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.e effect of pH, ionic strength (NaCl added), agitation speed, adsorbent mass, and contact time on the removal of tartrazine from
an aqueous solution, using an organobentonite, has been studied. A complete factorial design 32 with two replicates was used to
evaluate the influence of the dye concentration (30, 40, and 50mg/L) and amount of adsorbent (25, 35, and 45mg) on de-
colorization of the solution. Experimental data were evaluated with Design Expert® software using a response surface meth-
odology (RSM) in order to obtain the interaction between the processed variables and the response. pH values between 2 and 9,
stirring speed above 200 rpm, and contact time of 60min did not have a significant effect on decolorization. .e optimum
conditions for maximum removal of tartrazine from an aqueous solution of 30mg/L were follows: pH� 6.0, NaCl concen-
tration� 0.1M, stirring speed� 230 rpm, temperature� 20°C, contact time� 60min, and the organobentonite amount� 38.04mg.
.e equilibrium isotherm at 20°C was analyzed by means of the Langmuir and Freundlich models, and the maximum adsorption
capacity obtained was 40.79± 0.71mg/g. .is adsorption process was applied in a sample of industrial wastewater containing
tartrazine and sunset yellow, having obtained a decolorization rate higher than 98% for both dyes. .ese results suggest that
organobentonite is an effective adsorbent for the removal of anionic dyes from an aqueous solution.

1. Introduction

Organic pollutants commonly found in the aquatic envi-
ronment are dyes, biocides compounds, phenols, surfac-
tants, pesticides, and pharmaceuticals, among others [1, 2].
As coloring agents, some dyes are resistant to degradation
and their presence in water might be harmful to human
beings and hazardous to aquatic organisms [3].

A recent report on artificial food colors in grocery
products marketed to children in North Carolina (USA)
found that tartrazine was present in 20.5% of the products
for consumption [4]. Tartrazine is a synthetic azodye used as
a food colorant to achieve yellow or green shades in sweets,
jellies, juices, jams, mustard, and sodas [5]. Additionally, it
has been extensively used to dye human pharmaceuticals,

such as vitamin capsules, antacids, and cosmetics [5, 6].
Pharmaceutical manufacturers and distributors from Can-
ada indicate that approximately 450 products contain tar-
trazine [7].

Toxicokinetic studies showed that less than 2% of
ingested tartrazine is directly absorbed andmost tartrazine is
broken down into metabolites such as sulfanilic acid and
aminopyrazolone in the colon [8, 9]. A recent study showed
clear absence of genotoxic activity for tartrazine in the bone
marrowmicronucleus assay and the Comet assay in the liver,
stomach, and colon of mice [10]. However, as an azodye,
tartrazine was subject to mutagenicity concern associated
with the possible generation of free amines in vivo by
azoreduction [11]. Other studies have reported that tar-
trazine may cause allergic reactions to some people,
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specifically those with asthma or aspirin intolerance [12]. It
has been suggested that children with hyperactivity can
develop increased irritability, restlessness, and sleep dis-
turbances after taking tartrazine [13].

.e high consumption of tartrazine is also guilty for high
amounts of this dye to be lost during the processing of food
and medicines, generating an environmental problem. Dyes
are visible to the human eye, even in a low concentration
(<1mg/L) [1, 14], and can reduce photosynthetic activity in
aquatic environments by preventing the penetration of light
and oxygen [15, 16]. .erefore, food industries must treat
their dye-containing effluents before discharging them into
natural water sources.

Among various water treatment methods such as ion
exchange, coagulation/flocculation, membrane filtration,
reverse osmosis, chemical precipitation, advanced oxidation,
and biological processes [3, 15, 17–20], adsorption is one of
the most widely used methods for the removal of dyes due to
simplicity of design, low cost, easy operation, high efficiency,
and reusability of material [20–25].

Various naturally occurring materials have been ex-
plored as adsorbents for the removal of dyes from waste-
water [26–28], activated carbon being one of the most
effective; however, it is not frequently used due to its high
cost [29]. As an alternative to activated carbon, organic
materials obtained from living or dead creatures (biomass)
and agriculture waste have been used as low-cost adsorbents
for the removal of pollution [20, 25, 30].

Natural clays are considered to be excellent low-cost
adsorbents for the removal of dyes from aqueous solutions
due to their high surface area and porosity, layered
structure, and high cation exchange capacity [31]. .ey
include bentonite, montmorillonite, perlite, dolomite, il-
lite, sepiolite, and kaolinite. .e adsorption efficiency of
clays is considerably enhanced after chemical modification
through acid activation, thermal activation, intercalation
and pillaring, surfactant treatment, and coating with metal
oxide and clay composites made with different biopolymers
[3, 24, 32].

One of the most commonly used clays as an adsorbent is
montmorillonite, a clay mineral member of the smectite
group. .e smectite layer structure is composed of two
tetrahedral sheets packed in an octahedral sheet to form a
TOT or 2 :1 layer [33, 34]. Isomorphic substitutions by
lower-valence cations occurring in tetrahedral and/or oc-
tahedral sheets induce a net negative charge of the layer..is
deficit is compensated by the presence of exchangeable
cations in the interlayer space (commonly Na+, K+, and
Ca2+). Although the adsorption capacity of montmorillonite
for cations is very high, it is low for anions..is situation can
be modified through an exchange of the inorganic cations
with organic cations (surfactants), resulting in an organically
modified clay mineral (so-called organoclay) [34–36]. .e
most common cationic surfactants used for clay modifica-
tion are quaternary ammonium salts, such as HDTMA
(hexadecyltrimethylammonium bromide), ODTMA (octa-
decyltrimethylammonium bromide), and TMAB (tetrade-
cyltrimethylammonium bromide) [3]. .is organically
modified clay mineral has a high adsorption capacity for

anionic dyes [37], acid dye (for example, methyl orange and
acid red) [38, 39], and reactive dyes (such as remazol brilliant
blue R) [40].

Raw bentonite possesses good adsorption properties of
cationic dyes, but low adsorption affinity of anionic dyes
(as tartrazine). .erefore, in this study, bentonite was
modified with a cationic surfactant to incorporate positive
charge sites for the adsorption of anionic species. Studies
on the removal of tartrazine from a solution using a
modified bentonite are limited [41]. In Colombia, it has
been estimated that smectite clay deposits for exploitation
are 1.1 × 109 metric tons [42], which could be used as an
adsorbent material. .is study evaluates the effect of
variables pH, ionic strength, agitation speed, adsorbent
mass, and contact time on the adsorption of a tartrazine
dye in an aqueous medium, using a Colombian bentonite
modified with hexadecyltrimethylammonium bromide
(HDTMA-Br) as the material adsorbent. Additionally, the
effectiveness of the adsorbent to remove anionic dyes with
a sample of wastewater from a local food industry was
evaluated.

2. Experimental

2.1. Reagents and Materials. .e azodye tartrazine
(C16H9N4Na3O9S2, 534.3 g/mol, CAS registry number: 1934-
21-0) used in this study was of consumer quality (purity 62%,
38% NaCl and NaSO4 combined) purchased from Retema
S.A.S.-Colombia, without further purification. .e stock
solution (100mg/L) was prepared by accurately dissolving a
weighed quantity of the dye in double-distilled water. An
experimental dye solution in different concentrations was
arranged by diluting the stock solution into a suitable
volume of double-distilled water.

.e surfactant hexadecyltrimenthylammonium bromide
(denoted as HDTMA-Br, molecular formula: CH3(CH2)15N
(Br)(CH3)3, 364.46 g/mol, CAS registry number: 57-09-0,
purity >98.0%) was purchased from Panreac®..e clay used was a Colombian bentonite sample from
Armero-Guayabal municipality in the north of the de-
partment of Tolima. .e mineralogical and chemical
composition of this bentonite has been previously re-
ported [42]. .e quantitative study for the mineral
composition of the bentonite shows a content of mont-
morillonite (48%), quartz (21%), and plagioclase (11%).
.e separation by particle size of the clay fraction (<2 μm)
was made by gravitational sedimentation and then, the
purified bentonite was converted to sodium bentonite
(denoted as Na-Bent) by two exchanges with the NaCl
solution. .e Na-Bent obtained was repeatedly washed
with distilled water until the leachate showed a negative
test for chloride ions, dried at 60°C and, finally, ground
and sieved in a 100-mesh.

.e cation exchange capacity (CEC) of Na-Bent was
41.16meq/100 g, determined by using the ammonium ace-
tate method [43]. .e chemical composition of the sodium
bentonite (Na-Bent) obtained by XRF was 55.35% SiO2,
16.28% Al2O3, 7.50% Fe2O3, 2.24% MgO, 1.11% CaO, and
3.43% Na2O.
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2.2. Synthesis and Characterization of the Organobentonite.
.e total amount of the cationic surfactant used in the
modification of the bentonite was 1.5 times the value of CEC,
a value within the range recommended in the literature
[44–46]. .e modification included two steps. In the first
step, the sodium bentonite was suspended in water (50 g Na-
Bent in 1 L of distilled water) and left to stir for 12 h to
achieve swelling. In the second step, a quaternary ammo-
nium cation solution (12 g of HDTMA-Br in 500mL of
distilled water) was slowly added into the suspension con-
taining the Na-Bent and vigorously stirred for 24 h. .e
treated bentonite was separated from the suspension by
centrifugation at 5000 rpm and repeatedly washed until a
negative bromide test with 0.1M of AgNO3 was obtained.
.e washed organobentonite was then dried in an oven at
80°C for 12 h and subsequently at 100°C for 2 h. Finally, the
organobentonite (denoted as HDTMA-Bent) was ground to
obtain a particle size of 100 mesh.

Na-Bent and HDTMA-Bent were both characterized by
X-ray diffraction (XRD), content of total organic carbon
(TOC), Fourier transform infrared spectroscopy (FT-IR),
and nitrogen adsorption at 77K. .e diffraction patterns
were taken to a LabX Shimadzu XRD-6000 diffractometer
with Cu Kα radiation (steps of 0.02 2 θ and 2 s/step). Total
organic carbon was estimated by Multi N/C 3100 TOC
analyzer (Analytik Jena, Germany) in a horizontal high-
temperature oven HT1300 for solid sample analysis,
equipped with a nondispersive infrared detector. .e cali-
bration was made with analytical-grade CaCO3. .e cal-
culated error for this technique was±0.20%. Fourier
transform infrared spectrometry (FT-IR) was recorded from
samples pressed into pellets with KBr powder by using a
Nicolet iS5 (.ermo Scientific). Nitrogen adsorption-de-
sorption isotherms were determined in a Micromeritics
ASAP 2020 instrument at 77K after outgassing the samples
for 3 h at 90°C, followed by 2 h at 150°C in a vacuum.

2.3. Batch Adsorption Experiments. In the present study,
batch adsorption experiments were carried out at ambient
conditions (20°C and atmospheric pressure). For this, 50mL
solution of tartrazine at 20mg/L were put into 100mL
Erlenmeyer flasks and an amount of organobentonite added
to the solutions. .e mixture was magnetically shaken at a
constant speed using a 5-position digital magnetic hotplate
stirrer (RT 5, IKA, Germany). .e methodological design to
evaluate the adsorption of tartrazine independently analyzed
the effect of each factor (pH, ionic strength, agitation speed,
adsorbent mass, and contact time), keeping the other pa-
rameters constant, as shown in Table 1. .e pH of the so-
lution was adjusted with 0.1NHCl andNaOH solutions, and
monitored with an SI Analytics Lab 845 pHmeter..e effect
of the ionic strength on the adsorption process was evaluated
at different concentrations of NaCl in the solution of
tartrazine.

.e dye concentration was determined from aliquots
(1mL of sample filtered in 0.45 μm millipore paper), while
the percentage of decolorization was established as a re-
sponse variable (equation (1)), quantifying the dye

concentration from a previous calibration curve, obtained by
UV-Vis spectrophotometry (Mapada V-1200) at a wave-
length (λ) of 428 nm:

decolorization (%) �
Co − Ct

Co

× 100, (1)

where Co and Ct (mg/L) are the liquid-phase concentrations
of the dye at initial and any time t, respectively. All tests were
performed in triplicate.

2.4. Experimental Design andAdsorption Isotherm. Based on
the initial test of the methodological design (Table 1), the
variables that mainly affect the adsorption process were
defined, and an experimental design was established to
determine the optimal conditions of adsorption.

.e amount of tartrazine adsorbed at 20°C was evaluated
at different initial concentrations of tartrazine ranging from
30 to 100mg/L at the optimal conditions obtained from the
experimental design. .e adsorption capacity (qe, mg/g) of
dye was calculated using the following equation:

qe �
Co − Ce

W
× V, (2)

where Co and Ce are the initial and equilibrium concen-
trations of the dye (mg/L), respectively, V is the volume (L),
and W is the mass (g) of the adsorbent.

Adsorption isotherm data were fitted by the Freundlich
and Langmuir models, which are the most frequently used.
.e Langmuir model assumes that there is no interaction
between the adsorbate molecules and that the adsorption
takes place in a monolayer [47, 48]. .e Langmuir isotherm
is represented by the following equation:

qe �
QmaxKLCe

1 + KLCe

, (3)

where qe is the adsorbate equilibrium amount in the solid
phase (mg/g), Ce is the adsorbate equilibrium concentra-
tions in solution (mg/L), Qmax is the maximum adsorption
capacity according to Langmuir monolayer adsorption
(mg/g), and KL is constant according to the Langmuir
model (L/mg).

.e Freundlich isotherm model is an empirical re-
lationship describing the adsorption of solutes from a liquid
to a solid surface, and it assumes that different sites with
several adsorption energies are involved [48, 49]. .e form
of the Freundlich equation is as follows:

qe � KFC
1/n
e , (4)

where KF (L/g) and n are the Freundlich constants related to
the adsorption capacity and adsorption intensity of the
adsorbent, respectively.

2.5. Batch Adsorption Experiment with a Sample of
Wastewater. .e applicability of the adsorbent was evalu-
ated in a sample of industrial wastewater taken from the
washing process of a local industry in the food sector. .e
specifications given by the supplier of the sample correspond
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to an effluent rich in sugars, dyes (tartrazine and sunset
yellow), and other compounds, with pH 3.5. Once the
sample was obtained, a UV-Vis spectrum was performed to
identify the wavelengths of maximum absorption, associated
with the chromophore groups present in the sample.

3. Results and Discussion

3.1. Characterization of the Clay and Organoclay. Figure 1
shows the diffraction patterns of sodium bentonite and
organobentonite. Na-Bent has a basal spacing d001 at 15.4 Å,
characteristic of a montmorillonite and, in HDTMA-Bent, it
is increased to 22.3 Å. .e intercalation of the HDTMA+

cations tends to maximize their contact with the silicate
surface and, hence, the basal spacing increases as more
quaternary ammonium cations are accommodated in the
interlayer spaces [50]. Basal spacing of 21.7 Å indicates that
HDTMA+ cations may intercalate as a pseudotrimolecular
layer, while the basal spacing >22.0 Å is related to a paraffin-
like arrangement, including tightly packed molecules in-
clined at a high angle towards the interlayer surface, with
quaternary ammonium cations lying parallel to one another
[51, 52]. .e basal spacing of 22.3 Å obtained for organo-
bentonite can be associated with the incorporation of the
HDTMA+ cation in a pseudotrilayer/paraffinic arrangement
[53, 54]. .is was due to the charge heterogeneity of clay
mineral layers [55].

.e measured total organic carbon content of Na-Bent
and HDTMA-Bent provided a measure of the quantity of
quaternary organic cation intercalated into organoclay. .e
TOC for Na-Bent was 93.82± 0.49mg of C/kg, a very low
value that suggests a minimum amount of organic matter in
the sample. .e HDTMA-Bent showed a TOC of
113.85± 1.85 g of C/kg because the exchanged organic
surfactant contained carbon in its structure. .e in-
corporation of the HDTMA+ cation in the clay was
77.68± 1.30%.

Figure 2 shows the FT-IR spectra for Na-Bent and
HDTMA-Bent..e two spectra show the presence of -OH as
stretching bands at 3629 cm− 1 as well as bending bands at
916 cm− 1..e large band at 1035 cm− 1 corresponds to the Si-
O stretching vibration. Above signals can be considered
characteristic of dioctahedral smectite [42, 56]. Broad bands
centered near 3422 and 1639 cm− 1 are due to the –OH
stretching mode of the interlayer water. .e overlaid ab-
sorption peak in the region of 1639 cm− 1 is assigned to the
-OH bending mode of adsorbed water [42, 57]. .e band in
the region of 875 cm− 1 is due to the Si-O-Al stretching mode
for montmorillonite [57, 58]. .e bands at 794 and

1037 cm− 1 correspond to Si-O stretching vibration of quartz
[59]. .e bands at 522 cm− 1 and 466 cm− 1 are assigned to the
Si-O-Al and Si-O-Si bending vibration, respectively
[57, 58, 60].

In the organobentonite, a pair of strong bands at 2850
and 2923 cm− 1 was observed. .ese are assigned to the
symmetric and asymmetric stretching vibrations of the

Table 1: .e methodological design to evaluate the adsorption of tartrazine independently analyzed the effect of each factor.

Test pH Ionic strength (NaCl, M) Agitation speed (rpm) Adsorbent mass
(mg) Contact time (min)

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 0 300 25 60
2 6 0, 0.01, 0.05, 0.1 300 25 60
3 6 0 100, 150, 200, 250, 300 25 60
4 6 0 300 10, 25, 50, 75, 125 60
5 6 0 300 25 15, 30, 60, 90, 120, 180, 240

3 6 9 12 15 18
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Figure 1: XRD patterns of sodium bentonite and organobentonite.
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methylene groups (νCH2) and their bending vibration at
1470 cm− 1 [61]. Previous bands are characteristic of ben-
tonite modified with HDTMA [61, 62].

.e adsorption-desorption isotherms of N2 at 77K for
Na-Bent and HDTMA-Bent are shown in Figure 3. Na-Bent
presented an isotherm type IVa with an H3 hysteresis loop.
Type IVa isotherm is characteristic of mesoporous adsor-
bents, while H3 hysteresis loops are associated with nonrigid
aggregates of plate-like particles [63]. .e HDTMA-Bent
isotherm could be a combination of type III and IVa, with a
small hysteresis loop H3, characteristic of nonporous or
macroporous solids.

.e specific surface area calculated with the BETmodel
for the Na-Bent was 62.9m2/g, of which 16.5m2/g corre-
sponds to the micropore area. .e low specific surface area
of the organobentonite (3.2m2/g) indicates that only a part
of the surface was accessible to the nitrogen gas [64]. Jacobo-
Azuara et al. found that the specific surface area of an
organobentonite (bentonite from a deposit of San Luis
Potosi, Mexico, modified with HDTMA) was 2m2/g [65],
similar to the value obtained in this study. Due to the in-
tercalation of the HDTMA+ cations in the interlaminar
space of the bentonite in a paraffinic configuration, the pores
are covered and there is a blockade that inhibits the passage
of N2 molecules [44, 66].

3.2. Batch Adsorption Experiments. Figure 4 presents the
results of the effect of pH and agitation speed on the ad-
sorption of tartrazine, using HDTMA-Bent. Decolorization
of the solution is not significantly affected in the range of pH
from 2 to 9, where the average removal was 99.07± 0.93%,
this being a favorable aspect for the application of this
material since the colored wastewater has pH values near 7
[67]. For a pH> 9, a negative effect on the removal of
tartrazine was observed because, at high pH values, the
electrostatic repulsion between the surface of the adsorbent,
negatively charged, and the anionic dye reduces the ad-
sorption capacity and removal of coloring [68, 69]. Test of
adsorption with Na-Bent in the same range of pH showed no
removal of color, having been 6.0± 0.8% at pH 2, the
maximum value reached (results not shown in this work).

Less than 200 rpm shaking speeds (Figure 4) fail to
thoroughly mix the adsorbent with the solution, while 250
and 300 rpm agitation speeds got decolorization higher to
97.33± 0.49% and ensured uniformity in the medium [70].
Gautam et al. worked with similar agitation speeds
(>180 rpm) for the adsorption of tartrazine on a copper
coordinated dithiooxamide metal-organic framework (Cu-
DTO MOF) [71].

.e effect of the addition of NaCl and the amount of
adsorbent in the removal of tartrazine on HDTMA-Bent are
shown in Figure 5..e increase of the concentration of NaCl
decreased the adsorption capacity of tartrazine from
97.85± 2.74% of decolorization, in the absence of NaCl, to
87.72± 2.62%, when the concentration of NaCl was 0.1M.
Monitoring of the ionic strength is important due to the fact
that industrial wastewaters contain pollutants such as in-
organic salts (NaCl, KCl, and CaCl2) [27] that affect the

adsorption of acid dyes such as tartrazine. .e reason is,
mainly, a competition between the Cl− ions and anions of
tartrazine (C16H9N4O9S23− ) as well as the difference in size
between these two ions, which makes the Cl− ions to easily
bind to the active sites of the adsorbent in comparison with
the large-sized anions of tartrazine [71].

.e effect of the amount of HDTMA-Bent in the de-
colorization of tartrazine is shown in Figure 5. For a mass of
10mg of adsorbent, the decolorization reached was low
(64.63± 1.66%) due to the rapid saturation and limited
availability of active sites in the adsorbent [27]. For a mass of
25mg HDTMA-Bent, the decolorization was 97.15± 0.30%
and, with an amount higher than 50mg, the removal was
kept constant in a 99.67± 0.33%. .e increase of the de-
colorization of tartrazine obtained with greater amounts of
adsorbent is associated with the existence of a greater
number of active sites for the removal of dye [27, 72].
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Figure 6 presents the results of the contact time between
the adsorbent and the solution of tartrazine. It was found
that the adsorption process has two stages: the initial stage,
which is rapid and occurs in the first 30min, implying strong
electrostatic attractions between tartrazine and the orga-
nobentonite; the second stage is slow, and the adsorption
tends to become stable (in equilibrium) after 60min since it
shows no considerable change in the decolorization, im-
plying the saturation of active sites in the HDTMA-Bent
[27, 73].

.e FT-IR spectrum of the adsorbent after the removal
of tartrazine at 120min shows an additional signal at
1318 cm− 1 (Figure 2), which is associated with the C-N
stretching of the structure of tartrazine [71].

From the analysis of the results of the parameters that
affected the adsorption of tartrazine on the organobentonite,
it was established that the main variables that affected the
process were the amount of adsorbent and the addition of
NaCl to the dye solution. pH values between 2 and 9, stirring
speed above 200 rpm, and contact time of 60min did not
have a significant effect on decolorization.

3.3. ExperimentalDesign. With the results of the initial tests
of the methodological design (Table 1), a complete factorial
design 32 was established, having the amount of adsorbent
(A) and the concentration of tartrazine (B) as variables. .e
levels for A and B were 25, 35, and 45mg and 30, 40, and
50mg/L, respectively. All the experiments were carried out
in triplicate and were kept constant: pH� 6, contact
time� 60min, concentration of NaCl� 0.1M, and agitation
speed� 230 rpm. .e response variable was decolorization
percentage (%). Experimental data were evaluated with a
Design Expert® software version 8.0 (StatEase, Inc., Min-
neapolis, MN, USA) using a response surface methodology
(RSM) in order to obtain the interaction between the
processed variables and the response. Data were adjusted to
a second-order polynomial equation to determine the co-
efficients of the response model as well as their standard

errors and significance [74]. For the two variable inputs
under consideration, the response model is as shown in the
following equation:

Y � β0 + 
k

i�1
βiXi + 

k

i�1
βiiX

2
i 

k− 1

i�1


k

j�2
j>i

βijXiXj, (5)

where Y is the predicted response (decolorization, %); β0, βi,
βii, and βij are the regression coefficients for the intercept and
the linear, quadratic, and interaction coefficients, re-
spectively; Xi and Xj are the independent variables, and
k � 2, i.e., the number of independent variables. .e quality
of the model fits was evaluated by the coefficients of de-
termination (R2 and adjusted R2

adj) and analysis of variance
(ANOVA).

Table 2 shows the codified and experimental values of the
runs performed in the experimental design along with the
response observed (average of the three repetitions).

.e ANOVA results are shown in Table 3. .e model
and coefficients were considered significant for a p value< of
0.05.

Data in Table 3 indicate that the model and parameters
are significant. .e p values show that coefficients of the
main effects are highly significant (p< 0.0001), compared to
the interaction effect. .e second-order response function
representing the relationship between the decolorization (%)
and the independent variables appears in the following
equation:

decolorization (%) � − 137.17276 + 10.31623A

+ 2.67123B − 0.05194AB

− 0.09737A
2

− 0.03913B
2
.

(6)

All first-order coefficients of the model for the response
decolorization showed positive effects, whereas the qua-
dratic and interaction coefficients had a negative effect.
Coefficients of determination (R2) and adjusted R2

adj of the
model were 0.9710 and 0.9640, respectively, evidencing that
this regression is statistically significant and that only 3.60%

0.00 0.02 0.04 0.06 0.08 0.10
60

70

80

90

100

D
ec

ol
or

iz
at

io
n 

(%
)

NaCl concentration (M)

0 25 50 75 100 125

NaCl concentration
Amount of HDTMA-Bent

Amount of organobentonite (mg)

Figure 5: Effect of the addition of NaCl to the dye solution and
amount of HDTMA-Bent on the adsorption of tartrazine.
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Figure 6: Effect of time contact on the adsorption of tartrazine on
organobentonite.
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of the total variations are not explained by the model
[70, 75].

Figure 7 shows the contour plot that represents the
interaction of the independent variables (dye concentration
and amount of adsorbent). It illustrates that the de-
colorization has a tendency to decrease, when increasing the
concentration of tartrazine and decreasing the amount of
HDTMA-Bent. A region is also observed where the model
establishes a complete decolorization when the dye con-
centration is lower than 33mg/L and the amount of the
adsorbent is greater than 37mg.

To confirm the results obtained with the mathematical
model presented in equation (6) of the experimental design,
additional adsorption tests were carried out..e points were
taken within the design range and classified as low, medium,
and high with respect to the response (decolorization). .e
experiments were carried out in triplicate, at the same
conditions in which the model was obtained (pH� 6, NaCl
concentration� 0.1M, contact time� 60min, and agitation
speed� 230 rpm).

From the results presented in Table 4, it is observed that,
for the three points evaluated, the maximum difference
between the experimental value and the one calculated with
equation (6) was 4.8%..erefore, the model obtained can be
used to predict the response of the system with minimal
variations.

A numerical optimization was performed for the factors
and the response of the experimental design. .e criteria
selected in the software to perform the optimization were to
minimize the amount of the adsorbent and maximize the
decolorization. A higher degree of importance was assigned
to the response because it is the main objective of the
process. Figure 8 shows the best scenario for the combined

criteria in a function of global desirability, where the
maximum decolorization (100%) is reached when the
amount of adsorbent is 38.04mg and the concentration of
the dye is 30mg/L, with a desirability of 0.839. .e function
of desirability varies between zero, which is outside the limit,
and one, which is the goal, and indicates how close the lower
and upper limits of the factors were established in relation
with the actual optimum value [70].

.e tartrazine adsorption isotherm at 20°C was evaluated
at dye concentrations of 30, 40, 50, 60, 70, 80, 90, and
100mg/L with an amount of organobentonite� 0.45 g and
the same experimental conditions used for obtaining the
model (V� 50mL, pH� 6.0, NaCl concentration� 0.1M,
contact time� 60min, and agitation speed� 230 rpm). .e
data obtained from the adsorption isotherm were fitted to the
nonlinear form of Langmuir and Freundlich models using
equations (3) and (4), respectively (Figure 9). Parameters of
the fit were determined and are presented in Table 5.

.e high value of the correlation coefficient obtained for
the adsorption of tartrazine onto organobentonite indicates
that the Freundlich model (r2 � 0.988) can be applied to this
system better than the Langmuir model (r2 � 0.916), in-
dicating a heterogeneous adsorption surface instead of a
homogeneous monolayer adsorption as predicted by the
Langmuir adsorption model. .e KF and n values calculated
from the Freundlich isotherm were 33.02± 0.27 L/g and
17.64± 0.89, respectively. .e high value of n confirms the
heterogeneous adsorption system as predicted by the

Table 2: Factorial design for the independent variables used in this
study along with the observed response.

Test
Code
values Real values Response

A B A (mg) B (mg/L) Decolorization, (%)
1 − 1 − 1 25 30 63.72± 1.67
2 0 − 1 35 30 99.99± 0.01
3 1 − 1 45 30 99.99± 0.02
4 − 1 0 25 40 50.36± 0.38
5 0 0 35 40 71.02± 0.68
6 1 0 45 40 87.59± 1.44
7 − 1 1 25 50 32.82± 0.36
8 0 1 35 50 49.58± 0.84
9 1 1 45 50 46.50± 0.61

Table 3: Results of regression analysis (ANOVA).

Source Sum of square DF Mean square F value p value
Model 13962.18 5 2792.44 140.40 <0.0001
A 3644.00 1 3644.00 183.22 <0.0001
B 9333.73 1 9333.73 469.30 <0.0001
AB 323.76 1 323.76 16.28 <0.05
A2 568.82 1 568.82 28.60 <0.0001
B2 91.87 1 91.87 4.62 <0.05
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Figure 7: Contour plot for decolorization of tartrazine vs dye
concentration and amount of adsorbent.

Table 4: Points for the validation of the experimental design.

Adsorbent
(mg)

Dye
concentration

(mg/L)

Decolorization (%) Error
(%)Experimental Calculated

27 47.39 44.68± 0.34 42.64 4.79
40 43.74 69.15± 0.50 70.78 2.31
36 34.58 92.73± 0.14 88.93 4.27
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Freundlich adsorption model and the efficiency of HDTMA-
Bent as a material adsorbent toward tartrazine removal. .e
maximum adsorption capacity of tartrazine obtained in this
study was compared with that of other adsorbents in the
literature, as shown in Table 6. .e HDTMA-Bent showed a
value of adsorption capacity similar to that of a bentonite
modified with octadecyltrimethylammonium and superior to
that of other low-cost adsorbents such as sawdust and chitin.

3.4. Batch Adsorption Experiment with a Sample of
Wastewater. Figure 10 showed the UV-Vis of the sample of
the wastewater before and after the adsorption with Bent-

HDTMA (duplicate). .e test conditions were as follows:
volume of solution� 50mL, amount of adsorbent� 45mg,
pH� 6, contact time� 60min, concentration of
NaCl� 0.1M, and agitation speed� 230 rpm. In the un-
treated wastewater sample, a pronounced and wide signal
was observed, between 350 and 540 nm, corresponding to
the maximum adsorption wavelengths of tartrazine
(428 nm) and sunset yellow (482 nm). .e average de-
colorization of tartrazine and sunset yellow was 98.19 and
98.76%, respectively. Considering that sunset yellow is an
azodye (C16H10N2Na2O7S2), anionic, with characteristics
similar to tartrazine, it is concluded that the Bent-HDTMA
adsorbent was efficient in the removal of both dyes, although
it was not selective.

4. Conclusions

In this study, a Colombian bentonite was modified with
HDTMA-Br and used to remove tartrazine from an aqueous
solution, obtaining high levels of decolorization, with the
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q e
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Dates 20°C
Langmuir
Freundlich

Figure 9: Adsorption isotherm of tartrazine onto HDTMA-Bent at
20°C.

Table 5: Equilibrium isotherm parameters for the adsorption of
tartrazine onto organobentonite.

Langmuir
Qmax (mg/g) 40.79± 0.71
KL (L/mg) 4.06± 0.62

r2 0.916

Freundlich
KF (L/g) 33.02± 0.27

n 17.64± 0.89
r2 0.988

Table 6: Comparison of the adsorption capacity of organo-
bentonite with various adsorbents.

Adsorbent Qmax
(mg/g) Reference

Polyaniline-sawdust composite (PAni/SD) 2.45 [76]
Sawdust 4.71 [77]
Chitin 30.00 [78]

Organobentonite (HDTMA-Bent) 40.79 .is
study

Organobentonite (1CEC-NaB) 43.3 [41]
Carbon nanotubes (CNTs) 52.24 [79]
Hen feather 64.1 [80]
Nigerian soil 83.33 [81]
Cross-linked chitosan-coated bentonite
(CCB) 294.1 [82]
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B = dye concentration
(30mg/L)
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Figure 8: Desirability ramp for numerical optimization of
decolorization.
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Figure 10: UV-Vis spectra of wastewater sample before and after
adsorption.
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advantage of using a natural, abundant, and low-cost
material.

It was established that the main variables that affect the
adsorption of tartrazine were the amount of adsorption and
the addition of NaCl to the dye solution. pH values between
2 and 9, stirring speed above 200 rpm, and contact time of
60min did not have a significant effect on decolorization.

To achieve the total decolorization of a 30mg/L tar-
trazine aqueous solution, 38.04mg of HDTMA-Bent was
required under the following conditions: pH� 6.0, NaCl
concentration� 0.1M, stirring speed� 230 rpm, temper-
ature� 20°C, and contact time� 60min.
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[42] I. F. Maćıas-Quiroga, G. I. Giraldo-Gómez, and
N. R. Sanabria-González, “Characterization of colombian clay
and its potential use as adsorbent,” @e Scientific World
Journal, vol. 2018, Article ID 5969178, 11 pages, 2018.

[43] A. G. Norman and H. Chapman, “Cation-exchange capacity,”
in Methods of Soil Analysis, Part 2. Chemical and Microbio-
logical Properties, pp. 891–901, American Society of Agron-
omy, Inc., Madison, WI, USA, 1965.
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[57] B. Fil, C. Özmetin, and M. Korkmaz, “Characterization and
electrokinetic properties of montmorillonite,” Bulgarian
Chemical Communications, vol. 46, no. 2, pp. 258–263, 2014.
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“Characterization of natural- and organobentonite by XRD,
SEM, FT-IR and thermal analysis techniques and its ad-
sorption behaviour in aqueous solutions,” Clay Minerals,
vol. 47, no. 1, pp. 31–44, 2018.

[63] M..ommes, K. Kaneko, A. V. Neimark et al., “Physisorption
of gases, with special reference to the evaluation of surface
area and pore size distribution (IUPAC technical report),”
Pure and Applied Chemistry, vol. 87, no. 9-10, pp. 1051–1069,
2015.

[64] H. Koyuncu, N. Yıldız, U. Salgın, F. Köroğlu, and A. Çalımlı,
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