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Abstract: Information transfer that characterizes the information feature variation can have a crucial
impact on big data analytics and processing. Actually, the measure for information transfer can reflect
the system change from the statistics by using the variable distributions, similar to Kullback-Leibler
(KL) divergence and Renyi divergence. Furthermore, to some degree, small probability events may
carry the most important part of the total message in an information transfer of big data. Therefore,
it is significant to propose an information transfer measure with respect to the message importance
from the viewpoint of small probability events. In this paper, we present the message importance
transfer measure (MITM) and analyze its performance and applications in three aspects. First,
we discuss the robustness of MITM by using it to measuring information distance. Then, we present
a message importance transfer capacity by resorting to the MITM and give an upper bound for the
information transfer process with disturbance. Finally, we apply the MITM to discuss the queue
length selection, which is the fundamental problem of caching operation on mobile edge computing.

Keywords: information transfer measure; small probability events; big data analysis and processing;
mobile edge computing (MEC); queue theory

1. Introduction

In recent years, due to the exploding amount of data, computing complexity for data processing
is growing rapidly. In particular, cloud data center traffic will jump up to one order of magnitude
by 2020 [1,2]. To some degree, the reason for this phenomenon seems to be that more and more
mobile devices such as smartphones, tablets or mobile Internet of things (IoT) devices are utilized
and the growing services of clouds are provided. In this context, it is necessary to dig out the
valuable information from the collected data. On one hand, computation technologies including cloud
computing and mobile edge computing (MEC) are needed for big data processing. On the other
hand, it is essential to develop more efficient technologies for big data analysis and mining, such as
distributed parallel computing, machine learning, deep learning, and neural networks, etc. [3–6].

As for data mining, the small probability events usually attract much more attention than the
large probability ones [7–10]. In other words, there exits higher practical value in the rarity of small
probability events. For example, in the anti-terrorist scenario, we just focus on a few illegal and
dangerous people [11]. Moreover, as for the synthetic identification (ID) detection, only a small number
of artificial identities for financial frauds should be paid more attention to [12]. In fact, it is challenging
and significant to measure and mine small probability events.

According to rate-distortion theory, it is rational for us to regard small probability events detection
as a clustering problem [13,14]. By using popular clustering principles (e.g., minimum within-cluster
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distance, maximum inter-cluster distance, and minimum compressing distortion), some efficient
clustering approaches were proposed to detect small probability events. Specifically, a graph-based
rare category detection and time-flexible rare category detection were presented based on the global
similarity matrix and time-evolving of graphs, respectively [15,16]. Actually, these algorithms were
proposed by resorting to traditional information measures and theory, which are considered from the
viewpoint of typical events, which are the large probability events.

1.1. Information Transfer Measures Based on Message Importance

1.1.1. Review of Message Importance Measure

In information theory, there are two fundamental measures, Shannon entropy and Renyi entropy,
which have a vital impact on wireless communication, estimation theory, signal processing and pattern
recognition etc. Nevertheless, they are not applicable to mining small probability events hidden in
big data.

To do this, a new information measure named message importance measure (MIM) is proposed
from the perspective of big data [17]. To simplify the form of MIM, we shall introduce the definition of
MIM as follows.

Definition 1. For a continuous probability distribution f (x) with respect to the variable X in a given interval
Sx, the differential message importance measure (DMIM) focusing on the small probability events is defined as

L( f (x)) =
∫

Sx
f (x)e− f (x)dx, x ∈ Sx. (1)

Furthermore, for the discrete probability P={p(x1), p(x2), . . . ,p(xn)}, the relative message importance measure
(RMIM) is given by

L(P) = ∑
xi

p(xi)e−p(xi). (2)

By resorting to the exponential form, the MIM can amplify small probability elements much more
than Shannon entropy and Renyi entropy, which include the logarithm operator or polynomial operator
respectively. Actually, this highlights the significance of small probability events in information
measure and theory. In addition, a series of postulates are investigated to characterize Shannon entropy
and Renyi entropy. Particularly, Fadeev’s postulates are well-known to describe the information
measures, which consist of four postulates [18]. In this case, in terms of two independent random
distributions P and Q, there exists a weaker postulate for Renyi entropy than that for Shannon entropy,
as follows

H(PQ) = H(P) + H(Q), (3)

where the function H(·) denotes a kind of information measure. Similarly, there exists a weaker
postulate for the MIM than that for Renyi entropy, namely

H(PQ) ≤ H(P) + H(Q). (4)

Consequently, from the viewpoint of generalized Fadeev’s postulates, we can regard the MIM as
a reasonable information measure similar to Shannon entropy and Renyi entropy.

1.1.2. Message Importance Transfer Measure

As for an information transfer process, we construct such a model that the original probability
distribution P and the final one Q in the transfer process satisfies the Lipschitz condition as follows,

|H(P)− H(Q)| ≤ λ‖P−Q‖1, (5)
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where H(·) is the corresponding information measure function; λ > 0 is the Lipschitz constant; ‖ · ‖1

denotes the l1-norm measure.
Here, we shall analyze and measure the information transfer process mentioned in Equation (5)

from the perspective of the message importance. In fact, it is a significant problem for us to measure
the message importance variation in big data analytics. According to Definition 1, it is available to
regard the DMIM or RMIM as an element to measure the message importance distance which can be
also used in the discussion of information transfer processes. Then, an information transfer measure
focusing on the message importance are proposed as follows.

Definition 2. For two probability distributions g(x) and f (x) with respect to the variable X in a given interval
Sx, the message importance transfer measure (MITM) is defined as

DI(g(x)|| f (x))

= L(g(x))− L( f (x))

=
∫

Sx

(
g(x)e−g(x) − f (x)e− f (x)

)
dx, x ∈ Sx.

(6)

Furthermore, in terms of the two discrete probability Q = {q(x1), q(x2), . . . , q(xn)} and P = {p(x1), p(x2), . . . ,
p(xn)}, the MITM can be written as

DI(Q||P) = ∑
xi

{
q(xi)e−q(xi) − p(xi)e−p(xi)

}
. (7)

Note that Definition 2 characterizes a kind of relationship between two distributions from the
perspective of information theory. In fact, this is a reasonable information measure that focuses on the
effects of small probability elements regarded as message importance for two end-to-end distributions.
On one hand, the MITM provides a tool to reflect the change of message importance in the whole
transfer process. On the other hand, it also reveals the entire information feature variation of two
end-to-end distributions, which we can use as a promising tool in the data mining.

1.2. Related Works for Information Measures in Big Data

There exist a variety of different information measures handling the problem of distributions,
which can play a crucial role in many applications involved with artificial intelligence as well as big
data analysis and processing.

As typical information measures, Shannon entropy and Renyi entropy are applicable to texture
classification, intrinsic dimension estimation [19]. As well, the relative entropy, a kind of K-L
divergence, is suitable for outlier detection [20] and functional magnetic resonance imaging (FMRI) data
processing [21]. Moreover, the MIM and non-parametric message importance measure (NMIM) both
focusing on the small probability events, have been proven effective in anomaly detection [17,22,23].
What is more, information divergences such as message importance (M-I) divergence can be applicable
to extending methods of machine learning by using distributions and their relationship as features [24].

In addition, some information measures are proposed to reveal the correlation of message during
the information transfer process. For example, the directed information [25–28] and Schreiber’s transfer
entropy [29] are commonly applied to infer the causality structure and characterize the information
transfer process. Moreover, referring to the idea from dynamical system theory, new information
transfer measures are proposed to indicate the causality between states and control the systems [30–32].

However, in spite of numerous kinds of information measures, few works focus on how to
characterize the information transfer from the perspective of message importance in big data. To this
end, a new information measure different from the above is introduced.
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1.3. Organization

We organize the rest of this paper as follows. In Section 2, we investigate the variation of message
importance in the information transfer process by using MITM. In Section 3, we introduce the message
importance transfer capacity measured by the MITM to describe the information transfer system with
additive disturbance. In Section 4, the MITM and the KL divergence are used to guide the queue
length selection for MEC from the viewpoint of the queue theory. Moreover, we also present some
simulations to validate our theoretical results. Finally, we conclude in Section 5.

2. The Information Distance for Message Importance Variation

We now investigate the variation of message importance between two distributions by using an
information transfer measure. This characterizes the information distance from the perspective of
message importance, which can also reflect the robustness of the information transfer measure.

Consider an observation model, Pg0| f0
: f0(x)→ g0(x), namely an information transfer map for

the variable X from one distribution f0(x) to the other distribution g0(x). In fact, it turns out to be not
easy to cope with the two distributions. Instead, considering the similar way in [33], the relationship
between f0(x) and g0(x) is given by

g0(x) = f0(x) + ε f α
0 (x)u(x), (8)

and the constraint condition satisfies ∫
Sx

ε f α
0 (x)u(x)dx = 0, (9)

where ε and α are two positive adjustable coefficients, as well as u(x) is a perturbation function of the
variable X in the interval Sx.

Then, we discuss the information distance of message importance measured by the MITM in the
Definition 2. This characterizes the difference between the origin and the destination of the information
transfer from the viewpoint of message importance. By using the model Pg0| f0

: f0(x) → g0(x)
mentioned above, the end-to-end MITM is investigated in the information transfer process as follows.

Proposition 1. For two probability distributions g0(x) and f0(x) whose relationship satisfies the conditions
Equations (8) and (9), the MITM is given by

DI(g0(x)|| f0(x))

=
∫

Sx

{
g0(x)e−g0(x) − f0(x)e− f0(x)

}
dx

= ε
∞

∑
i=1

(−1)i(i + 1)
i!

∫
Sx

f i+α
0 (x)u(x)dx

+
ε2

2

∞

∑
i=1

(−1)i(i + 1)
(i− 1)!

∫
Sx

f i−1+2α
0 (x)u2(x)dx + o(ε2),

(10)

where ε and α are parameters, u(x) denotes a function of the variable X, and |DI(g0(x)|| f0(x))| ≤∫
Sx
|ε f α

0 (x)u(x)|dx that satisfies the constraint Equation (5).

Proof of Proposition 1. According to the Binomial theorem, it is not difficult to see that

gi
0(x)− f i

0(x)

= [ f0(x) + ε f α
0 (x)u(x)]i − f i

0(x)

=
i

∑
r=1

Cr
i f i−r

0 (x)[ε f α
0 (x)u(x)]r.

(11)
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Then, by using Taylor series expansion of ex, it is readily seen that

e−g0(x) − e− f0(x)

=
∞

∑
i=0

(−1)i

i!
[gi

0(x)− f i
0(x)]

= ε
∞

∑
i=1

(−1)i

(i− 1)!
f (i−1+α)
0 (x)u(x) +

ε2

2

∞

∑
i=2

(−1)i

(i− 2)!
f i−2+2α
0 (x)u2(x) + o(ε2).

(12)

Therefore, by substituting Equation (12) into Equation (6), the proof of the proposition can be
readily completed.

Furthermore, it is not difficult to gain the MITM between the two different distributions g(u)1 and

g(u)2 based on the same reference distribution f0(x) as follows

DI(g(u)1 (x)||g(u)2 (x))

= [L(g(u)1 (x))− L( f0(x))]− [L(g(u)2 (x))− L( f0(x))]

= ε
∞

∑
i=1

(−1)i(i + 1)
i!

∫
Sx

f i+α
0 (x)[u1(x)− u2(x)]dx

+
ε2

2

∞

∑
i=1

(−1)i(i + 1)
(i− 1)!

∫
Sx

f i−1+2α
0 (x)[u2

1(x)− u2
2(x)]dx + o(ε2),

(13)

where
g(u)1 (x) = f0(x) + ε f α

0 (x)u1(x), ∀x ∈ Sx, (14a)

g(u)2 (x) = f0(x) + ε f α
0 (x)u2(x), ∀x ∈ Sx, (14b)

in which the ε and α are parameters, u1(x) and u2(x) denote functions of the variable X in the interval
Sx, and |DI(g1(x)||g2(x))| ≤

∫
Sx
|ε f α

0 (x){u1(x)− u2(x)}|dx.
Similarly, it is available for the discrete probability distributions to have the same form

of MITM as that mentioned in the Proposition 1. In particular, for two distributions
Q0 = {q0(x1), q0(x2), . . . , q0(xn)} and P0 = {p0(x1), p0(x2), . . . , p0(xn)}, it is easy to see that if the
relationship between Q0 and P0 satisfies

q0(xi) = p0(xi) + εpα
0(xi)ũ(xi), (15)

with the constraint condition ∑xi
pα

0(xi)ũ(xi) = 0, we will have

DI(Q0||P0)

= ε
∞

∑
i=1

(−1)i(i + 1)
i! ∑

xi

pi+α
0 (xi)ũ(xi) +

ε2

2

∞

∑
i=1

(−1)i(i + 1)
(i− 1)! ∑

xi

pi−1+2α
0 (x0)ũ2(x0) + o(ε2),

(16)

where ε and α are adjustable coefficients, and ũ(xi) is a perturbation function of the variable X.
Moreover, it is not difficult to gain the discrete form of Equation (13) in the same way as above.

Remark 1. By resorting to the information distance measured by the MITM, the message importance distinction
between two different distributions can be characterized. In the observation model mentioned in Equation (8),
it is apparent that the parameter ε dominates the information distance when the perturbation function is finite
and the parameter α < ∞. Furthermore, the MITM is convergent with the order of O(ε) in the case of small
parameter ε. Actually, it provides a way to apply MITM to measure the message importance variation in an
information transfer process.
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3. Message Importance Transfer Capacity

In this section, we shall utilize the MITM to analyze the information transfer processing shown
in Figure 1. To this end, we propose the message importance transfer capacity based on the MITM
as follows.

Map/

Encoder

Demap/

Decoder

Transfer/

Channel

Message 

Source X

Message 

Sink Y

Following 

distribution P(X)

Following 

distribution P(Y)

 Amount of 

Information 
H(X)

 Message 

Importance 
L(X)

 Amount of 

Information 
H(Y)

 Message 

Importance 
L(Y)

End-to-end information transfer  

Figure 1. Information transfer system model.

Definition 3. Assume that there exists an information transfer process

{X, p(y|x), Y}, (17)

where the p(y|x) is a probability distribution matrix characterizing the information transfer from the variable X
to Y. The message importance transfer capacity is defined as

C = max
p(x)
{L(Y)− L(Y|X)}, (18)

where p(y) =
∫

Sx
p(x)p(y|x)dx, L(Y) =

∫
Sy

p(y)e−p(y)dy, and L(Y|X) =
∫

Sx

∫
Sy

p(xy)e−p(y|x)dxdy with
the constraint |L(Y)− L(Y|X)| ≤ λ‖p(y)− p(y|x)‖1.

Then, we discuss some specific information transfer scenarios to have an insight into the
applications of message importance transfer capacity, as follows.

3.1. Binary Symmetric Information Transfer Matrix

Consider the binary symmetric information transfer matrix, in which the original variables are
complemented with the transfer probability. In particular, the rows of the probability matrix are
permutations of each other and so are columns which can be seen in the following proposition.

Proposition 2. Assume an information transfer process {X, p(y|x), Y}, whose the information transfer matrix
is described as

p(y|x) =
[

1− β β

β 1− β

]
, (19)

which implies that the variable X and Y both follow binary distributions. In this case, we have the message
importance transfer capacity as follows

C(β) = e−
1
2 − L(β), (20)

where L(β) = βe−β + (1 − β)e−(1−β) with 0 < β < 1, and |C(β)| ≤ λ‖p(y) − p(y|x)‖1 with

λ ≥ e−
1
2−βe−β+(1−β)e−(1−β)

|1−2β| .
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Proof of Proposition 2. Assume that the distribution of variable X is a binary distribution (p, 1− p).
As well, it is readily seen that

L(Y|X) =
2

∑
i=1

p(xi)∑
y

p(y|xi)e−p(y|xi)

= ∑
y

p(y|xi)e−p(y|xi)

= βe−β + (1− β)e−(1−β) = L(β).

(21)

Moreover, according to the definition of C in Equation (18), we have

C(p, β)

= max
p

{
[p + β(1− 2p)]e−[p+β(1−2p)] + [(1− p) + β(2p− 1)]e−[(1−p)+β(2p−1)]

}
− L(β).

(22)

Then, it is not difficult to see that

∂C(p, β)

∂p

= (1− 2β)
{
[1− p− β(1− 2p)]e−[p+β(1−2p)] − [1− (1− p)− β(2p− 1)]e−[(1−p)+β(2p−1)]

}
.

(23)

According to the monotonically decreasing of ∂C(p,β)
∂p for p ∈ [0, 1], it is readily seen that p = 1

2

is the only solution for ∂C(p,β)
∂p = 0. Therefore, by substituting p = 1

2 into C(p, β), the proposition
is testified.

Remark 2. In light of Proposition 2, on one hand, when β = 1/2, in other words, there is just random
information transfer process, we will obtain the lower bound of the message importance transfer capacity that is
C(β) = 0. On the other hand, when β = 0, namely, the information transfer process is definite, we will gain the
maximum message importance transfer capacity.

3.2. Binary Erasure Information Transfer Matrix

The binary erasure information transfer matrix is similar to the binary symmetric one, however,
in the former a part of information is lost rather than corrupted. In other words, a fraction of
information is erased. In this case, the message importance transfer capacity is discussed as follows.

Proposition 3. Consider an information transfer process {X, p(y|x), Y}, in which the information transfer
matrix is described as

p(y|x) =
[

1− β 0 β

0 1− β β

]
, (24)

which indicates that X follows the binary distribution and Y follows the 3-ary distribution. Then, we have

C(β) = (1− β)e−
1
2 (1−β) + βe−β − L(β), (25)

where L(β) = βe−β + (1 − β)e−(1−β) with 0 < β < 1 and |C(β)| ≤ λ‖p(y) − p(y|x)‖1 with
λ ≥ e−

1
2 (1−β) − e−(1−β).

Proof of Proposition 3. Assume the distribution of variable X is (p, 1− p). As well, according to the
binary erasure information transfer matrix, it is not difficult to see that

C(p, β) = max
p

{
p(1− β)e−p(1−β) + βe−β + (1− p)(1− β)e−(1−p)(1−β)

}
− L(β), (26)
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where L(β) = βe−β + (1− β)e−(1−β). Then, we have

∂C(p, β)

∂p
= (1− β)

{
[1− (1− β)p]e−(1−β)p − [1− (1− β)(1− p)]e−(1−β)(1−p)

}
. (27)

Due to the monotonically decreasing of ∂C(p,β)
∂p for p ∈ [0, 1], it is readily seen that p = 1/2 is

the only solution for ∂C(p,β)
∂p = 0. Thus, by substituting p = 1/2 into Equation (26), the proposition is

readily verified.

3.3. Strongly Symmetric Information Transfer Matrix

In terms of the strongly symmetric information transfer matrix, it can be regarded as an extension
of the binary symmetric one. The message information transfer capacity of the former is also analogous
to the that of the latter, which is discussed as follows.

Proposition 4. Assume an information transfer process with the strongly symmetric transfer matrix as follows

p(y|x) =


1− β

β
K−1 . . . β

K−1
β

K−1 1− β . . . β
K−1

. . . . . . . . . . . .
β

K−1 . . . β
K−1 1− β

 , (28)

which implies that the variable X and Y both obey K-ary distribution. We have

C(β) = e−
1
K − {(1− β)e−(1−β) + βe−

β
K−1 }, (29)

where the parameter β ∈ (0, 1) and |C(β)| ≤ λ‖p(y)− p(y|x)‖1 with λ ≥ e−1/K−(1−β)e−(1−β)−βe−β/K−1

2|1−β−1/K| .

Proof of Proposition 4. Assume the probability distribution of variable X is {p(x1), p(x2), . . . , p(xK)}.
As for the strongly symmetric transfer matrix, when the probabilities of xi are equal, that is,
p(x1) = p(x2) = . . . = p(xK) = 1/K, we will have

p(yj) =
K

∑
i=1

p(xi, yj) =
K

∑
i=1

p(xi)p(yj|xi)

=
1
K

K

∑
i=1

p(yj|xi) =
1
K

,

(30)

which indicates that the probabilities of yj (j = 1, 2, . . . , K) are equal.
In addition, on account of the information transfer matrix, it is easy to see that

L(Y|X) =
2

∑
i=1

p(xi)∑
yj

p(yj|xi)e
−p(yj |xi)

= ∑
yj

p(yj|xi)e
−p(yj |xi)

= βe−
β

K−1 + (1− β)e−(1−β).

(31)

What is more, according to the definition of message importance transfer capacity in Equation (18),
it is readily seen that

C(β) = max
p(x)
{L(Y)} − [βe−

β
K−1 + (1− β)e−(1−β)], (32)
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where L(Y) = ∑yj
p(yj)e

−p(yj).
Then, by using Lagrange multiplier method, we have

G(p(yj), λ0) = ∑
yj

p(yj)e
−p(yj) + λ0

[
∑
yj

p(yj)− 1
]
. (33)

By setting
∂G(p(yj),λ0)

∂p(yj)
= 0 and

∂G(p(yj),λ0)

∂λ0
= 0, it can be readily verified that the extreme value of

∑yj
p(yj)e

−p(yj) is achieved by the solution p(y1) = p(y2) = . . . = p(yK) = 1/K.

In light of
∂2G(p(yj),λ0)

∂p2(yj)
< 0 with respect to p(yj) ∈ [0, 1], it is readily seen that when the variable

X follows the uniform distribution which leads to the uniform distribution for variable Y, we will
gain the message importance transfer capacity C(β). Then, it is easy for us to complete the proof of
the proposition.

3.4. Continuous Case for the Message Importance Transfer Capacity

By using the MITM as a measuring tool, the information transfer process in the continuous case is
investigated. Considering the information transfer process described as Equation (17), it is significant
to clarify the effect of the continuous disturbance on the message importance transfer capacity.

Theorem 1. Assume that there exists an information transfer process between the variable X and Y, denoted by
{X, p(y|x), Y}, where E[X] = 0, E[X2] = Ps, Y = X + Z. The variable Z denotes an independent memoryless
additive disturbance, whose mean and variance satisfy that E[Z] = µ and E[(Z − µ)2] = σ2, respectively.
Then, we adopt the MITM to measure the message importance transfer capacity as

C(Ps) = max
p(x)

DI(Y||Z)

= max
p(x)
{L(Y)} − L(Z)

= max
p(x)

{ ∫ +∞

−∞
p(y)e−p(y)dy

}
−

∞

∑
j=0

(−1)j

j!

∫ ∞

−∞
pj+1(z)dz,

(34a)

s.t. E[Y2] = Ps + PN , (34b)

where PN = µ2 + σ2, p(y) =
∫

Sx
p(x)p(y|x)dx with the constraint |L(Y) − L(Z)| ≤ λ‖p(y) − p(z)‖1

(λ > 0 is the Lipschitz constant), and L(·) is the MIM operator. That is, the variance of X makes more effect on
the constraint of the message importance transfer capacity.

Proof of Theorem 1. According to Equation (17), we have{
x(x, y) = x

z(x, y) = y− x.
(35)

Then, it is not difficult to see that

p(xy) = p(xz)|J( xz
xy

)| = p(xz)

∣∣∣∣∣
∂x
∂x

∂x
∂y

∂z
∂x

∂z
∂y

∣∣∣∣∣ = p(xz). (36)

Moreover, by virtue of the independence of X and Z, we have

p(x)p(y|x) = p(x)p(z), (37)

which indicates that
p(y|x) = p(z). (38)
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Then, we have
L(Y|X) =

∫
x

∫
y

p(x)p(y|x)e−p(y|x)dxdy

=
∫

x

∫
z

p(x)p(z)e−p(z)dxdz

=
∫

x
p(x){

∫
z

p(z)e−p(z)dz}dx = L(Z).

(39)

Consequently, in terms of the Definition 3, it is readily seen that L(Y)− L(Y|X) can be written as
L(Y)− L(Z), which testifies Equation (34a).

Furthermore, according to the fact that E[Y2] = E[(X + Z)2] = E[X2] + E[Z2] = Ps + PN ,
we have the constraint condition Equation (34b). As well, by substituting the definition of MITM into
Equation (34a), the Theorem 1 is proved.

Remark 3. For the message importance transfer capacity with an additive disturbance, it is worth noting that
the distribution of the transferred variable Y with the constrained variance may have a significant impact on
the practical applications. In practice, the variance can be regarded as the power of signals. Consequently, the
message importance transfer capacity mentioned in Theorem 1 can be used to guide the signal transfer process
with additive disturbance, if the system does not have relatively large change.

Corollary 1. Consider an information transfer process {X, p(y|x), Y}, where Y = X + Z and the variable Z
denotes an independent Gaussian disturbance with E[Z] = µz and E[Z2] = σ2

z . Assume that the variable X
follows a Gaussian mixture model as

PX(x) =
1
N

k=N

∑
k=1

φ(x|µk, σ2
k ), (40)

where µk and σ2
k are the means and the variances of independent Gaussian distributions, in other words,

φ(x|µk, σ2
k ) = 1/(

√
2πσk) exp{−(x− µk)

2/(2σ2
k )}. In this case, the message importance transfer capacity

C(µx, σ2
x) with the constraint |C(µx, σ2

x)| ≤ λ‖PY(y)− PZ(z)‖1, is

C(µx, σ2
x) = max

PX(x)
DI(Y||Z)

.
=

1
2
√

πσ2
z
− 1

2N2
√

π(Θ + σ2
z )

N

∑
i=1

N

∑
j=1

e
−

(µi−µj)
2

4(Θ+σ2
z ) ,

(41)

where Θ = 1
N ∑N

k=1 σ2
k . In particular, the parameters σ2

k can be controlled by the parameters σ2
x , µx and µk in

a system, where the µx and σ2
x are the mean and variance of the variable X, which are given by

µx =
1
N

N

∑
k=1

µk, (42a)

σ2
x =

1
N

N

∑
k=1

(σ2
k + µ2

k)−
(

1
N

N

∑
k=1

µk

)2

. (42b)

Proof of Corollary 1. As for the Gaussian variable Z satisfying E[Z] = µz and E[Z2] = σ2
z , the DMIM

is given by

L(Z) =
∫ ∞

−∞

1√
2πσ2

z
e
− (z−µz)2

2σ2
z e

− 1√
2πσ2

0
e
− (z−µz)2

2σ2
z

dz

=
∞

∑
i=0

(−1)i

i!(
√

2πσ2
z )

i+1

1
2

√
π

α0
e

β2
0−α0γ0

α0 · er f
(√

α0z +
β0√
α0

) ∣∣∣z=∞

z=−∞
,

(43)
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where the er f (·) is the error function, namely,

er f (z) =
2√
π

∫ z

0
e−t2

dt, (44)

and the parameters α0, β0 and γ0 satisfy

α0 =
i + 1
2σ2

z
, (45a)

β0 = − (i + 1)µz

2σ2
z

, (45b)

γ0 =
(i + 1)µ2

z
2σ2

z
. (45c)

Then, it is readily seen that

L(Z) =
∞

∑
i=0

(−1)i

i!
√

i + 1(
√

2πσ2
z )

i
, (46)

which can be approximated by

L(Z) .
= 1− 1

2
√

πσ2
z

. (47)

In addition, according to Y = X + Z (with the independent X and Z), it is readily seen that the
variable Y also follows a Gaussian mixture model as

PY(y)

=
∫ ∞

−∞
PX(x)PZ(y− x)dx

=
1
N

k=N

∑
k=1

∫ ∞

−∞
φ(x|µk, σk)

1√
2πσ2

z
e
− (y−x−µz)2

2σ2
z dx

=
1
N

k=N

∑
k=1

1√
2π(σ2

k + σ2
z )

e
− (y−µk−µz)2

2(σ2
z +σ2

k )

=
1
N

k=N

∑
k=1

φ(y|µ̃k, σ̃2
k ),

(48)

where µ̃k = µk + µz and σ̃2
k = σ2

k + σ2
z (k = 1, 2, . . . , N).

By using of Taylor series extension, we have the DMIM of variable Y as follows

L(Y) =
∫ ∞

−∞
PY(y)e−PY(y)dy

=
∫ ∞

−∞
PY(y)[1− PY(y) + O

(
P2

Y(y)
)
]dy

.
= 1−

∫ ∞

−∞
P2

Y(y)dy.

(49)

Then, according to Equation (48), it is readily seen that

L(Y) .
= 1− 1

N2

N

∑
i=1

N

∑
j=1

∫ ∞

−∞
φ(y|µ̃i, σ̃2

i )φ(y|µ̃j, σ̃2
j )dy

= 1− 1
N2

N

∑
i=1

N

∑
j=1

1

2π
√

σ2
i σ2

j

{
1
2

√
π

α1
e

β2
1−α1γ1

α1 · er f
(√

α1y +
β1√
α1

) ∣∣∣y=∞

y=−∞

}
,

(50)
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where µ̃k = µk + µz and σ̃2
k = σ2

k + σ2
z (k = 1, 2, . . . , N), the parameters α1, β1 and γ1 are

α1 =
σ̃2

i + σ̃2
j

2σ̃2
i σ̃2

j
, (51a)

β1 = −
µ̃iσ̃

2
j + µ̃jσ̃

2
i

2σ̃2
i σ̃2

j
, (51b)

γ1 =
µ̃2

i σ̃2
j + µ̃2

j σ̃2
i

2σ̃2
i σ̃2

j
. (51c)

Then, it is not difficult to see that

L(Y) .
= 1− 1

N2

N

∑
i=1

N

∑
j=1

1√
2π(σ̃2

i + σ̃2
j )

e
−

(µ̃i−µ̃j)
2

2(σ̃2
i +σ̃2

j ) . (52)

where µ̃i and σ̃2
i (or µ̃j and σ̃2

j ) denote the means and the variances in Gaussian mixture model
mentioned in Equation (48).

Furthermore, in the light of Equations (47) and (52), we have the message importance transfer
measure with the constrained variances σ2

k as follows

C(µx, σ2
x) = max

P(X)
{L(Y)} − L(Z)

.
=

1
2
√

πσ2
z
− min

PX(x)

{
1

N2

N

∑
i=1

N

∑
j=1

e
−

(µ̃i−µ̃j)
2

2(σ̃2
i +σ̃2

j )√
2π(σ̃2

i + σ̃2
j )

}
.

(53a)

s.t.
N

∑
k=1

σ2
k = NΘ, (53b)

where the parameter Θ can be regarded as a constant which is controlled by the system parameters σ2
x ,

µx and µk, as follows

Θ =
1
N

N

∑
k=1

σ2
k = σ2

x + µ2
x −

1
N

N

∑
k=1

µ2
k . (54)

Moreover, the parameter σ2
z is a system constant and µk are regarded as constants, while the parameters

σ2
k (k = 1, 2, . . . , N) can be adjusted flexibly. According to the Lagrange multiplier method, when

σ2
1 = σ2

2 = . . . = σ2
N = Θ, we have

min
PX(x)

{
1

N2

N

∑
i=1

N

∑
j=1

e
−

(µ̃i−µ̃j)
2

2(σ̃2
i +σ̃2

j )√
2π(σ̃2

i + σ̃2
j )

}
=

1
2N2

√
π(Θ + σ2

z )

N

∑
i=1

N

∑
j=1

e
−

(µi−µj)
2

4(Θ+σ2
z ) . (55)

By substituting Equation (55) into Equation (53a), the proof of Corollary 1 is already completed.

In order to investigate the continuous information transfer processing mentioned in Corollary 1,
we do some simulations shown as Figures 2 and 3. In particular, Figure 2 shows that when the variable
X following a Gaussian mixture model transfers to the variable Y, the message importance measures of
X and Y become more absolutely close with N increasing (N denotes the number of Gaussian functions
in the Gaussian mixture model). Besides, we also see that the differences of message importance
measures between the variable X and Y are not significant in the case of large variances σ2

k . In addition,
from Figure 3, it is seen that the message importance transfer capacity is increasing with the increment



Entropy 2018, 20, 401 13 of 22

of the number of Gaussian functions. Moreover, the larger variances σ2
k of the Gaussian mixture model

are, the larger message importance transfer capacity we have.
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Figure 2. The comparison between the message importance measures for the original variable X and
the final variable Y in an information transfer processing (where the variable X follows a Gaussian
mixture model with all the variances of Gaussian functions as same as σ2

k ).
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Figure 3. The performance of message importance transfer capacity in the Gaussian mixture model in
which all the variances of Gaussian functions are the same as σ2

k (σk = 1, 3, 5, 7, 9).

Remark 4. As for an additive disturbance system where the data source derive from a Gaussian mixture model,
we can obtain the message importance transfer capacity, if there are all the same variances σ2

k for the Gaussian
distribution components in the data source. In practice, when the power of signal source is controlled in a signal
transfer processing, we can adjust signal distributions to achieve the optimal message importance transfer by
using Corollary 1.
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4. Application in Mobile Edge Computing with the M/M/s/k Queue

As for mobile users, almost all of them have few computing resources and depend solely on cloud
computing. This implies that the large distance between the cloud and the end devices is not suitable
for the low delay requirement of the future applications. To cope with the issue, the MEC is proposed
to improve cloud computing.

As far as the MEC is concerned, the edge servers are placed in the Base Stations (BSs) to reduce
the delay, while context aware applications are close to the mobile users [34]. To characterize the MEC
more specifically, a MEC model is constructed based on the queuing theory as follows.

In terms of a MEC system in Figure 4, it consists of many mobile users, an edge server, and a central
cloud located far from the local devices. For each mobile user, a part of or all the service requests can
be offloaded to the corresponding edge server when the communication is disturbed by other mobile
users or environmental noise. If the upper bound of the service rate for the edge server is larger than
the sum of mobile users’ request rate, the offloaded requests will be coped with by the edge server.
Otherwise, the overloaded requests will be offloaded to the central cloud for processing [35]. In these
cases, the queue model on the edge server can be considered as the M/M/s/k queue, where the first
M describes the request interarrival time of mobile users, the second M denotes the request service
time in the edge server, and both of them follow exponential distribution; the parallel processing
core number is s, which means each processing core can at most server one request simultaneously;
the queuing buffer is k in the edge server. Note that we only consider a simple model on MEC to
show the potential application of MITM. In fact, there may be some complicated cases in the MEC
such as fault tolerance, failover, and the existence of overlay networks, etc.; we shall consider this in
the near future.

...

core 1

core 2

...

core s

Buffer size k
core 1

core 22

core s

Buffer size k

Edge computing
 server

Mobile 

user 2

Mobile 

user 1

Mobile 

user n

... Central 

cloud

Mobile 

user n+1

...

core 3

Link to Feed 

back ReceiverTransmiter

Base station

Figure 4. The queue model on the mobile edge computing system.

In fact, it is significant for the MEC system to use the finite buffer size (or caching size) to
approximate the infinite one, which can be treated as a problem of queue length selection. To do this,
we exploit the MITM and KL divergence to measure the effect of queue states variation on the MEC
performance as follows.

4.1. MITM in the Queueing Model

As a measurement for the distance of the message importance, MITM characterizes the difference
between two distributions. This can be applied to distinguish the state probability distributions in
queue models. To give more general analysis, we discuss the relationship between the queue state
stationary distributions in the M/M/s/k model. The queue state stationary probability of the model
with arrival rate λ̃ and service rate µ̃ can be described as
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p0 =
[ s−1

∑
j=0

aj

j!
+

as

s!
· 1− ρk+1

1− ρ

]−1
(56a)

pj =
aj

j!
p0, (0 < j < s) (56b)

pj =
as

s!
ρj−s p0, (s ≤ j ≤ s + k), (56c)

where s is the number of servers, k is the size of buffer or cache, the traffic intensity ρ = a /s < 1 as
well as a = λ̃/µ̃.

Therefore, according to the definition 1, we can obtain the RMIM of the queue state stationary
probability in the M/M/s/k model. Then, by use of Taylor series expansion, the approximate RMIM
is given by

s+k

∑
j=0

pje
−pj

=
s+k

∑
j=0

pj[1− pj + O(p2
j )]

.
= 1−

s−1

∑
j=0

( aj

j! )
2

(ϕ1 + ϕ2
1−ρk+1

1−ρ )2
−

s+k

∑
j=s

ϕ2
2ρ2j

(ϕ1 + ϕ2
1−ρk+1

1−ρ )2

= 1− p2
0

{ s−1

∑
j=0

(
aj

j!
)2 +

ϕ2
2[1− ρ2(k+1)]

1− ρ2

}
,

(57)

where the parameter ϕ1 and ϕ2 are

ϕ1 =
s−1

∑
j=0

aj

j!
, (58a)

ϕ2 =
as

s!
. (58b)

Furthermore, referring to Equation (57), we can use the MITM to characterize the information
difference for the queue model as follows.

Proposition 5. In the M/M/s model, the MITM can be used to measure the information difference between two
queue state probability stationary distributions Pk = {pk,0, pk,1, . . . , pk,s+k, 0, 0, . . . , 0} and Pk+1 = {pk+1,0,
pk+1,1, . . . , pk+1,s+k+1, 0, . . . , 0} which are with buffer size k and k + 1 respectively, as follows

DI(Pk+1||Pk) =
s+k+1

∑
j=0

pk+1,je
−pk+1,j −

s+k

∑
j=0

pje
−pj

.
= (

1

(ϕ1 + ϕ2
1−ρk+1

1−ρ )2
− 1

(ϕ1 + ϕ2
1−ρk+2

1−ρ )2
)

s−1

∑
j=0

(
aj

j!
)2

+
ϕ2

2
1− ρ2 [

1− ρ2(k+1)

(ϕ1 + ϕ2
1−ρk+1

1−ρ )2
− 1− ρ2(k+2)

(ϕ1 + ϕ2
1−ρk+2

1−ρ )2
],

(59)

where the constraint satisfies |DI(Pk+1||Pk)| ≤ λ‖Pk+1 − Pk‖1 (λ > 0 is a constant), and ϕ1 and ϕ2 are
mentioned in Equations (58a) and (58b).
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Likewise, it is readily seen that the MITM between the queue state stationary probability
distributions P∞ = {p∞,0, p∞,1, . . . , p∞,∞} and Pk = {pk,0, pk,1, . . . , pk,s+k, 0, 0, . . . , 0} is given by

DI(P∞||Pk)

= (
1

(ϕ1 + ϕ2
1−ρk+1

1−ρ )2
− 1

(ϕ1 +
ϕ2

1−ρ )
2
)

s−1

∑
j=0

(
aj

j!
)2 +

ϕ2
2

1− ρ2 [
1− ρ2(k+1)

(ϕ1 + ϕ2
1−ρk+1

1−ρ )2
− 1

(ϕ1 +
ϕ2

1−ρ )
2
].

(60)

In this case, the buffer selection problem in MEC can be formulated as

k∗I = min
k
{k; |DI(P∞||Pk)| ≤ δ}, (61)

where δ > 0 is the threshold of variation in former difference.
In particular, if there is only one server, the corresponding queue model is M/M/1/k, it is not

difficult to obtain

DI(s=1)(P∞||Pk) =
2a

1 + a
− 2a(1− ak+1)

(1 + a)(1− ak+2)
, (62)

where DI(s=1)(P∞||Pk) denotes the MITM with the number of server s = 1. The corresponding optimal
buffer size is given by

k∗I(s=1) =
ln δ(1+a)

a(2+δ−(2−δ)a)

ln a
− 1. (63)

It is apparent that δ plays an important role in selecting the caching size when using finite size caching
to imitate the infinite caching working mode.

4.2. KL Divergence in the Queue Model

As a common information measure, KL divergence is also considered to be applied to
measuring the information distinction between the queue state stationary probability distributions
with different buffer sizes in the queue models. In particular, for the M/M/s model, we have the
following proposition.

Proposition 6. In the M/M/s model, the KL divergence between the queue state distribution
Pk+1 = {pk+1,0, pk+1,1, . . . , pk+1,s+k+1, 0, . . . , 0} and Pk = {pk,0, pk,1, . . . , pk,s+k, 0, 0, . . . , 0} with buffer
size k + 1 and k, is derived as

D(Pk||Pk+1) = ∑
j

pk,j log
1

pk+1,j
−∑

j
pk,j log

1
pk,j

=
s−1

∑
j=0

aj

j!
pk,0 log

pk,0

pk+1,0
+

s+k

∑
j=s

as

s!
ρj−s pk,0 log

pk,0

pk+1,0

= log
{

1 +
ϕ2

(1−ρ)ρk+1

1−ρk+1

ϕ1(1−ρ)
1−ρk+1 + ϕ2

}
,

(64)

where the parameters pk,j, pk+1,j, ϕ1 and ϕ2 are the same as them in Proposition 5.

Furthermore, it is not difficult to have the KL divergence between the distribution
P∞ = {p∞,0, p∞,1, . . . , p∞,∞} and Pk = {pk,0, pk,1, . . . , pk,s+k, 0, 0, . . . , 0} with buffer size ∞ and k, which
is obtained as
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D(Pk||P∞) = ∑
j

pk,j log
1

p∞,j
−∑

j
pk,j log

1
pk,j

= log
pk,0

p∞,0

= log
ϕ1 + ϕ2

1
1−ρ

ϕ1 + ϕ2
1−ρk+1

1−ρ

.

(65)

Similar to Equation (61), it is rational for us to use KL divergence as measurement to select the buffer
size. The corresponding optimal buffer size can be described as

K∗KL = min
k
{k; |D(Pk||P∞)| ≤ δ}, (66)

where δ > 0 is a small enough parameter and it can adjust the information transfer gap between the
queue state stationary distributions P∞ and Pk which are with buffer size ∞ and k respectively. Then,
we have

k∗KL =
ln
(

1− (1−ρ)ϕ1+ϕ2−2δ ϕ1(1−ρ)
2δ ϕ2

)
ln ρ

− 1, (67)

where k is the buffer size or queue length, ϕ1 and ϕ2 are mentioned in Equations (58a) and (58b).
What is more, as for the M/M/1/k model, the optimal buffer size is simplified as follow

k∗KL =
ln(1− 1

2δ )

ln a
− 2. (68)

Therefore, by using the information measures such as MITM and KL divergence, it may provide an
effective method to select the caching size, which can exploit the resources of MEC more reasonably.

4.3. Numerical Validation

To validate our derived results in theory, we take some event simulation experiments of the queue
model by use of Matlab. By setting the arrival rate λ̃ and service rate µ̃ of queue model, the process of
arrival and departure for each event is simulated during a fixed period. We will elaborate on specific
parameters of the queue model in the following context. In the figures of results, the legends DI-Sim,
DI-Ana and D-Sim, D-Ana are used to denote the simulation results and the analytical results for
MITM and KL divergence, respectively.

4.3.1. Effect of the Traffic Intensity

We now exploit M/M/s/k model to investigate performance of the MITM and KL divergence
in the case of different traffic intensity. In the simulations, the queue length, namely the buffer size,
is set to change from 0 to 30, the number of servers satisfies s = 1, and the traffic intensity is set as
ρ = 0.6, 0.7, 0.9. Then, we can compare the simulation results with the theoretical ones for the MITM
and KL divergence. From Figure 5, it is seen that the analytical results mentioned in Equations (59)
and (60) can validate the simulation results. In particular, Figure 5a,b shows that analytical results of
MITM and KL divergence can absolutely fit the simulation experiments in the M/M/s/k models with
different traffic intensity. What is more, from Figure 5c, we can see that in the same queue model the
convergence for MITM is faster than that for KL divergence. That is, the MITM offers a reasonably
lower bound for queue length selection with respect to MEC. Besides, the less traffic intensity we have,
the more caching size resources can be saved.
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Figure 5. The performance of different information measures versus queue length. The queue
models are with the same number of server s = 1 and different traffic intensity ρ (ρ = 0.6, 0.7, 0.9).
(a) The performance of message importance transfer measure (MITM) mentioned in Equation (60)
in the case of traffic intensity ρ = 0.6, 0.7, 0.9; (b) The performance of KL divergence mentioned
in Equation (65) in the case of traffic intensity ρ = 0.6, 0.7, 0.9; (c) The analysis results of different
information measures between the queue length k and ∞.

4.3.2. Effect of the Number of Servers

With regard to effects of number of servers on the MITM and KL divergence, we do the simulation
experiments with M/M/s model by setting the number of servers as s = 1, 3, 5. What is more, we set
the queue length as k = 0, 1, 2, . . . 30, and the traffic intensity always as ρ = 0.9. Then, we gain the
comparison between the simulation results and the theoretical ones.

Figure 6a,b show that it is almost available for analytical results to fit simulation results. From
Figure 6c, similar to Figure 5c, we can also use the MITM to gain a lower bound for queue length
selection than KL divergence. Moreover, keeping other conditions the same, a larger number of servers
can make MITM and KL divergence converge faster. In other words, there is a trade-off between the
number of servers and caching size.
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Figure 6. The performance of different information measures versus queue length. The queue
models are with the same traffic intensity ρ = 0.9 and different number of servers (s = 1, 3, 5).
(a) The performance of MITM mentioned in Equation (60) in the case of the number of servers s = 1, 3, 5;
(b) The performance of KL divergence mentioned in Equation (65) in the case of the number of servers
s = 1, 3, 5; (c) The analysis results of different information measures between the queue length k and ∞.

4.3.3. Performance Results for Different Arrival Events Distributions

Now we discuss the performance results in the cases of different distributions of events’ arrivals
which is listed in Table 1. It is apparent that average interarrival time is maintained as the same, namely
1/λ̃0. As well, we make sure that the number of server and traffic intensity are s = 1 and ρ = 0.9 in all
cases, respectively. Then, we make simulations in the three cases to compare the testing results with
the analytical results.

Table 1. The interarrival time distributions of events’ arrivals.

Type of
Distribution

Exponential
Distribution

Uniform
Distribution

Normal
Distribution

P(X) X ∼ E(λ̃0) X ∼ U(0, 2/λ̃0) X ∼ N( 1
λ̃0

, 1
λ̃2

0
)

As for Figure 7, it is illustrated that the convergence of MITM is faster than that of KL divergence,
which indicates that MITM may provide a reasonable lower bound to select the caching size for MEC.
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In addition, we can see that the Poisson distribution (namely, events’ arrivals follow exponential
distribution) corresponds to the worst case for the arrival process among the three discussed cases
with respect to the convergence of both MITM and KL divergence.
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Figure 7. The performance of different information measures between the queue length k and ∞ for
the queue models with the same number of server s = 1, the same traffic intensity ρ = 0.9, and the
different arrival events’ distributions.

5. Conclusions

In this paper, the information transfer problem was investigated from the perspective of
information theory and big data analytics. An information measure, i.e., MITM, was proposed
to characterize the information distance between two distributions, similar to KL divergence and
Renyi divergence. Actually, the information measure plays a vital role in focusing on the message
importance hidden in small probability events of big data. Therefore, it is applicable for the information
measure to characterize information transfer process in big data. We have investigated the variation of
message importance in the information transfer process by using MITM. Furthermore, we proposed
the message importance transfer capacity based on the MITM so that an upper bound can be presented
for the information transfer process with disturbance. In addition, we applied the information transfer
measure to select the caching size in MEC. As the next step of research, we shall carry out real data
experiments to test some of the most complicated cases of MEC and make use of the information
transfer measures to investigate some related algorithms as well as to discuss the effect of window
length on the whole system performance in big data analytics.
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