH5α.

Table 3. Aptamer binding capacity (Bmax) with nonspecific E. coli. Data represent Mean ± SD of 3
independent experiments.

Aptamer
E. coli K12 E. coli DH5α

Kd (nM) Bmax (nM) Approx. Binding Sites/ Bacteria Kd (nM) Bmax (nM) Approx. Binding Sites/ Bacteria

S1 62.9 ± 27 6.41 ± 0.1 1920 114.2 ± 23 3.16 ± 0.1 940
EcoR1 75.2 ± 28 5.36 ± 0.1 1600 48.3 ± 24 2.45 ± 0.1 730
E17F 202 ± 116 8.78 ± 0.6 2630 87.7 ± 14 11.2 ± 0.4 3360
E18R 111.3 ± 49 3.54 ± 0.2 1060 95.5 ± 24 11.0 ± 0.5 3300
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Despite having high affinity, aptamers S1 and EcoR1 have relatively poor specificity.
The high cross reactivity can be explained by the fact that neither S1 nor EcoR1 used a neg-
ative selection round against these strains of E. coli during the cell SELEX process [14,15].
Non-specific interaction was also reported in the original publications against these bacte-
rial strains using dot blot assay [13].

As a result of epitope sharing among bacterial strains aptamers have high chances of
binding non-specifically to other microorganisms [15], making their thorough evaluation
important before incorporating into an assay, especially if the objective is to identify
pathogenic serotype or strain among the same species of micro-organisms. As can be
observed from the results obtained, all four aptamers show some degree of non-specific
interaction with K12 and DH5α strains of E. coli, which is highly likely due to the epitope
sharing in these bacterial strains.

2.3. Effect of Biotin Tag on Aptamer Binding to E. coli O157:H7

Chemical modifications can potentially affect the aptamer binding to their targets,
which makes the evaluation of each modification important [31,32]. Previous research
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showed that the binding affinity of aptamers can change significantly by attachment of
biotin tags. For example, in [24], aptamer (PA#2/8) selected for Protein A (a cell surface
protein in gram positive bacteria) showed decreased binding upon 5′ biotinylation whereas
the binding improved upon biotinylation at 3′. However, a 3′ biotin modification can
potentially affect primer binding during amplification reactions. To avoid this only 5′

biotinylation modification was selected for all the aptamers under study, in order to
evaluate the change in their binding capacities with E. coli O157:H7. Figure 5 shows the
associated binding isotherms.
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Figure 5. Binding isotherms for biotin tagged (5′) aptamers with E. coli O157:H7.

S1 showed a marked increase of about 2× in the binding capacity (Table 4), while the
Bmax decreased for all other aptamers. In the case of EcoR1, the Bmax is reduced to 1.8 nM
(0.5×), while as for E17F and E18R, Bmax are 9.8 nM (0.3×) and 8.4 nM (0.15×) respectively.
The Bmax and Kd for all aptamers with a biotin tag are listed in Table 4 Kd and Bmax of
aptamers with and without biotin tagged at 5′ end on E. coli O157:H7. Data represent Mean
± SD of 3 independent experiments in Table 4. Kd of EcoR1 with biotin tag was measured
in [15] to be 41 nM based on indirect ALISA. In [15], the measurement was performed with
extracted E. coli antigens coated in microtiter plates. In our study, aptamers were tested on
the cultured whole cells of E. coli O157:H7 directly. Our measured Kd is comparable to the
reported number.

Table 4. Kd and Bmax of aptamers with and without biotin tagged at 5′ end on E. coli O157:H7. Data
represent Mean ± SD of 3 independent experiments.

Aptamer
with Biotin without Biotin

Kd (nM) Bmax (nM) Kd (nM) Bmax (nM)

S1 25.7 ± 12 13.76 ± 1.94 57.6 ± 10.6 6.61 ± 1.1

EcoR1 45.5 ± 17 1.85 ± 0.03 33.7 ± 2.5 3.42 ± 0.5

E17F 135 ± 72 9.8 ± 0.9 51.2 ± 5.3 30.17 ± 4.4

E18R 151 ± 80 8.44 ± 0.5 45.5 ± 3.7 54.30 ± 10

Except S1, the biotin tag appears to hinder the binding of aptamers to the target
sites. This is very important as most aptamers are selected through the SELEX or cell-
SELEX process without the biotin tag, while they are often used in biosensors with a biotin
tag [28,33]. The understanding of this discrepancy of binding is critical for the design of
biosensors.

2.4. Effect of Ionic Strength on Aptamer-Target Binding

The effect of ionic strength on aptamer-target binding was carried out using binding
buffers of different mono valent and divalent ion concentrations. Six buffers, listed in
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Table 5, were tested. The first two buffers only contain Na+ and K+ ions without any Mg2+

ion. Buffers 3–6 contain increasing concentration of Mg2+ ions ranging from 0.5 mM (Buffer
3) to 10 mM (Buffer 6). The aptamer concentration was fixed at 500 nM (incubated with
≈108 cells).

Table 5. Binding buffers with different ionic strengths.

Binding Buffer without Dibasic Salt Ions

Buffer 1—50 mM Tris-HCl Ph 7.5, 50 mM NaCl.
Buffer 2—50 mM Tris-HCl pH 7.5, 50 mM NaCl, 5 mM KCl.

Binding Buffer with Dibasic Salt Ions

Buffer 3—50 mM Tris-HCl pH 7.5, 50 mM NaCl, 5 mM KCl, 0.5 mM MgCl2.
Buffer 4—50 mM Tris-HCl pH 7.5, 50 mM NaCl, 5 mM KCl, 1 mM MgCl2.
Buffer 5—50 mM Tris-HCl pH 7.5, 50 mM NaCl, 5 mM KCl, 5 mM MgCl2.

Buffer 6—50 mM Tris-HCl pH 7.5, 50 mM NaCl, 5 mM KCl, 10 mM MgCl2.

For aptamers S1 and EcoR1, the absence of Mg2+ was not found to have a significant
effect on the binding capacity (Figure 6a,b). For S1, the addition of 5 mM K+ reduced the
binding capacity by about 5%. As Mg2+ concentration is varied from 0.5 mM to 10 mM,
the binding concentration increases by about 15%. In EcoR1, a similar effect was observed
with the addition of K+, while the increase in Mg2+ does not cause any significant change
in the binding capacity.
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Figure 6. Bound aptamer concentration for (a) S1 (b) EcoR1 (c) E17F (d) E18R with E. coli O157:H7 in buffers of different
ionic compositions (incubated aptamer concentration was fixed at 500 nM).

More significant changes were observed for E17R and E18R (Figure 6c,d). Without
Mg2+, the binding capacity of E17R decreases drastically to about 9.3 nM. As Mg2+ concen-
tration is increased, the binding capacity shows an upward convex trend with a maximum
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at 5 mM Mg2+ concentration (29 nM), following which, it starts to decrease. A similar trend
is observed for E18R, in which the binding capacity decreases to 6.8 nM without Mg2+ and
increases to a maximum of about 47 nM at 5 mM Mg2+ concentration. This trend suggests
that Mg2+ initially helps screen the charge of the aptamer chain (negatively charged due to
phosphate backbone), which allows binding to the negatively charged lipopolysaccharide
targets. This screening is most effective at 5 mM. After that, it seems to hinder the binding.

It is generally well acknowledged that the presence of cations in the binding buffer can
cause conformational changes in the aptamers and hence may result in a change in their
binding characteristics. The presence of divalent cations is known to stabilize the aptamer
secondary structure by screening the negative charge on the aptamer backbone [34]. The
interaction between metal cations and the aptamer nucleic acid backbone, usually occurs
either at the negatively charged phosphate group or the aromatic base in the aptamers.
Alkali metals are capable of binding to both, while alkaline earth metals are known to
interact preferably with the phosphate groups [21,35].

3. Materials and Methods
3.1. Bacterial Strains and Culture Conditions

The bacterial strain E. coli O157:H7 (ATCC 43888) was used as the target bacterial
strain. It was cultured in tryptone soy broth (TSB) medium (CM0129, Oxoid, Hong Kong).
Whole bacterial cells were cultured overnight at 37 ◦C with constant shaking, overnight
culture was seeded into fresh TSB medium and cells were grown to an approximate
concentration of 108 CFU/mL. One ml bacterial culture in centrifuge tubes was washed
twice by centrifugation (Hitachi Koki, Himac CT15E, Hong Kong) at 5500 rpm for 5 min
using 1 × phosphate buffer saline (PBS–D8527, Sigma-Aldrich, Hong Kong). Washed
bacterial cells were used for further binding study. E. coli K12 and DH5α were cultured
in Luria–Bertaini (Affymetrix) media under the same growth conditions as given for E.
coli O157:H7. These strains of E. coli were used for studying the non-specific binding of
aptamers.

3.2. Aptamers and Primers

Five DNA based aptamers were selected from literature. These aptamers previously
were selected specifically for E. coli O157:H7. The aptamer sequences and their primer
sequences (as used in reported publications) are listed in Table 1. with their reported Kd
values. All the aptamer and primer sequences were ordered from IDT Singapore. Before
incubating with washed bacterial cells, the aptamers were dissolved in binding buffer
(50 mM Tris-HCl-pH 7.5, 5 mM KCl, 50 mM NaCl, 1mM MgCl2) to a final volume of 200 µL
in different concentrations. The dissolved aptamers were denatured by heating at 95 ◦C
for 10 min and let to sit at room temperature for 30 min in order to allow them to renature
into their secondary structures. As a control, an 80-base-pair random sequence (RS) was
included in the binding experiments at the same conditions. Its sequence is also listed in
Table 1.

3.3. Aptamer–E. coli Binding Assay

Aptamer–E. coli binding—Washed bacterial cells prepared as mentioned in Section 3.1
were incubated with different concentrations of renatured aptamers ranging from 1 nM to
1000 nM for 1 h at room temperature under constant agitation of 600 rpm (Thermomixer,
Eppendorf, Hong Kong). Bacterial cells undergoing aptamer binding were washed three
times by centrifugation at 5500 rpm for 5 min each with 1 × PBS. Thorough washing was
carried out for 1 h per wash. To ensure proper washing to remove the unbound aptamers,
bacterial pellets were dislodged using a Hula Mixer (Thermo Fischer, Scientific, Hong
Kong). All binding assays were performed in triplicates independently.

Elution of bound aptamers—To elute bound aptamers from E. coli, cells were resus-
pended in 100 µL of DNase free water and heated at 95 ◦C for 10 min, followed by cooling
on ice for 15 min. The cell suspensions were centrifuged at 13,000 rpm for 30 min to
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harvest bound aptamers in the supernatant. The supernatant was then transferred in a
fresh microcentrifuge tube, followed by the addition of 0.3 M (final concentration) sodium
acetate buffer pH 5.2 (S7899, Sigma-Aldrich, Hong Kong), and 3 volumes of chilled absolute
ethanol (Sigma-Aldrich). The aptamers precipitation in ethanol was allowed to occur by
storing at 4 ◦C overnight followed by centrifugation at 13,000 rpm for 20 min at 4 ◦C to
pellet down the aptamers. Ethanol in the supernatant was drained off. Remaining salts
were washed off by 70% ethanol (twice). Pelleted aptamers were air dried and resuspended
in 50 µL DNase free water for qualitative and quantitative analysis.

Negative Control—The negative control is designed by processing bacterial cells that
were not incubated with any aptamer following the same procedure. The pellets obtained
from these cells were used as negative controls and put through both qualitative (PCR) and
quantitative analysis (qPCR) along with cells from each binding experiment.

3.4. Qualitative Aptamer-Target Binding Analysis

Polymerase chain reaction (PCR)—PCR was carried out in a Veriti thermal cycler (Ap-
plied Biosystems, Hong Kong) in order to qualitatively analyse the binding of aptamers
to the target cells. The assays were performed in 25 µL PCR reaction volume, containing
12 µL PCR master mix (RR300A, Takara, Beijing, China), 1 µL template (bound aptamers),
1 µL forward primer, 1 µL reverse primer from 5 µM stock, rest of the volume was made up
with nuclease free water. The thermal cycling procedure starts with the initial denaturation
for 5 min at 95 ◦C and is followed by 30 rounds of amplification. Each round of operation
includes denaturation at 95 ◦C for 45 s, annealing at 55 ◦C for 45 s, extension at 70 ◦C for
45 s and final extension at 70 ◦C for 5 min.

Gel electrophoresis—Upon completion of PCR, the aptamer presence was checked on
a standard 1.5% agarose gel, stained with pico green for visualization of amplicons. The
gel was run in 1 × TAE (Tris acetic acid, EDTA disodium salt) buffer at 120 V for 40 min
along with the 20 bp DNA marker (3420A, Takara). The gel was visualized on a gel
documentation system (Bio-Rad’s Gel Doc XR+ system, Hercules, CA, USA).

3.5. Quantitative Aptamer-Target Binding Analysis (Kd Analysis)

Bacterial cells (≈108 bacterial cells/ml) were incubated with aptamers, prepared in
concentrations ranging from 0.1 nM to 1000 nM. Bound aptamers were recovered by ethanol
precipitation after washing off the unbound aptamers. The quantification of aptamers
bound to the cells was carried out by qPCR analysis (LightCycler 480 System, Roche Life
Science, Basel, Switzerland) using SYBR Green I chemistry (04887352001, Roce).

Ten µL qPCR reaction was set up containing 1 µL template (bound aptamers), 5 µL of
SYBR green qPCR Master mix (04887352001, Roche), 0.5 µL of 5 µM forward primer, 0.5 µL
of 5 µM reverse primer, and 3 µL of nuclease-free water. The reactions were carried out
in triplicates in 384 well plates. A melting curve analysis was performed from 55 ◦C to
85 ◦C to detect potential nonspecific products. The thermal cycling conditions followed
were the same as those followed for PCR analysis. Calibration curves were used for data
quantification by using known aptamer concentrations varying from 10−2 pmol to 10−6

pmol (Supplementary Figure S3). A separate calibration curve was plotted for all assays.
Saturation curves were plotted based on the qPCR data after the data was normalized

against the negative control. The Kd and Bmax of the aptamer were calculated by non-linear
regression analysis.

3.6. Specificity of Aptamers

To evaluate the cross reactivity of the four aptamers with other E. coli strains, the
binding assay was performed with E. coli K12 and DH5α. Both bacterial cells were cultured
in LB media under conditions as described earlier. The four aptamers included in the
study were incubated in the concentration ranges of 10 nM to 1000 nM, with bacteria
(≈108 bacterial cells). Binding analysis of the aptamers was done in a similar fashion using
qPCR as is described for target E. coli cells.
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3.7. Effect of Biotin-Tag Modification on the Binding Efficiency of Aptamers

An analysis was set up to study the effect of the biotin tag on the binding affinity of
the aptamers to E. coli O157:H7. All the four aptamers under study were modified with
biotin at the 5′ terminus. The modified aptamers were directly ordered from IDT Singapore.
E. coli O157:H7 cells (≈108 bacterial cells) were incubated with different concentrations of
aptamers ranging from 10 nM to 1000 nM. The rest of the protocol for binding was similar
to that given in above.

3.8. Effect of Ionic Strength on the Aptamer-Target Binding

The effect of mono and dibasic salt ion strength on the binding characteristics of
aptamers was analyzed by changing the concentration of KCl and MgCl2 in the bind-
ing buffer. Five hundred nM aptamers were incubated with bacterial culture grown
(≈108 bacterial cells). A total of six binding buffers in two sets as shown in Table 5 were
prepared for this study.

4. Conclusions

In this paper, we presented a comprehensive study of DNA-based aptamers for E.
coli O157:H7. Five DNA aptamers selected from the literature were compared. Among
the five aptamers compared, AM6 was excluded from the study as its primer showed
non-specific binding to E. coli genomic DNA. Aptamer E18R showed the highest binding
capacity (Bmax) to E. coli O157:H7, while EcoR1 showed the lowest dissociation constant
(Kd). E18R showed the lowest binding capacity to other strains of E. coli compared to E.
coli O157:H7 (maximum specificity).

Our study also showed that aptamer binding characteristics could be affected signifi-
cantly with the biotin tag. With a biotin modification at the 5′ end of the aptamer, binding
capacities were seen to decrease in all the selected aptamers, except S1. The difference in
ionic strength of the binding buffer was also evaluated. Mg2+ was found to be critical for
the binding of E17F and E18R, while S1 and EcoR1 were not sensitive to Mg2+.

Supplementary Materials: The following are available online, Figure S1: Minimum free energy
structures predicted by mfold softwareat 37 ◦C(binding buffer conditions were similar to the one-
sused in this study)for aptamers (a) AM6 (b) S1(c) EcoR1(d) E17F(e)E18R. Free energies predicted
by the software for these structures from a–e are, −5.32 kcal/mol, −6.47 kcal/mol, −3.12 kcal/mol,
−4.56 kcal/mol, −4.49 kcal/mol, respectively, Figure S2: Using Multiple Sequence alignment soft-
ware MUSCLE by Ensembl, 5 aptamer sequences were analysedfor sequence homology to find any
conservative motifs present, Figure S3: Representative calibration curves obtained using known ap-
tamer concentrations (10−6–10−2 pmoles) for the E.coli O7:H157 case (a)S1 (b)EcoR1 (c)E17F (d)E18R.
Separate calibration curves were obtained for the other E.coliand aptamer combinations, Figure S4:
Amplification curves obtained E.coli O7:H157 case (a)S1 (b)EcoR1 (c)E17F (d)E18R. The standard
(single value) as well as bound aptamer amplification curves(triplicates) are shown here.
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