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Abstract: Genome-wide association studies (GWAS) and whole-exome sequencing (WES) generate

massive amounts of genomic variant information, and a major challenge is to identify which varia-

tions drive disease or contribute to phenotypic traits. Because the majority of known disease-
causing mutations are exonic non-synonymous single nucleotide variations (nsSNVs), most studies

focus on whether these nsSNVs affect protein function. Computational studies show that the impact

of nsSNVs on protein function reflects sequence homology and structural information and predict
the impact through statistical methods, machine learning techniques, or models of protein evolution.

Here, we review impact prediction methods and discuss their underlying principles, their advantages

and limitations, and how they compare to and complement one another. Finally, we present current
applications and future directions for these methods in biological research and medical genetics.

Keywords: functional impact prediction methods; disease causing SNV (single nucleotide variation);

single nucleotide polymorphism prioritization; missense variant classification; non-synonymous
protein mutations

Introduction

Accurate prediction of SNV impact is an

important challenge

Since making its first clinical diagnosis in 2009,1

whole exome sequencing has been on the rise for both

individual patient diagnosis and large-scale projects,

in keeping with decreasing production costs (Fig. 1).

Our capacity to obtain sequencing information has

expanded so quickly that it now far out-paces Moore’s

doubling law for computing power.5 Whereas targeted

gene sequencing and Genome Wide Association
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Studies (GWAS) at predetermined loci used to be the

cutting edge,6,7 new studies aim to identify single

nucleotide variations (SNVs) in all genes and to ana-

lyze their association with disease.8 There are now

thousands of sequenced exomes encompassing pheno-

types both rare (e.g., Joubert syndrome,9 myofibrillar

myopathy10), and relatively common (e.g., cancer11–16

and epilepsy17,18). Many of these exome projects have

been catalogued and made available for analysis

through the Database of Genotypes and Phenotypes

(dbGaP),19,20 and multi-center efforts like the NHLBI

Exome Sequencing Project21 are actively gathering

more data. With this influx of information, research-

ers are now limited not by a lack of material, but

instead by the challenges of processing and interpret-

ing this wealth of information. With more candidate

SNVs to evaluate than ever before, accurate methods

that predict the effect of SNVs are crucial to ensure

that research focuses on those variations that are

most likely to cause disease.

Most tools focus on coding SNVs rather than

other SNVs

Decoding the relationship between genotype and phe-

notype is a major challenge in genetics. In humans

there are more than four million DNA differences

between two random individuals.22,23 Because addi-

tions and deletions typically have stronger

impact,24–26 and are selected against more often,

�80% of these differences are single nucleotide varia-

tions (SNVs).27–29 Over the entire human population,

an estimated 81%30 to 93%31 of human genes contain

at least one SNV. Although only a small fraction of

variants are non-synonymous single nucleotide varia-

tions (nsSNVs), about 10,000 are found between two

random individuals,27–29 and over 85% of known dis-

ease associations are culled from this important class

of mutations.1 For this reason, methods for predicting

the impact of SNVs have historically focused on the

high-yield category of non-synonymous coding SNVs.

The existence of disease-associated synonymous

mutations32,33 and nocoding variations with effects on

lincRNA,34 miRNA,35,36 and promoters37,38 has pro-

duced interest in other types of mutations as well, but

different tools will be needed to analyze these types of

variations and such tools are comparatively still new

and untested.39–41

Most nsSNVs affect protein function but in
distinct ways

nsSNVs may affect folding,42,43 binding affinity,44,45

expression,46 post-translational modification,47,48 and

other protein features. However, not all nsSNVs

impact protein function. Some variations may pro-

duce no perceivable changes to the protein, in which

case the mutation may not be pathogenic. On the

other hand, purifying selection should eliminate over

time the mutations that are most deleterious to fit-

ness. A telltale signal is a decreased ratio of non-

synonymous to synonymous mutations compared to a

model of neutral mutation theory.49 Importantly, not

all non-synonymous mutations are under the same

strength of purifying selection. An analysis of exomes

from the 1000 Genomes Project,50 in accordance with

simulations51 and with Fisher’s geometric model52

showed that the number of the nsSNVs retained in

the human population decreases exponentially as the

impact on fitness increases. The same analysis also

showed that the exponential decrease becomes

steeper for nsSNVs with higher allelic frequency,

reflecting that the more common mutations have

been selected against stronger constraints. This dem-

onstrates the complexity of the genotype-to-

phenotype relationship and implies that a binary clas-

sification of a mutation into deleterious or neutral,

although very convenient, may be too simplistic.53

Goal of the review

Predictors of the impact of nsSNVs are useful for

associating variants to phenotypic traits and diseases,

but they should be used cautiously and with an

understanding of the benefits and pitfalls of using

each method. However, researchers attempting to

understand the field may feel overwhelmed by the

plethora of available predictors to consider. Here we

classify current predictors of functional impact by

their underlying theory and we discuss the funda-

mental principles, assumptions, strengths, and limi-

tations of each type of method. Finally, we speculate

on the future directions of variant prioritization and

Figure 1. Production cost and usage of whole exome

sequencing over time. As the cost of exome sequencing

(blue) decreases, the number of articles containing the phrase

“whole exome sequencing” (red) increases. The number of

articles is found via Scopus.2 The production cost is defined

by the National Human Genome Research Institute3 and

includes the costs of labor, sequencing instruments, and

data processing, but not quality control, technology develop-

ment, or data analysis. As of April 2014, the production cost

for an exome on the Illumina or SOLiD platform at 30-fold

coverage was $49.20, although the actual cost to the con-

sumer is considerably higher, with costs advertised in the

range of $700 to $2000 per sample.4
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review applications for nsSNV impact prediction in

guided mutagenesis studies, the identification of

disease-causing nsSNVs, the association of genes to

diseases, and the prediction of polygenic phenotypes

from whole exome data.

Predicting SNV Impact

While many features have been used to predict the

impact of nsSNVs, there are two major features that

are commonly used in bioinformatics tools: structure

and sequence homology.

Structural metric of nsSNV impact

Some of the first methods to predict the impact of

nsSNVs were based solely on structure.54,55 They

assumed that deleterious nsSNVs destabilize the fold-

ing of proteins and therefore aimed to estimate the

free energy change of folding (DDG) due to a muta-

tion. Roughly three quarters of amino acid substitu-

tions that result in Mendelian diseases do affect

protein stability, proving the value of this assump-

tion.56,57 Impacting protein stability typically implies

local or total unfolding of the protein, but occasionally

deleterious aggregates like amyloid fibrils58,59 may

form. Rarely, single mutations have been known to

cause a switch between stable folds.60 To avoid the

computational expense of physical models like Molec-

ular Dynamics simulations, most methods use statis-

tical (PopMuSiC-2.0,61 SDM54) or empirical (FoldX/

SNPeffect,62,63 Dmutant55) effective energy functions.

These methods typically require a structure for the

region of the protein under investigation, although

some methods can use sequence information alone.64

Originally, SDM, a knowledge-based approach, used

environment-dependent amino acid substitution with

propensity tables and considered a structure’s main-

chain conformations, solvent accessibilities, hydrogen

bonds, and disulfide bonds.54 Later methods used this

information to help calculate basic potentials, low-

order and high-order coupling terms, volume terms,

and solvent accessibility terms for comprehensive

scoring functions that can be weighted through train-

ing with machine learning techniques61 or direct

fitting to empirical data.63,65 Other structural compo-

nents that are taken into account include small-

molecule binding sites, protein–protein interactions,

entropy optimization, and Van der Waals and tor-

sional clashes.63,66

These structure-based methods give insight

about the local environment of the mutation. Variants

on the surface are, in general, more likely to be neu-

tral than variants in the core,67 indicating that

disease-associated mutations often affect intrinsic

structural features of proteins.68 However, surface

mutations at important protein–protein interaction

sites are more likely to be disease-associated.69 Using

the structure also has the advantage of accounting for

the interactions between amino acid residues that are

close in three-dimensional space but far apart in the

protein’s sequence. Loss or gain of disulfide, electro-

static or hydrophobic interactions that affect protein

stability or aggregation are examples of interaction

changes that the use of 3-D structure can help

identify.70,71

Unfortunately, even with a deposition rate out-

pacing PubMed article submission72 and after

recently reaching the milestone of 100,000 struc-

tures,73 it is still a relatively small fraction of all pro-

teins that can be found in the protein data bank. For

example, in a recent study on epilepsy disorders66

only 18/68 of the proteins of interest had partial struc-

tures. For the remaining proteins, only 22% of the

mutations could be mapped onto a predicted structure

from theoretical models based on homology of known

structures.66 For a larger perspective, only 7.6% of

57,525 nsSNVs from the Humsavar database could be

mapped to structures.74 This percentage increased to

60.4% when Phyre2 homology models75 were

included,74 but still the proportion of unaddressed

SNVs was large. Another pitfall is that the PDB may

contain structures, often flagged with a warning,76

that have unresolved concerns regarding geometry,

stereochemistry, or solvent, and that contribute to

inconsistency in the quality of the available struc-

tures.77 Overall, structural information has its great-

est value in nsSNV impact prediction in cases where a

complete and robust protein structure is available

and where the protein has few homologs, compromis-

ing the prediction accuracy of methods that rely heav-

ily on homology.78,79

Evolutionary metrics of nsSNV impact

A complementary approach to determine the impact

of nsSNVs is based on evolutionary principles. At

first, substitution matrices like BLOSUM6280 were

used to classify a nsSNV as impactful or not81 by the

similarity of an amino acid substitution as judged by

the interchanges between homologous proteins. This

type of substitution matrix was originally designed

for database searching and pairwise alignment82 and

then repurposed to predict nsSNV impact. When used

as a standalone prediction tool, BLOSUM62 matrices

over-predict non-conservative substitutions,83 and

many early methods demonstrated their feasibility by

showing improvements in accuracy over BLOSUM62

predictions.83,84 While BLOSUM62 uses a non-

specific substitution profile, many homology-based

methods now assess amino acid substitution profiles

in a more sophisticated and family specific manner.

Homology-based methods typically assume that

the overrepresented substitutions in a protein family

are neutral on protein function and that the under-

represented ones are deleterious25,83,84 (Fig. 2). This

implies two hypotheses: that each substitution has

an independent effect on protein function (no epista-

sis) and that all homologs have identical function
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(the fitness landscape is constant).83,84 The predic-

tion accuracy is significantly affected upon violation

of these hypotheses and most methods attempt to

minimize this problem by optimizing the sequence

selection to mostly orthologous proteins, thereby

minimizing changes in the fitness landscape.25

Although non-native alignments can sometimes

improve the accuracy of a method,85 customizing the

sequence alignment in a rational way requires a

great deal of knowledge and finesse.

At the most basic level, the early homology

methods (SIFT,83 Panther84) judge the impact of

nsSNVs by scoring the substitution frequency

amongst homologues. To improve upon this simple

principle, SIFT normalized the probabilities of all

possible amino acid substitutions and Panther uses

a Hidden Markov Model.84 The next generation of

methods (A-GVGD,86 MAPP87) score the observed

frequency of biochemical properties in each position

of the alignment, such as the volume, polarity,

hydropathy and charge, and how they differ from

the properties of the substituted amino acid. These

methods then conclude that a residue is deleterious

for protein function when it does not comply with

the protein family’s substitution profile.86,87

More recent implementations of homology have

combined homology information together with substi-

tution matrices. Provean uses an alignment-based

score that measures the change in sequence similar-

ity of the query sequence with each of its homologs,

before and after the introduction of the mutation.25

The similarity is estimated by using the BLOSUM62

matrix, and it can provide predictions for multiple

amino acid substitutions, insertions, and deletions.

Alternatively, the Evolutionary Action method mod-

els the genotype-to-phenotype relationship with an

equation stating that the impact of a mutation is a

product of the functional importance of the mutated

residue and of the amino acid similarity of the substi-

tution.50 The functional importance is approximated

by the Evolutionary Trace method88,89 and the amino

acid similarity by substitution matrices that depend

on the functional importance of the residues and

optionally on their structural features. Overall, the

abundance of such methods highlights the ability of

homology to accurately predict the impact of nsSNVs

independently from other features.

Homology has been a steadfast component of

nsSNV impact prediction, whether by itself or in

combination with structural information, but there

are several limitations to its predictive power. In

particular, the lack of available homologous sequen-

ces may result in lower prediction accuracy.87 For

example, the Provean method uses 100–200 homolo-

gous sequences on average, but when their number

drops below 50, the accuracy is lower.25 Another

caveat is that the selection of sequences must be bal-

anced to represent sufficiently deep evolution of the

protein family without being biased to distant phylo-

genetic branches that have evolved to retain func-

tions that are specific only to that branch. When the

Provean method was tested on sequence alignments

derived by using the UniProtKB/Swiss-Prot instead

of the NCBI NR database, the accuracy dropped by

7% and this was attributed to the lack of ortholo-

gous and distantly related sequences.25 Further-

more, the choice of the alignment has a major effect

on the accuracy of a method. When each of four

alignments was used as input to SIFT, A-GVGD,

PolyPhen-2, and Xvar (now MutationAssessor), their

accuracy varied widely, with A-GVGD being

extremely sensitive to, and PolyPhen-2 being more

robust to, changes in alignment.85 Interestingly, the

native alignments of each method did not necessar-

ily give the best predictions for that method.85 Over-

all, sequence homology can be applied to nsSNV

impact prediction with great success if there are suf-

ficient homologues in broad and deep branches of

the phylogeny.

Integrative machine learning approaches

Several methods predict the impact of nsSNVs using

both structure and homology, along with other types

of information such as function annotation and bio-

chemical properties. To combine key features, these

methods use supervised machine learning techniques

that integrate disparate data types through nonlin-

ear relationships and handle outliers and noise more

readily than linear approaches.64 Supervised learn-

ing requires training with large numbers of known

phenotype associations in order to deduce these com-

plex relationships.64,90,91 Ultimately, they classify the

data into categories91 like deleterious or neutral, and

they may provide a confidence score for each predic-

tion. Commonly used machine learning techniques

include Support Vector Machines,5,64,71,92–96 Naive

Bayes,97,98 Neural Networks,90,99 Random For-

ests,100,101 and Decision Trees.93,102

Perhaps the most well-known impact predictor

that uses machine-learning is PolyPhen2, which

uses a naive Bayes classifier on substitution events

in homologs, structural parameters, function

Figure 2. TP53 sequences from different species and varia-

tions in their amino acids. Some homology-based methods

would predict that the human sequence would tolerate a sub-

stitution of alanine to aspartic acid or to cysteine at the high-

lighted position. Other methods account for the conservation

of a position, concluding that the highlighted position would

likely tolerate more substitutions than other positions.
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annotation, and physicochemical features.98 Typical

training features include amino acid substitution

profiles or homology derived scores,71,94,98 biophysi-

cal properties of the substitution (volume,71,92,98

hydropathy,71,92,94 and charge71,92,94), structure

information (secondary structure,94 solvent accessi-

bility,92,98 and crystallographic B-factors98), function

annotation,92,98,103 local environment information

(neighbors in sequence or space),64,93,94,104 statistical

potentials,64 aggregation property,62,105 and intrinsi-

cally disordered regions.105 Recently, SuSPect74 even

incorporated a network of protein-protein interac-

tions from the STRING database106 into its analysis.

Machine learning methods aim to identify and

use non-redundant features that are highly correlated

to accurate classification.107 However, optimizing the

selection of features may cause predictions to be less

accurate for those proteins dependent on “atypical”

features. For example, disruption of intrinsic disorder,

a rarely used feature, is critical for predicting the

impact of mutations in the tumor suppressor APC.108

Determining which features contain the most rele-

vant information and the least amount of noise has

been a constant challenge, and several methods inte-

grate predictions of existing methods with other

methods (Condel),109 or with additional features,

(SNAP99 and MutPred110), in order to increase the

accuracy. At the publication time of this review, there

is no consensus for a “best” set of features to predict

the impact of SNVs, with different combinations

working for different methods and datasets. The fea-

tures considered by each method are detailed in Sup-

porting Information Table I.

Another limitation of the machine learning meth-

ods is that they may rely on asymmetric training sets

that may misrepresent population characteristics.104

For example, if a Gaussian distribution was randomly

sampled, one might obtain by chance a few more sam-

ples on one side of the curve (Supporting Information

Fig. 1). Using this skewed distribution in a machine

learning technique underfits the data and can cause

false predictions defeating the purpose of the learning

process.91,111 However, this “generalization error” can

at least be minimized by mathematical models.112

Equally problematic, if a method is over-trained on a

dataset, noise will be built in and the performance of

the model will drop.91,111,112 Finally, using machine

learning methods to predict the impact of mutations

that differ fundamentally from the training data may

require retraining and revalidating the tool. For

example, using SuSPect, which was initially trained

only on human SNVs, to predict the impact of muta-

tions in non-human proteins dropped the AUC by

about 10%.74

Availability and Comparisons
A summary of well-known current methods to pre-

dict the impact of nsSNV is provided in Table I, and

a more detailed version of this table exists in the

Supporting Information Table I. The majority of

these methods are freely available to the research

community through web servers or through down-

loadable files for local use. Using them often

requires basic to advanced bioinformatics skills, as

presented in Karchin 2008.113 At its most basic, a

user has to input just an identifier of the protein of

interest or its sequence, and in some cases the spe-

cific amino acid substitution as well. To better assist

users, many methods allow submitting large number

of prediction requests at a time, and others give an

option to input user-curated sequence alignments of

the protein family.

New tools determine their accuracy by applying

their method to various sets of nsSNVs whose

impact is known and measuring how well they are

able to distinguish harmful mutations from benign

ones. Ambitious mutagenesis work on a particular

protein is one way these validation sets are devel-

oped. For example, 4041 mutations of the E. coli

LacI protein,114,115 336 mutations of HIV-1 prote-

ase,116 2015 mutations of bacteriophage T4 lyso-

zyme,117 and 2314 mutations of the human p53

protein118 have been assayed for functional effect

and catalogued. Many tools, including SIFT,83 Muta-

tionAssessor,65 Provean,25 MAPP,87 and EA,50 com-

pare to one or more of these classic datasets.

Another type of validation set comes from reference

human SNVs that have been classified as disease-

associated variants (deleterious) or common poly-

morphisms (presumed benign). These datasets

include VariBench,119 HGMD,120 and the “human

polymorphisms and disease mutations” set available

from the UniProtKB/Swiss-Prot database,121 each of

which contains tens of thousands of missense var-

iants. This type of validation set has the advantage

of being human-specific and encompassing many

proteins, but relies on the accuracy of annotations in

the databases and can only consider SNV impact in

a binary fashion. On the other hand, validation sets

from mutagenesis studies are more limited in scope

but involve functional assays that consider impact

on a continuous scale.

The performance of different methods to predict

the impact of mutations is typically compared with

the area under the curve (AUC) of the receiver oper-

ating characteristic (ROC) plots. An ROC plots the

true positive rate against the false positive rate and

demonstrates the trade-off between sensitivity and

specificity. The AUC quantifies the success of this

trade-off. A perfect prediction would result in a ver-

tical line (infinite slope) at the origin and an AUC of

1, in contrast to a completely random prediction that

would result in a line with a slope of 1 and an AUC

of 0.5. Other measures to evaluate the ability of pre-

diction methods to prioritize the impact of mutations

include the balanced accuracy, which is the average
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of the sensitivity and specificity,25 the F1 score, which

is the harmonic mean of precision and recall,122 the

Matthews correlation coefficient (MMC),93 the Spear-

man’s rank correlation coefficient,123 the Kendall

tau rank correlation coefficient,124 and the scale-

dependent metric root-mean-square deviation

(RMSD).61

It is important to be cautious when attempting

to objectively compare methods, and only new,

unpublished data should be included in a validation

set in order to keep the methods on equal footing.

Otherwise, machine learning methods that have

used part of the validation data in their training

may appear to be more accurate than they really

Table I. SNP Impact Predictors

Server Year Input URL Pubmed ID

Structural
SDM 1997 PDB ID http://www-cryst.bioc.cam.ac.uk/

�sdm/sdm.php
9051729

Dmutant 2002 PDB ID http://sparks.informatics.iupui.edu/
hzhou/mutation.html(Unavailable)

12381853

PoPMuSiC 2009 PDB ID http://dezyme.com/ 19654118
SDS 2014 - Cannot automate 24795746

Homology
SIFT 2001 Protein identifier, SNP

IDs, or alignment
http://sift.jcvi.org/ 11337480

Panther 2003 Sequence http://www.pantherdb.org/tools/
csnpScoreForm.jsp

12952881

MAPP 2005 Alignment and phyloge-
netic tree

http://mendel.stanford.edu/SidowLab/
downloads/MAPP/index.html

15965030

A-GVGD 2006 Alignment http://agvgd.iarc.fr/agvgd_input.php 16014699
mutationassessor
(xvar)

2011 Protein identifier or
chrom. location

http://mutationassessor.org/ 21727090

Provean 2012 Sequence or chrom.
location

http://provean.jcvi.org/index.php 23056405

Evolutionary
action

2014 Protein identifier http://mammoth.bcm.tmc.edu/
EvolutionaryAction/

Hybrid
PolyPhen 2002 Protein identifier or

sequence
http://genetics.bwh.harvard.edu/pph/ 12202775

LogR.E-value 2004 Site is down for
maintenance

http://lpgws.nci.nih.gov/cgi-bin/
GeneViewer.cg

14751981

nsSNPAnalyzer 2005 Sequence (requires avail-
able PDB structure)

http://snpanalyzer.uthsc.edu/ 15980516

SNPeffect 2005 Sequence, PDB ID, Uni-
Prot ID

http://snpeffect.switchlab.org/menu 15608254

LS-SNP 2005 SNP, protein or pathway
identifier

http://modbase.compbio.ucsf.edu/LS-SNP/ 15827081

MUpro 2005 Protein sequence, struc-
ture (optional)

mupro.proteomics.ics.uci.edu 16372356

pmut 2005 Sequence (on demand
version) or PDB ID
(precalculated version)

http://mmb2.pcb.ub.es:8080/PMut/ 15879453

PhD-SNP 2006 Protein identifier or
sequence

http://snps.biofold.org/phd-snp/phd-snp.html 16895930

SNPs3D 2006 SNP identifier http://www.snps3d.org/ 16551372
Parepro 2007 Alignment http://www.mobioinfor.cn/parepro/index.htm 18005451
SAPRED 2007 Sequence and PDB files http://sapred.cbi.pku.edu.cn/ (Login required) 17384424
Imutant 3.0 2007 Sequence or PDB ID http://gpcr2.biocomp.unibo.it/cgi/predictors/

I-Mutant3.0/I-Mutant3.0.cgi
18387208

SNAP 2007 Sequence http://rostlab.org/services/snap/submit 17526529
AUTO-MUTE 2010 PDB ID http://proteins.gmu.edu/automute/

AUTO-MUTE_nsSNPs.html
20573719

Mutation Taster 2010 Transcript, gene, or ORF http://www.mutationtaster.org 20676075
PolyPhen2 2010 Protein or SNP identifier

or sequence
http://genetics.bwh.harvard.edu/pph2/ 20354512

Condel 2011 Protein identifier, muta-
tion, homology tree

No server, but can get PERL pipeline
scripts and then download each tool

21457909

CADD 2014 VCF file http://cadd.gs.washington.edu/score 24487276
VarMod 2014 Sequence http://www.wasslab.org/varmod/ 24906884
SuSPect 2014 Sequence or VCF http://www.sbg.bio.ic.ac.uk/

suspect/index.html
24810707
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are. When available, comparisons that are per-

formed by independent researchers are prefera-

ble.53,85 In one such study, the performance of four

commonly used methods (SIFT, Align-GVGD, Poly-

Phen-2, and Xvar which is now called MutationAs-

sessor) was compared for 267 well-characterized

human missense mutations in the BRCA1, MSH2,

MLH1, and TP53 genes.85 All four algorithms per-

formed similarly, with an AUC of about 80%, but the

predictions by each algorithm were often discordant

even when each one was provided the same input

alignment.85 Thus, while these methods perform

similarly in their overall accuracy, their predictions

are different,85 a phenomenon that is documented

for other tools as well125 and suggests complemen-

tarity.109 There are also independent third-party

challenges that use unpublished data to assess the

ability of methods to predict the functional impact of

mutations on proteins, including the critical assess-

ment of genome interpretation (CAGI),126 in which

competing groups evaluate genetic variants blindly

and have their predictions judged against experi-

mental results on a variety of measures. Most often,

no single method outperforms all others in every one

of these diverse measures of quality; nevertheless an

average rank can be calculated for each method over

all of the quality measures. In Figure 3, we plotted

the average ranks of impact predictors in two of the

CAGI challenges, where we participated with predic-

tions made by the evolutionary action method (sim-

ply Action). The identities of methods other than our

own will remain anonymous until the CAGI commu-

nity publishes comprehensive results.

A way to estimate the popularity of the impact

prediction methods is to look at the number of cita-

tions per method over years since publication (Fig.

4). It is clear that certain methods, such as Poly-

Phen, SIFT, Panther, and Dmutant, have made a

lasting impression on the field, and that the meth-

ods featured in Table I have such a large variety in

their number of citations that only a logarithmic

scale can adequately capture the spread. While this

data does not relate to the accuracy of the method

or to the applicability of the method to a dataset, it

reflects the scientific community’s perception of the

method.

In summary, one may choose an impact predic-

tion method not only based on its accuracy against a

variety of benchmark datasets, but also based on the

strengths and limitations of the method in the con-

text of the data at hand. The availability of a struc-

ture, the number of available homologs, the

convenience of a predictor (web server or local

installation), and the ability to submit multiple

requests with various formats (vcf files or lists of

single amino acid variants) may all affect the prefer-

ence of a user in practice. In general, the confidence

of a prediction is higher when multiple methods are

in agreement,129 so studies often use the results

from multiple methods to bolster evidence for patho-

genicity.42,130,131 To this end, metaservers that com-

pile the results from multiple methods are often

time-saving, and several are noted in Supporting

Information Table I along with the original methods.

Applications

Typically, SNV impact prediction methods are used

to associate amino acid variations to loss of protein

function or to risk of diseases. An increasing number

of studies use the predicted impact in a variety of

applications, and have reported that SNV impact

predictions match experimental findings.130,132,133

Such applications include guiding mutagene-

sis,134,135 identifying disease associated genes in

both Mendelian and common diseases,1,136–139 sepa-

rating disease-causing variants from linkage dise-

quilibrium variants,140 identifying somatic

mutations that drive cancer,65,141,142 and predicting

Figure 3. Average rank of predictions in two CAGI chal-

lenges from the competitions of 2011 and 2012–13. The Cys-

tathionine beta-Synthase (CBS) challenge of 2011 asked

predictors to submit the effect of 84 variants in the function

of CBS at two different cofactor concentrations,127 which

were assessed by nine measures for each concentration (pre-

cision, recall, accuracy, harmonic mean F1, Spearman’s rank,

Student’s t test, RMSD, RMSD over z scores, and AUC). The

p16 challenge of 2012–13 asked predictors to submit evalua-

tions of how 10 variants of the p16 protein impact its ability

to block cell proliferation,128 which were assessed by four

measures (AUC, RMSD, Kendall tau, and the number of cor-

rect predictions within a range of 10%). A total of 16 partici-

pants (color-coded) to one or both challenges submitted one

or multiple predictions (20 predictions in 2011 and 22 predic-

tions in 2012–13). The number shown on the vertical axis is

an average rank so that in order to have a rank of one, the

prediction would need to rank first in all of the evaluation

measures that were used. Conversely, the worst a prediction

could do would be to be last in every evaluation measure,

leading to an average rank equal to the total number of pre-

diction sets in that challenge. Besides Action, only the partici-

pants B and C submitted predictions in both challenges. The

Evolutionary Action method can be found at: http://mam-

moth.bcm.tmc.edu/EvolutionaryAction/.
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the overall phenotype of an organism.143 These

applications highlight the value of SNV impact pre-

diction and the need for further improvement.

Guided mutagenesis
Predictions of impact may guide mutagenesis studies

that aim to uncover functional sites or fine-tune the

activity of proteins. Rather than using laborious ran-

dom mutagenesis and screening to identify func-

tional residues,144,145 site-directed mutagenesis

studies146 may be efficiently guided by computa-

tional predictions with high rates of suc-

cess.134,147–149 Besides selecting strongly deleterious

mutations that knock out protein function, often it

is desirable to select mutations with an intermediate

impact in order to redirect the protein activity.135

Methods like EA, which yield prediction on a contin-

uous scale rather than in binary categories, are

appropriate to engineer functional proteins that

deviate variably from the wild-type phenotype.135

nsSNV disease association

nsSNV impact predictors can also aid in untangling

disease etiology. Although thousands of associations

have been made between nsSNVs and risk of vari-

ous diseases through GWAS and catalogued in data-

bases like HGMD,120 dbSNP,150 ENSEMBL,151 and

UniProt,152 it is often unclear if the nsSNV itself is

causative or merely linked to the disease-causing

variant. In addition, predisposing nsSNVs usually

account for a small fraction of the predicted genetic

risk of the complex diseases, a major issue known as

“missing” heritability.153–155 Current theories sug-

gest that common diseases are caused by either com-

mon variants with small to modest effects155 or by

multiple rare variants.156 In both cases the statisti-

cal power is limited by either the linkage disequili-

brium or the low population frequency, respectively.

nsSNV impact predictions may be used to distin-

guish the most deleterious nsSNVs from those that

are merely in strong linkage disequilibrium with a

causative nsSNV,157 or identify deleterious rare

nsSNVs that occur on genes that are associated with

the disease.158–160

Identifying genes that cause diseases
Another use of impact predictors is to discover genes

associated with genetic disorders.161 In these stud-

ies, exome sequencing of unrelated patients with the

disorder is conducted under the hypothesis that

these exomes will be enriched in mutations that

impact the function of a causative gene. The pre-

dicted impact of SNVs on protein function may then

be used to associate new genes with the studied dis-

order, such as the genes FRAS1 and FREM2 with

Congenital Abnormalities of the Kidney and Urinary

Tract (CAKUT),136 the DHODH gene with the Miller

syndrome,137 the SLC26A3 gene with Bartter syn-

drome,1 the TGM6 gene with spinocerebellar atax-

ias,138 and the VCP gene with Amyotrophic Lateral

Figure 4. The total number of citations since each method was published, on a logarithmic scale, according to Scopus2 for

methods published before 2014. The methods are colored by the type of information they use as seen in the figure legend. The

older and well-established methods of PolyPhen, DMutant, SIFT, and Panther are at the bottom right, in contrast to the new

and less-known, methods at the top left, while an abundance of methods are clustered at the center of the graph. Of particular

interest is PolyPhen2, which despite its recent release, it is currently the most cited of any method.
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Sclerosis (ALS).139 With more exome sequencing

studies on the way, there is much potential for the

widespread use of mutation impact predictors in the

clinical setting, given their continuous improvement

and almost immediate access to results.

Identifying cancer driver mutations

The search for cancer-associated mutations also ben-

efits from predictions of the functional impact. This

is a particularly challenging problem, since although

cancer-causing mutations may be inherited,162,163

most often they are acquired in somatic cells during

tumor development.164,165 The average number of

nonsynonymous somatic mutations in a tumor varies

widely by cancer type, ranging from as low as four

in pediatric rhabdoid cancer to as high as the thou-

sands in colorectal cancer with microsatellite insta-

bility.166 Some of these mutations, called drivers,

disrupt or further activate the function of proteins

to promote cancer, while the rest confer no selective

tumor growth advantage and are called passen-

gers.167 Predicting the impact of the variants found

by exome sequencing of numerous tumors can help

in identifying the genes that are associated with

each cancer type.168–170 Moreover, nsSNV impact

can provide clinical information. For example, even

when only the TP53 gene is under consideration,

predicting the impact of head and neck tumor muta-

tions can stratify patient survival into statistically

significant groups.171

Several nsSNV impact predictors have specifi-

cally applied their method to cancer gene discovery,

including CanPredict,141 MutationAssessor,65 and

SNPs3D.142 CanPredict is a Random Forest classi-

fier, trained on 800 cancerous and 200 non-

cancerous mutations, that uses SIFT172 and Pfam-

based scores173 to predict impact, and Gene Ontol-

ogy174 to predict cancer association. This method

identified as cancer-associated several novel germ-

line variants that were not present in controls, sug-

gesting they are markers for increased cancer

risk.141 The MutationAssessor method predicted the

impact of over 10,000 nsSNVs from the COSMIC

database,175 which combined with the total number

of mutations in a gene and the frequency of each

mutation in different tumors, ranked genes for can-

cer association, recovering known drivers (TP53,

PTEN, etc) and suggesting many others.65 The

SNPs3D method, consisting of two SVMs based on

protein stability and homology respectively, was

applied to about 2000 somatic mutations from colo-

rectal and breast cancer to find that virtually all

mutations in known cancer genes are predicted to

impact protein function and therefore can be

detected by nsSNV impact prediction methods.142

These methods produced intriguing novel predictions

and may foreshadow wider use of nsSNV impact pre-

dictions to elucidate cancer mechanisms.

Predicting the phenotypic behavior of single

organisms by integrating the impact of multiple
mutations

Although a simple, clinically useful pipeline to reli-

ably annotate all likely phenotypes from a human

genome is not yet possible,176 predicting phenotypic

variation from genome sequences has made signifi-

cant advances in model organisms like yeast and

has illustrated the centrality of SNV impact predic-

tion to these efforts.143 Genome-scale reverse genetic

screens in model organisms have produced thorough,

if not complete, sets of genes associated with a vari-

ety of phenotypes, aiding the prediction process and

allowing for proof-of-concept experiments that apply

to human genotype-to-phenotype research.177 One

such study used gene sets for 115 phenotypes

described by the Saccharomyces Genome Database

(SGD)178 and considered how the mutational load in

the protein-coding regions of these gene sets varied by

yeast strain. The study applied a nsSNV effect predic-

tor, SIFT,172 to determine the probability of damage

for non-synonymous mutations. The overall phenotypic

effect was calculated with an additive model that com-

bined the SIFT scores with heuristic rules that eval-

uated premature stop codons and insertions and

deletions.178 The actual phenotypic responses of the

strains were experimentally determined and they were

predicted by the genotype with an ROC AUC value of

0.76.143 These results offer hope that in the future

SNV impact prediction methods may be similarly

applied to integrate the impact of multiple mutations

in the human genome as the genes known to be associ-

ated with a phenotype become more complete.179

Future Directions

What are the future challenges the field of SNV

impact prediction needs to address?

Context-dependence. Despite steady progress in

predicting the impact of non-synonymous coding var-

iations, there remains a myriad of challenges for

determining how the phenotype of an individual orga-

nism is affected by a specific SNV. For example, it is

important to know whether and how the phenotypic

impact is mitigated by zygosity,180,181 epistasis,182,183

mosaicism,184 gender,185,186 environment,187 epige-

netics,188,189 or other unknown factors affecting pene-

trance and expressivity.190 The recently launched

“Resilience Project”191 aims precisely to identify the

factors that buffer disease in apparently healthy

patients that carry high-risk disease variants.192 As

our understanding of these factors expands, we may

be able to incorporate this information on a large scale

and provide personalized impact predictions.

Impact of protein function loss on phenotype.

A necessary intermediate step in integrating genetic
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information is to understand the phenotypic associa-

tion of each protein and its impact on the overall fit-

ness of a species. For example, a SNV in a gene may

render the protein nonfunctional, but this loss of

protein function can, depending on the role of that

protein, be fairly neutral to the organism193 or have

observable consequences,194,195 including lethality.196

An additional complication comes from the redun-

dant function of proteins or pathways, resulting in

no noticeable phenotypic change when losing the

function of only one involved gene.197,198 SNV

impact prediction does not yet make any a priori

assumptions about gene importance, but when the

gene involved in the phenotype is well established,

it can stratify patient outcomes171 and disease sever-

ity.50 Large-scale projects like the NIH Knockout

Mouse Project (KOMP)196 and particularly system-

atic surveys of incidental human knockouts199–201

promise to shed light on the relative importance of

the genes, their role in diseases, and the gene

redundancy within a genome, presenting an oppor-

tunity for a leap forward in variant prioritization.

Noncoding regions. Finally, evidence that more

than 80% of the human genome may display some

functionality202 suggests that there are important

limitations in exclusively analyzing exome sequenc-

ing data. Consequently, SNV impact prediction is

beginning to branch into noncoding regions of the

genome. Two recent tools, mrSNP39 and Micro-

SNiPer40 attempt to identify SNVs in 3’UTR regions

that disrupt miRNA binding, and RNAsnp41 predicts

the effect of SNVs on the local structure of noncod-

ing RNAs. Future tools will hopefully expand upon

this work and may also begin to predict how non-

coding SNVs alter methylation patterns and other

epigenetic changes.203,204 With the discovery that

SNVs in noncoding regions are sometimes disease

associated,34–38 additional methods to deal with

these variants will likely arise over time to tackle

this problem.

Developing computational methods to estimate

the functional impact of SNVs is crucial to under-

standing the genotype–phenotype relationship, and

their importance to research and clinical practice

will only grow as sequencing costs plummet further.

Already many nsSNV impact prediction methods

find broad applications to guided mutagenesis and

to the identification of disease causing variants and

genes. There are already a plethora of tools avail-

able and many new ones complicate the choice of

which to use. This review explored current predic-

tors of functional impact in light of the strengths

and limitations of the fundamental principles they

apply. Factors such as tool availability, public usage,

and, most importantly, accuracy must be carefully

weighed and understood in the context of the target

dataset. In the future, the technical improvements

and the availability of new sequence and SNV data

should help the computational methods to predict

the impact of SNVs with even higher accuracy.
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