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ABSTRACT

The possible effect of transfer ribonucleic acid
(tRNA) concentrations on codons decoding time is
a fundamental biomedical research question; how-
ever, due to a large number of variables affecting this
process and the non-direct relation between them, a
conclusive answer to this question has eluded so
far researchers in the field. In this study, we perform
a novel analysis of the ribosome profiling data of
four organisms which enables ranking the decoding
times of different codons while filtering translational
phenomena such as experimental biases, extreme ri-
bosomal pauses and ribosome traffic jams. Based on
this filtering, we show for the first time that there is a
significant correlation between tRNA concentrations
and the codons estimated decoding time both in
prokaryotes and in eukaryotes in natural conditions
(−0.38 to −0.66, all P values <0.006); in addition,
we show that when considering tRNA concentra-
tions, codons decoding times are not correlated with
aminoacyl-tRNA levels. The reported results support
the conjecture that translation efficiency is directly
influenced by the tRNA levels in the cell. Thus, they
should help to understand the evolution of synony-
mous aspects of coding sequences via the adapta-
tion of their codons to the tRNA pool.

INTRODUCTION

The way in which intracellular transfer ribonucleic acid
(tRNA) levels affect messenger RNA (mRNA) decoding
times is still debatable, due to the complexity of quantify-
ing these effects (1–11). First, gene expression is affected
by a large number of factors; for example, gene transla-
tion efficiency is determined by various features of the tran-
script (e.g. mRNA folding (2,12), context of the start codon
(13,14), length of the different parts of the transcripts (15),
charge of the amino acids (16,17), intracellular concen-
trations of mRNA molecules (18), ribosomes (19), tRNA
molecules (20–23), aminoacyl-tRNA synthetases (aaRS)

(24) and the intracellular concentrations of dozens of initia-
tion and elongation factors (24,25)); thus it is impossible to
completely control for non-causal relations between these
two variables (1–3,6,7). Second, heterologous gene expres-
sion, which is often used to study such relations, may not
reflect the decoding time of endogenous transcripts since
they tend to violate the natural intracellular regimes (1,5,7).
Third, although most large-scale measurements of the dif-
ferent stages of gene expression do not directly measure
translation elongation rates, they are nevertheless used as
a proxy of this variable (e.g. protein levels are often used as
a proxy for translation rates (1–3,5,8,26), neglecting addi-
tional levels of control that govern the synthesis and degra-
dation of mRNAs and proteins).

The current cutting-edge methodology for studying
mRNA translation is ribosome profiling (Ribo-seq), which
is based on deep sequencing of ribosome-protected mRNA
fragments and produces a detailed account of ribosome oc-
cupancy on specific mRNAs under endogenous conditions
(27). Recently, several studies (5,10,11) using ribosome pro-
filing data found insignificant correlations between tRNA
levels and codons decoding times, inconsistent with previ-
ous studies based on other methodologies and data sources
(1,4,8,9,28–30).

In this study, we develop a novel statistical approach
specifically tailored for analyzing ribosome profiling data
of both prokaryotes and eukaryotes. The new approach en-
ables a better understanding of the different variables that
contribute to the codon decoding time. We show for the
first time that when filtering out rare events such as long
pauses in translation elongation, the correlation between
codon decoding times and tRNA levels is significant for en-
dogenous transcripts in all analyzed organisms. This rela-
tionship is not only fundamental for human health (31–33)
but also affects biotechnology (7,8) and disciplines such as
molecular evolution (1,5,30,34,35) and functional genomics
(6,9,26,28,29,36).
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MATERIALS AND METHODS

Reconstruction of the Open Reading Frame (ORFs) riboso-
mal profiles of the analyzed organisms

Saccharomyces cerevisiae ribosomal profiles were recon-
structed using the data published in the GEO database,
accession number GSE13750 (GSM346111, GSM346114)
(27). Caenorhabditis elegans ribosomal profiles of genes ex-
pressed in the L4 larval stage were built from Illumina se-
quencing results (NCBI Sequence Read Archive, accession
number SRR52883) (37). Escherichia coli and Bacillus sub-
tilis profiles were built from the published Illumina sequenc-
ing results (GEO database, accession number GSE35641)
(11). Full details regarding the alignment method appear in
the Supplementary text.

Calculating the normalized footprint count (NFC) - data nor-
malization

To avoid analyzing ribosomal profiles of genes with many
missing read counts (RCs) that may result in a non-reliable
estimation of the local ribosome density, only genes with a
median RC above 1 were included in the analysis. Previous
studies indicated an increase of RCs at the beginning of the
ORF (10,38) and for some organisms at the end of ORF
(11), therefore the first and last 20 codons were excluded
when determining these thresholds or when calculating the
average RCs per ORF. The exact number of genes included
in the analysis after applying this filter is depicted in Sup-
plementary Table S1.

To enable comparison and analysis of RCs of codons of
the same type originating from different genes, RCs of each
codon were normalized by the average RCs of each gene;
this normalization controls for possible different mRNA
levels and initiation rates of different genes and has been
performed in previous studies (5,11). To prevent biasing the
average with codons containing less than one RC, those
were excluded from the analysis (a similar procedure has
been performed in a previous study (11)). Therefore this
normalization enables measuring the relative time a ribo-
some spends translating each codon in a specific gene rela-
tive to other codons in it, while considering the total number
of codons in the gene, resulting in its normalized footprint
count (NFC):

NFC j = RC j
1

J−40 (RC21 + RC22 + · · · + RCJ−20)
,

j = 21..J − 20

where J is the number of codons in the gene and j is the
index of a codon; see also Figure 1B.

Calculating the NFC distributions

To study the translation time properties of different codons,
for each codon type we generated a vector consisting of
NFC values originating from all analyzed genes. These
vectors were used to generate for each codon type a his-
togram reflecting the probability of observing each NFC
value in the expressed genes (the number of times each NFC
value occurs in the data normalized by the total number of

Figure 1. Schematic description of the ribosome profiling method and
generating the NFC distributions. (A) Translation of codons on mRNAs
(black circles) by ribosomes (blue shapes) is arrested, then exposed mRNA
is digested. Protected mRNA footprints are then sequenced and mapped to
the genome, creating for each gene its read count (RC) profile. (B). Illustra-
tion of the codons NFC distributions inference from a set of RC profiles:
to control for different mRNA levels and translation initiation rates, RC
profiles of S. cerevisiae (here only YDR471w and YDR155c RC profiles
are illustrated) are normalized per gene by their mean RC value, resulting
in NFC profiles. Then, NFC values of each specific codon type (NFC val-
ues of codons of type ‘AAA’ are marked by teal ‘x’ while NFC values of
codons of type ‘TTT’ are marked by magenta squares) are collected from
all analyzed genes and presented using a histogram, where the x-axis rep-
resents the NFC values and the y-axis represents the fraction of the time
(probability) each NFC value appears in the analyzed genes, thus creating
the NFC distribution of a codon. For example, the codon ‘TTT’ appears
with an NFC value that equals 1 in the analyzed genes in 0.48% of the
times (probability of 0.0048; dashed green lines in the ‘TTT’ histogram).

times the codon appears in the data) which was named the
‘NFC distribution’ of the codon (see also Figure 1B). The
black histograms in Supplementary Figures S1–S4 depict
the NFC distributions of each type of codon, for all ana-
lyzed organisms. As summarized in Supplementary Table
S2 the mean variance of NFC values of the codons differs
between different organisms, such that prokaryotes have a
higher NFC standard deviation range, which is associated
with more prominent translational pauses (11).

The skewness of a distribution

Skewness measures the lack of symmetry of a distribution.
Given a data set of samples Y1, Y2, ..., YN their skewness is
defined as

skewness(Y1, Y2, ..., YN) =

N∑
i=1

(Yi − Ȳ)3

(N − 1)σ 3
,

where Ȳ symbolizes the mean, σ the standard deviation and
N the number of points.

Inferring the two components of the NFC distributions

Based on the characteristics of the NFC distributions, we
suggest that their topology could result from a superpo-
sition of two distributions/components: the first one de-
scribes the ‘typical’ decoding time of the ribosomes, which
was modeled by a normal distribution characterized by its
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mean μ and variance σ 2 with a probability density function
fx(x; μ, σ ) (for a random variable X) of

fx(x, μ, σ ) = 1

σ
√

2π
e− (x−μ)2

2σ2 .

The second component describes relatively rare trans-
lational pauses and ribosomal interactions such as traffic
jams due to the codons’ different translation efficiency and
was modeled by a random variable with an exponentially
distribution, characterized by one parameter λ with a prob-
ability density function, fz(y; λ), (for a random variable Y)
of

fy(y; λ) = {λe−λy, y ≥ 0
0, y < 0 .

It is known that the distribution of a random variable
w(t) that is a sum of two independent random variables f (t)
and g(t) (i.e. w(t) = f (t) + g(t)) is calculated as convolution
between the two distributions (39):

w(t) = f (t) ∗ g(t)

=
t∫

−∞
f (τ )g(t−τ )dτ ∀ f, g : [−∞,∞) → R.

Thus, the summation of two independent normal and
exponential random variables corresponding to the distri-
butions mentioned above results in a distribution that is
named ‘exponentially modified Gaussian’ (EMG) and is a
convolution of a normal and exponential distribution; for-
mally, the EMG distribution function, fz(y; μ, σ, λ), of a
random variable Z (where Z = X + Y)(40) is

fz(z; μ, σ, λ) = λ

2
e

λ
2 (2μ+λσ 2−2z)er f c(

μ + λσ 2 − z√
2σ

),

where

er f c(x) = 1 − er f (x) =
∫ ∞

x
e−t2

dt.

The parameters μ, σ, λ were estimated by fitting the mea-
sured NFC distributions to the EMG distribution, under
the log-likelihood criterion. Estimated μ, σ, λ values ap-
pear in Supplementary Table S11. It should be mentioned
that the EMG distribution does not necessarily define an
equal weight for the Gaussian and exponential distribu-
tions. Rather, the optimization of the μ, σ, λ parameters de-
fines their optimal weight. For additional insights regarding
the expected relation between the μ and λ parameters see
the Supplementary section.

In addition, we fit the NFC data using an EMG model
with an identical exponential distribution parameter for all
codons; in this model, the � parameter was optimized for
all codons under the log-likelihood criterion. Moreover, the
NFC distribution was fit also using the exponential and
Gaussian distributions separately. The goodness of these fit-
tings was compared and analyzed by using the Akaike in-
formation criterion (AIC) score (more details below).

Evaluating the goodness of models using the AIC score

Comparison between the different fitting models was eval-
uated using the AIC (41). This measure considers both
the number of parameters in the model and the fit (log-
likelihood) of the data to the model (i.e. it penalizes more
complicated models). Lower AIC score is related to a model
that is better fitted to the data.

Calculating codons adaptiveness value to tRNA levels wi

The tRNA adaptation index (tAI) (42) uses the adaptive-
ness of the codons of a gene to the tRNA pool. Let us
mark the adaptiveness value of codon of type i with Wi . Let
tCGNi j be the copy number of the j-th anti-codon that rec-
ognizes the i-th codon and let Si j be the selective constraint
of the codon–anti-codon coupling efficiency. The svector
(42,43) [sI:U, sG:C, sU:A, sC:G, sG:U, sI:C, sI:A, sU:G, sL:A] was
defined for prokaryotes as [0, 0, 0, 0, 0.41, 0.63, 0.9749,
0.68, 0.95] and for eukaryotes as [0, 0, 0, 0, 0.561, 0.28,
0.9999, 0.68, 0.89]. Then, the absolute adaptiveness value
of a codon is defined by

Wi =
ni∑

j=1

(1 − Si j )tCGNi j .

Let us mark the relative adaptiveness value of codon i
with wi by normalizing each Wi with the maximal Wi value
among the 61 Wi values. A codon typical decoding time
CDTi used for the Totally Asymmetric Simple Exclusion
Process (TASEP) simulations was defined as

CDTi = 1
wi

,

where codons with low adaptiveness values to the tRNA
pool will be more slowly translated.

Simulating ribosome density profiles using the TASEP model

Ribosome density profiles were simulated using the TASEP
biophysical translation model, previously used in different
studies (44,45). In this model, the mRNA was simulated us-
ing a lattice of N sites, where N represents the number of
codons of the ORF. Each ribosome was defined to cover 11
codons and its A site was located at the sixth codon. During
translation, any codon could be covered at a time by a sin-
gle ribosome at most. In each step of the simulation, a single
ribosome was allowed to attach itself to the lattice/advance
to the next codon if the first/next six codons were not oc-
cupied. The time between initiation attempts was set to be
exponentially distributed with a constant rate ψ . Similarly,
the time between jump attempts from site i to site i + 1 was
assumed to be exponentially distributed with rate ψi .

The time between events (initiation or jumping between
sites) is therefore exponentially distributed (minimum of ex-
ponentially distributed random variables) with rate

μ(ni ) = ψ +
N∑

i=1

niψi ,

where i describes the site (codon) number on the lattice
and ni = 1 if codon i is being translated, otherwise ni = 0.
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Therefore the initiation probability is given by ψ/μ(ni ) and
the probability of a ribosome to jump from site i to site i + 1
is given by niψi/μ(ni ).

In this study S. cerevisiae genes that contained a sufficient
number of RCs (see the criterion in Supplementary Table
S1) and with a least 50 codons were simulated. Codons’ de-
coding rate ψi was set according to their adaptiveness to
the tRNA pool (specific codon decoding times (CDT) val-
ues used in the simulation are presented in Supplementary
Table S3), where

ψi = wi .

The initiation rate ψ was set to be as the decoding rate
of the fastest codon. To reach a steady-state distribution on
the mRNA, the simulation of each mRNA copy was run
until 200 ribosomes finished translating the gene. At this
point of the simulation, codons covered by ribosomes were
referred as ribosomal protected fragments. For each simu-
lated gene the TASEP model was run for m times, where m
represents the mRNA level of the gene. This parameter was
set to be the maximal measured RC value of each gene. The
protected fragments of each one of the m simulations of a
gene were used to create its ribosomal profile as previously
described for S. cerevisiae.

To simulate the effect of translational pauses on the NFC
distributions, codons of S. cerevisiae with NFC higher than
3-fold of the mean NFC of the ORF (based on the real
measurements, when excluding codons with zero RCs (11),
i.e. codons with NFC higher than 3) were defined as loca-
tions of translational pauses. The decoding time of these
codons was set to be proportional to the NFC of the mea-
sured pauses in the real ribosomal profiles. Specifically, we
defined the simulated translational pauses translation time
to be proportional to the mean simulated mean RCs, as in
the real data, i.e.

simulated TT T P(k)
simulated mean TT(gene)

= RC T P(k)
mean RC(gene)

,

where k is the index of the codon; simulated TT T P(k)
is the simulated translational time of codon k;
simulated mean TT(gene) is the mean simulated trans-
lational time of all codons in the gene not defined as
translational pauses; RC T P(k) is the real RC of the trans-
lational pause of the gene at codon k; and mean RC(gene)
is the real measured mean RC of all codons in the gene not
defined as translational pauses.

Protein abundance and mRNA level measurements of S. cere-
visiae and E. coli

S. cerevisiae protein abundance (PA) measures were av-
eraged from four quantitative large-scale measurements:
two large-scale measurements in two conditions (46) and
a large-scale PA measurement from two sources (47,48).
mRNA levels were determined by averaging large-scale
measurements of mRNA levels (27,49). E. coli PA measure-
ments were downloaded from the PRIDE database (50) and
mRNA level measurements were taken from another source
(51). Aminoacyl-tRNA synthetase protein levels and quan-
tities of S. cerevisiae (52) and E. coli (53) were used from
(52) and (53), respectively.

Inferring the weighted typical decoding times and tRNA levels
per amino acid

To enable comparison between aaRS levels, tRNA levels
and typical decoding times, we defined the representative
tRNA level of each amino acid as the sum of tRNA lev-
els corresponding to the amino acid weighted by the fre-
quency of codons in the ORFs that translate it. Let fi de-
note the frequency of codon i and tRNAi its corresponding
tRNA level. Thus, the weighted tRNA level of an amino
acid equals

tRNAweighted =
P∑

i=1

fi tRNAi .

Similarly, the typical amino acid decoding time μaa also
took into consideration the codon frequencies of the codons
coding it, thus was defined as

1/μaa =
P∑

i=1

fi
1
μ i

,

where P depicts the number of codons coding to a specific
amino acid and μi depicts the typical codon decoding time.

Estimating the typical amino acid decoding time using a lin-
ear regressor of the weighted tRNA levels and aaRS levels

To estimate to what extent the aaRS levels improve the
prediction of the amino acid decoding time (relative to
tRNA levels only), we have modeled the relationship be-
tween amino acid decoding times and the two aforemen-
tioned possible explanatory variables by using a linear re-
gressor (54)

μaa = c + w1aaRS + w2tRNAweighted,

where the coefficients c, w1 and w2 are estimated as to min-
imize the mean square error difference between the predic-
tion vector μ̃aa and the real measurements μaa. Absolute
Spearman correlation between μaa and μ̃aa was compared
to Spearman correlation between μaa and tRNAweighted to
determine if the linear regressor based on aaRS levels im-
proves the correlation. The correlation coefficient between
μaa and μ̃aa was adjusted due to an increased number of
explanatory variables using the correction equation (55)

r 2 = 1 − (1 − r 2)
n − 1

n − p − 1
,

where r depicts the Spearman correlation coefficient, n de-
picts the sample size (in this case n = 20) and p depicts the
total number of regressors (in this case p = 2). For each of
the coefficients c, w1 and w2 their confidence interval (56)
was calculated to determine the reliability of the estimates
(at a 95% confidence interval). A coefficient’s confidence in-
terval that does not contain zeros implies that it significantly
contributes to the regression, i.e. the coefficient is not zero
(56).
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RESULTS

Estimating the codons relative decoding times from ribosome
profiling data

We began our analysis by reconstructing ribosome profiles
for E. coli (11), B. subtilis (11), C. elegans (37) and S. cere-
visiae (27) expressed genes. The ribosome profiling method
produces ribosome footprint counts that are proportional
to the time spent in decoding each codon of all translated
transcripts in a genome, at single nucleotide resolution (see
Figure 1A and Supplementary Methods). To enable a com-
parison between footprint counts of codons from different
genes we applied to them a conventional normalization (11)
(see the Materials and Methods section; Figure 1B) and
named this value the Normalized Footprint Count (NFC).
To gain an initial understanding of the NFC values in natu-
ral conditions, we calculated a histogram reflecting the dis-
tribution of the NFC values of each codon in the expressed
genes for each codon in each organism; we call this his-
togram the ‘NFC distribution’ of the codon. Each NFC dis-
tribution (see Figure 1B and Supplementary Figures S1–S4)
describes the probability (y-axis) of observing each of the
codon’s NFC values (x-axis) in the ORFs of the analyzed
organism.

The mean codons decoding time is extremely sensitive to ex-
treme values caused by translational pauses

The intuitive way for representing the decoding time of a
codon is by calculating the average of all NFC values for
each codon (we name this estimation mean NFC), which
was implemented in several previous studies (5,11) with
some variation. However, as can be seen in Figure 2A the
NFC histograms show a right-skewed distribution with
‘right tails’, reflecting possible interactions between ribo-
somes such as ribosomal jams, rare but extreme events such
as translational pauses (10,11) and/or experimental biases
(10,57,58). Therefore, straightforward mean NFC estima-
tions (see also Supplementary Tables S4 and S5) may have
been biased by these factors, thus did not accurately repre-
sent the typical codon decoding time.

To illustrate the statistical problem and evaluate the sug-
gested approach in a controlled environment where the
codons decoding times are known, we started our analysis
by first creating different TASEP simulations of the ribo-
some profiling experiment (see the Materials and Methods
section and Figure 2B). In the first simulation, all codons
decoding times were set to be exponentially distributed with
the same parameter ψ = 1 and with a low initiation rate of
0.3 (thus generally no ribosomal jamming was created; no
translational pauses were added). The resulting NFC dis-
tribution of the codons (Supplementary Figure S05) shows
that when no interactions between codons/biases/pauses
are present, the expected NFC distribution is similar to a
Normal distribution (comparison of codon NFC distribu-
tion to Normal distribution under Kolmogorov–Smirnov
(KS) test: mean P-value = 0.27).

However, deviations from the theoretic Normal distri-
bution are expected due to ribosomal jamming caused by
different codons decoding efficiency, translational pauses
and experimental biases such as a low number of mRNA

Figure 2. Visualization of the NFC distributions in real and simulated
data. (A) NFC distributions (e.g. S. cerevisiae) consist of two components:
one that is centered around the most frequent (typical) NFC values in the
distribution and another that consists mainly of high NFC values, asso-
ciated with extremely slow translation events, e.g. translation pauses. The
graph shows the NFC distributions of all S. cerevisiae codons. (B) Descrip-
tion of the TASEP simulation model: each gene has its own specific initi-
ation rate; ribosomes cover multiple codons and can continue translating
if the adjacent downstream codons are not covered by ribosomes. Each
codon is associated with its typical decoding time. (C) NFC distributions
of all codons based on the S. cerevisiae genes simulated with the TASEP
model without translation pauses. In the absence of translational pauses
the ‘right tail’ region is negligible. (D) NFC distributions of all codons
based on the simulated S. cerevisiae genes when 4% of the codons are al-
tered to cause translation pauses. The additional translational pauses are
reflected as increased peaks in the ‘right tail’ region of the distribution.

copies per gene. To demonstrate this, we created an addi-
tional TASEP simulation of the ribosome profiling exper-
iment where each codon was assigned a unique decoding
time. According to the TASEP model, a queue of ribosomes
(or ribosomal jamming) is expected upstream of a slow
codon. These jams can result from slower codons (reflected
by high RCs) or from translational pauses (reflected by very
high RCs). Therefore the effective decoding time of a codon
ci can be higher than its nominal decoding time if a slower
codon (or a translational pause) appears downstream of it,
causing a traffic jam that eventually affects codon ci . As a
result, the NFC distribution of a codon type can be skewed
from the expected symmetric ‘Normal like’ distribution in
the TASEP simulation where no pauses are present and all
codons have equal translation decoding times. Thus, over-
all it is expected that codons with faster translation time
will be more influenced by ribosomal jams and transla-
tional pauses, leading to an NFC distribution with a thicker
‘right tail’ and higher ‘skewness’ (i.e. asymmetricity; see the
Materials and Methods section). As expected, in the pres-
ence of ribosomal jamming, the simulated NFC distribu-
tions deviated from expected Normal distribution, creating
a right-skew/right tail (see Figure 2C and Supplementary
Figure S06). Specifically, the mean/median/max skewness
was 0.078/0.086/0.13, respectively. However, even when the
codons decoding time differed, still a highly significant cor-
relation was observed between the mean NFC values and
simulated decoding times (Spearman correlation: r = 0.99;
P = 3.5 × 10−52; Figure 3B).
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Figure 3. tRNA levels are correlated with the estimated � in real and simulated data. (A) NFC distribution of codon AAA of S. cerevisiae is depicted as
ahistogram. The combined normal/exponential model fitting is plotted as a curve. The position of the mean NFC value is presented with a vertical line.
The NFC distribution can be decomposed into a normal (which includes the parameter �) and an exponential component using a log-likelihood fitting.
(B) Estimated mean NFC/� values of simulative ribosome profiles versus simulated decoding times in the absence and presence of translation pauses. (C)
Estimated � values of the real ribosome profiles plotted against tRNA levels (first row), tRNA copy numbers (second row) and tAI values (third row) for
the various organisms analyzed. Fitting lines are also shown in all cases.

To demonstrate that the mean codon decoding time is
very sensitive to rare and extreme pauses, we added to the
previous TASEP simulation translational pauses in only
4% of the positions of the ORFs (see details in the Ma-
terials and Methods section). In the presence of trans-
lational pauses, the skewness of the NFC distributions
(see Figure 2D and Supplementary Figure S07) increased
(mean/median/max of skewness = 0.18/0.19/0.23, respec-
tively) and dramatically reduced the correlation between
mean NFC and simulated decoding times (Spearman cor-
relation: r = −0.11; P = 0.39; Figure 3B). Therefore, this
result suggests that the mean estimator is very sensitive to
phenomena such as extreme values caused by translational
pauses.

The estimated typical codon decoding times are significantly
correlated with tRNA levels

To estimate the typical decoding time of each codon based
on NFC distributions, we developed a novel statistical
model, which takes into consideration the skewed nature
of the NFC distribution that includes three parameters. In
this model, the typical codon decoding time was described
by a Normal distribution with two parameters: mean (�)
and standard deviation; the � parameter represents the lo-
cation of the mean of the theoretical Gaussian component
that should be obtained if there are no phenomena such as
pauses/biases/ribosomal traffic jams (see Supplementary
Figure S5); � represents the width of the Gaussian compo-
nent, while λ represents the skewness of the NFC distribu-
tion. Rare and extreme translation pauses and translational
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features such as ribosomal jamming caused by codons with
different decoding times were described by an exponential
single-parameter distribution (see illustration in Figure 3A
and more details in the Materials and Methods section). We
used the conventional maximum likelihood criterion to es-
timate these three parameters for each codon and organ-
ism by fitting the suggested model to the NFC distribution
(see the Materials and Methods section and Supplementary
Figures S1–S4). When employing this approach on the sim-
ulated data generated in the presence of translation pauses
as mentioned above, we obtained an extremely high corre-
lation between the simulated decoding times and the esti-
mated decoding time values (�) over the entire set of codons
(Spearman correlation: r = 0.99; P = 6.9 × 10−48; Figure
3B); this result demonstrates the high accuracy of the new
approach.

Next, we applied our approach on real ribosome profiling
data. First, we fit the NFC data to the EMG distribution.
For comparison purposes the AIC score (see the Materials
and Methods section) was calculated for this model and we
compared the goodness of fitting when using only a Gaus-
sian or an exponential fitting (see Supplementary Table S6).
The results indicate that in all organisms the EMG exhibits
a lower AIC score, supporting the conjecture that EMG dis-
tribution better describes the NFC distribution than either
the normal or the exponential distributions alone.

In addition, we also considered an EMG model with an
identical exponential distribution parameter for all codons
(see the Materials and Methods section) and show that it
also decreases the data fit (see Supplementary Table S7).
This further showed that the EMG model with three free
parameters better fits the NFC data.

If tRNA levels affect codons translation efficiency, we
would expect them to correlate with the estimated typical
codon decoding times (�). Indeed, we found such a sig-
nificant correlation between � and tRNA levels in all or-
ganisms with available tRNA level measurements (E. coli
(59), B. subtilis (60) and S. cerevisiae (28); Spearman corre-
lation was between −0.38 and −0.66, all P-values <0.006;
see Figure 3C). Significant Spearman correlations were also
obtained when tRNA copy numbers were used as a proxy
for absolute tRNA levels (28,60) (r = −0.5 to −0.75, all
P-values <0.0004; Figure 3C). A similar observation was
made when using the tAI (2,42) of the different codons (see
the Materials and Methods section), which considers not
only codon–anti-codon interactions but also wobble inter-
actions with other tRNA molecules (r = −0.42 to r = −0.67;
all P-values <0.0007; Figure 3C). To control for possible
biases resulting from codons which are more abundant and
thus for example are known to be recognized by more abun-
dant tRNA species (20,21,23,45,61), the analysis was re-
peated when calculating the NFC distributions based on an
equal amount of RCs for all codons sampled from the real
ribosomal profiling data; the results in this case were similar
(Supplementary Figure S8). This indicates that our conclu-
sions are not dependent on the amount of RCs per codon
type, therefore eliminating a possible bias caused by this fac-
tor. Finally, we obtained similar significant correlation also
when we considered an EMG model with an identical expo-
nential distribution parameter for all codons (Supplemen-
tary Table S8).

The estimated typical codon decoding times are not corre-
lated with aaRS levels given the tRNA levels

In the previous section, we showed that the estimated codon
decoding times are significantly correlated with tRNA lev-
els. However, the decoding time of codons could be affected
by additional factors such as aaRS concentrations. In this
section, we estimate the effect of aaRS concentrations on
the typical decoding times and compare it to the effect of
tRNA levels on the typical decoding times.

Each amino acid (or its precursor) has only one corre-
sponding aaRS which catalyzes its esterification to one of
all its compatible cognate tRNAs; thus in this section, we
analyze the effect of aaRS PA and mean tRNA levels on
the typical amino acid decoding times μaa (see details in
the Materials and Methods section). Specifically, the amino
acid decoding times μaa and their tRNA levels tRNAweighted
were computed via a weighted average that considers the
relative frequencies of all codons coding for each specific
amino acid (we analyzed two organisms with reliable aaRS
protein levels, E. coli and S. cerevisiae).

As expected, in both organisms aaRS protein levels neg-
atively correlate with amino acid decoding times, i.e. higher
protein levels correspond to shorter decoding times; only
in S. cerevisiae this correlation was significant (r = −0.32,
−0.66, P = 0.16/0.0018 for E. coli and S. cerevisiae, re-
spectively). However, since tRNA levels and aaRS concen-
trations are expected to undergo co-evolution to optimize
translation cost, they are expected to positively correlate,
i.e. amino acids with higher aaRS protein levels tend to have
higher levels of tRNA corresponding to their codons (r =
0.49/0.66; P = 0.031/0.0016/ for E. coli and S. cerevisiae,
respectively) and thus are expected to also affect codon de-
coding time in the same direction.

To study the distinct statistical contribution of tRNA
levels/aaRS protein levels to the measured μaa we cal-
culated partial Spearman correlation between μaa and
tRNAweighted given the aaRS protein levels and also par-
tial Spearman correlation between μaa aaRS protein levels
given tRNAweighted. We found that the partial correlation
corr(μaa, tRNAweighted| aaRS protein levels) is very high and
significant (r = −0.67/−0.63; P = 0.00017/0.0036 for E.
coli and S. cerevisiae, respectively) while the partial corre-
lation corr(μaa, aaRS protein levels | tRNAweighted) is not
significant (r = 0.04/−0.20; P = 0.88/0.42 for E. coli and S.
cerevisiae, respectively); these results support the conjecture
that in the analyzed organisms weighted tRNA levels rather
than aaRS levels explain the variance in μaa indicating that
μaa is more likely to be determined by the tRNA levels in
the cell.

Similar results were obtained based on a linear regression
analysis: when considering the number of explaining vari-
ables in the regressor (i.e. adjusting the correlation to the
number of variables in the regression; see the Materials and
Methods section), in both analyzed organisms the correla-
tion between μaa and its regressor based on aaRS protein
levels and the weighted tRNA levels per amino acid (see
the Materials and Methods section) was not higher than
the absolute value of the correlation between tRNA lev-
els and μaa(r = 0.58/0.77; P = 0.0029/0.0001 versus r =
−0.71/−0.81; P = 0.00063/1.8 × 10-5 for E. coli and S. cere-
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visiae, respectively); in addition, in both analyzed organisms
the confidence interval of the regressor’s aaRS protein lev-
els coefficient was not significantly different than zero (see
the Materials and Methods section), suggesting the insignif-
icant contribution of aaRS protein levels to the prediction
of μaa.

These results indicate that in the analyzed organisms
aaRS protein levels do not significantly improve the ex-
plained variance of the typical codon decoding times given
the tRNA levels; thus, our analyses support the conjecture
that typically tRNA levels and not aaRS protein levels are
a rate limiting factor during translation elongation.

The mean-estimated typical codons decoding times of genes
significantly correlate with their number of proteins per
mRNA molecules

To evaluate the influence of the estimated typical decoding
times on the genes’ translation efficiency (i.e. the protein lev-
els of a gene when controlling its mRNA levels or the num-
ber of proteins per mRNA molecule), we defined for each
gene a translation efficiency measure. This measure was de-
fined as the geometric Mean of the Typical Decoding Rates
(1/μ) of its codons (MTDR), in a similar manner that pre-
vious related codon bias usage indexes have been defined
(2,62).

Two organisms (E. coli and S. cerevisiae) with available
large-scale measurements of protein and mRNA levels were
analyzed. To prevent overfitting the results, the following
procedure was performed: for each organism, codons de-
coding times were estimated based on only 60% of the genes
(train set) with sufficient RCs (see details in the Materi-
als and Methods section); then, for the rest of the genes
(test set) with existing mRNA and protein abundance levels
(not participating in the learning phase) we computed the
MTDR based on the learned μ values.

Finally, partial Spearman correlation between PA lev-
els and MTDR when controlling mRNA levels corr(PA,
MTDR | mRNA) was computed for the test set; the pro-
cedure was repeated 10 times (see also a flow diagram in
Figure 4A), obtaining similar results: the correlation coef-
ficient for E. coli was between 0.49 and 0.58 (all P < 3.1 ×
10−16) and for S. cerevisiae the obtained correlation coeffi-
cient was between 0.5 and 0.57 (all P < 7.9 × 10−76). Results
of a single representative run of the procedure are presented
in Figure 4B–E. When controlling an equal amount of RCs
for all codons, the partial correlation obtained for E. coli
was between 0.44 and 0.61 (all P < 1.2 × 10−10) and for S.
cerevisiae was between 0.56 and 0.58 (all P < 2.6 × 10−109).

Significant results were also obtained when computing
the correlations between MTDR and PA/mRNA (the num-
ber of proteins per mRNA molecule) on the test set: corre-
lation coefficient for E. coli was between 0.41 and 0.52 (all P
< 3.1 × 10−11) and for S. cerevisiae the obtained correlation
coefficient was between 0.25 and 0.29 (all P < 9.1 × 10−19).
Similarly, when constraining an equal amount of RCs for
all codons, the correlation obtained for E. coli was between
0.41 and 0.55 (all P < 1.3 × 10−8) and for S. cerevisiae be-
tween 0.29 and 0.31 (all P < 1 × 10−323). These results indi-
cate that the translation efficiency of genes can be partially
explained by the codons typical decoding times estimated

Figure 4. Translation efficiency index based on the estimated typical
codons decoding time significantly explains the translation efficiency in E.
coli and S. cerevisiae. (A) Diagram showing the process of the calculat-
ing Spearman partial correlation between protein abundance levels of S.
cerevisiae and genes translation efficiency index (MDTR) when controlling
mRNA levels (corr(PA, MTDR | mRNA)). (B) Calculating the correlation
between protein abundance and MDTR measure (corr(PA, MTDR)) on E.
coli genes for five equal-sized bins with similar mRNA level values, for a
single representative run (Spearman partial correlation is 0.53, P < 1.2 ×
10−20). The specific P-value calculated for each bin apart appears above it.
mRNA level values for this presentation were normalized to range [0, 100].
(C) The same presentation as in (B) calculated for S. cerevisiae. The partial
Spearman correlation for this run is 0.54 (P < 1.26 × 10−91). (D) Dot-plot
of the log protein abundance (PA) values (normalized to range [0, 100])
versus MTDR values for genes in the bin obtaining the highest correlation
presented in (B), marked with an arrow. (E) The same presentation as in
(D) for S. cerevisiae.

using the newly suggested method, which in turn are signif-
icantly influenced by the abundance of tRNA molecules in
the cell. Finally, a similar analysis based on the mean NFC
estimator yields no significant correlation or very low corre-
lation to protein abundance: the correlation for S. cerevisiae
was between 0.10 and 0.2 (P < 0.0008) and for E. coli the
correlation was between 0.02 and 0.11 (P < 0.77).

It should be mentioned that the mean NFC estimator did
not result in a significant correlation with PA as it is very
sensitive to extreme translational pauses and to other phe-
nomena such as traffic jams and experimental biases which
are non-codon specific and blur the actual effect of the nom-
inal codon decoding time. The MDTR based on our ap-
proach estimates the typical/nominal translation speed of
each codon, therefore considers the direct contribution of
the codons to the elongation speed. Thus a correlation be-
tween PA and MDTR was observed, but not with the ge-
ometrical mean (over the codons in the ORF) of the mean
codon NFC values.

It is important to explain that the fact that there is corre-
lation between MTDR and PA per mRNA does not con-
tradict the fact that initiation usually tends to be more
rate limiting than elongation. Many previous studies have
demonstrated that even though initiation has higher cor-
relation with protein per mRNA (or other measures of
translation rate), elongation can also significantly explain
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non-negligible portion of the variance in translation rate
(2,3,8,20,21,23,63).

As translation efficiency is influenced not only by the
elongation rate but also by initiation rates and other un-
known additional factors, our correlation is, of course, sig-
nificant but not perfect, i.e. r = 0.5–0.6. Thus, MTDR can
explain around 25–36% of the variance in PA per mRNA
levels. Therefore additional major factors (such as initia-
tion) are needed to explain the variance in translation ef-
ficiency.

DISCUSSION

The analyses performed in this study support the conjecture
that both in eukaryotes and prokaryotes tRNA concentra-
tions affect codons decoding times. The decoding time of
codons recognized by tRNA species with lower intracel-
lular concentrations tends to be longer. It was suggested
before that there is a relation between the adaptation of
an ORF to the intracellular tRNA concentrations and its
translation rate (1–4,6,7,20,22,23,26,28,29,31,34,36,47,64);
however, this is the first time that a direct relation between
these two variables is shown. We believe that due to noise
and biases in the data (e.g. possibility to accurately deter-
mining the exact P-site position related to the read) the
reported results are only lower bounds of the actual rela-
tions. Nevertheless our findings do not contradict the pos-
sible effect of other factors on translation elongation speed
(2,11,45,65); for example, it was recently shown that the
anti-Shine–Dalgarno-like sequences (11), charge of amino
acids (45,65) and folding strength of the mRNA molecule
(45,66) affect elongation rate and translation efficiency. Sev-
eral different factors can affect this process and it is not al-
ways trivial to isolate the effect of each variable on it; fur-
thermore in different organisms, conditions and/or genes,
some factors may be more dominant than others. Thus, the
results reported in this study emphasize the complexity of
the translation elongation process and the way its efficiency
is encoded in the ORF. Naturally, the reported relation be-
tween codon decoding times and tRNA concentrations has
various fundamental ramifications.

First, we show that translation elongation speed is af-
fected by the adaptation of codons to the tRNA pool, ex-
plaining a mechanism by which the codon content of the
ORF can affect the organismal fitness. Thus, the reported
results should help to understand the evolution of synony-
mous aspects of coding sequences via the adaptation of
their codons to the tRNA pool (1,7,28,30,33–35,66).

Second, it was shown that the folding of proteins par-
tially occurs during translation elongation (67–71). In ad-
dition, several studies also suggested that the speed of
translation elongation affects co-translational folding of
the nascent peptide chain (34,70,72–75); specifically, it was
suggested that codon bias usage can affect the folding
of proteins, among others due to the two points above.
The results reported here suggest that the link between
codons bias usage and protein co-translational folding is
partially related to the effect of the adaptation of codons
to the tRNA pool on their decoding speed. Thus, our
results support previous studies that have suggested that
codons adaptation to the tRNA pool may affect protein

folding/function (2,4,26,29,34,36) and thus even cause hu-
man disease (31,32,65).

Third, various studies have suggested the existence of co-
evolution between transcriptomic codon frequencies and
the intra-cellular levels of the tRNA molecules recogniz-
ing them (5,61,76,77): codons with higher frequencies are
recognized by tRNA molecules with higher intra-cellular
levels; evolutionary changes that affect tRNA levels corre-
sponding to a certain codon are followed by evolutionary
changes that affect the codon frequency in transcripts in
the same direction and vice versa. The results reported in
this study suggest that this co-evolutionary process may at
least partially be mediated by the effect of tRNA species on
codon decoding times; specifically, increasing the frequency
of codons recognized by highly concentrated tRNA species
should improve elongation speed and thus the organismal
fitness.

It was also suggested that since eventually there is a
balance between demand (codon frequency) and supply
(tRNA levels), the codon decoding times of all codon
should be identical (5). Our study shows that this co-
evolutionary process does not produce a ‘perfect’ balance
as there is still a high correlation between codon decod-
ing times and intra-cellular levels of tRNA levels (the de-
coding time of codon recognized by more abundant tRNA
molecules is shorter). This scenario may be possible due
to the fact that there may be a delay between evolution-
ary changes in the intracellular tRNA repertoire and the
time it takes for evolutionary forces to shape codon fre-
quencies to match this repertoire. It is also possible that
there is a selection for non-prefect balance between tRNA
levels and codon frequency; the possible functional ad-
vantage of non-perfect balance may be related to the fact
that different codon decoding time may regulate transla-
tion and protein folding in various ways as mentioned above
(7,26,28,29,34,36,70,72–75).

Finally, here we studied the effect of tRNA and aaRS
levels on the typical codons decoding time; however, it
should be mentioned that the typical codon decoding time
is affected by several additional factors that the ribosome
profiling method cannot directly and/or separately mea-
sure. Among others, these factors include the amino acid–
tRNA accommodation time, peptidyl transfer time and the
time for the whole EF-G-driven translocation process. It
is not clear if the effect of these factors on elongation
rate differs among different codons and amino acids; we
also do not know to what extent these factors can explain
the non-prefect correlation between codon decoding time
and tRNA levels. The understanding of the contribution of
these factors to codon decoding time and specific answers
to these questions are deferred to future studies.
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