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Abstract Elevated levels of extracellular nucleotides are
present at sites of inflammation, platelet degranulation and
cellular damage or lysis. These extracellular nucleotides can
lead to the activation of purinergic (nucleotide) receptors on
various leukocytes, including monocytes, macrophages,
eosinophils, and neutrophils. In turn, nucleotide receptor
activation has been linked to increased cellular production
and release of multiple inflammatory mediators, including
superoxide anion, nitric oxide and other reactive oxygen
species (ROS). In the present review, we will summarize
the evidence that extracellular nucleotides can facilitate the
generation of multiple ROS by leukocytes. In addition, we
will discuss several potential mechanisms by which
nucleotide-enhanced ROS production may occur. Delinea-
tion of these mechanisms is important for understanding the
processes associated with nucleotide-induced antimicrobial
activities, cell signalling, apoptosis, and pathology.
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Overview of the biological roles of ROS

The cellular production of oxygen radicals has been
implicated in a wide variety of biological processes
including host defense, regulation of cell apoptosis, modu-
lation of cell signalling as well as aging and the generation of
pathological conditions [1-9]. Cells produce a variety of
oxygen radicals often termed reactive oxygen species
(ROS) which include superoxide (O, ), hydrogen peroxide
(H,0,), hydroxyl radicals (-OH), nitric oxide (NO), and
peroxynitrite (ONOO"). The generation of ROS can be
mediated by several enzyme systems including NADPH
oxidases, nitric oxide synthases, xanthine oxidase, and the
mitochondrial respiratory chain. Furthermore, production of
ROS is subject to intricate regulation by a variety of
hormones, cytokines, and toxins, thereby illustrating the
importance of these processes in mammalian biology.
Numerous studies have revealed that the production of
O, anions and other ROS by immune cells such as
neutrophils, eosinophils, and macrophages plays a funda-
mental role in the mammalian immune response [3-8].
These ROS act as antimicrobials and facilitate in the killing
of invading microorganisms. For example, one functional
consequence of ROS production by bacterial lipopolysac-
charide- (LPS-) primed macrophages is the formation of
ONOO", which is an extremely reactive intermediate
formed by the reaction of O, and NO that contributes to
microbial killing and cellular injury [7]. Moreover, the
importance of ROS-mediated anti-microbial activity in host
defense is illustrated by the observation that defects in the
function of the major ROS producing enzyme in phago-
cytes, i.e., NADPH oxidase, results in a severe immuno-
deficiency disorder termed chronic granulomatous disease
[1, 3-5, 10, 11]. This disease has been linked to specific
mutations in NADPH oxidase genes and causes the
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individual to be highly susceptible to frequent and life-
threatening infections by bacteria and fungi [10, 11].

Although the antimicrobial activity of ROS is one of the
most characterized functions of these agents, there is
evidence that ROS are important participants in other
biological processes [2, 3, 6, 12-26]. For example, ROS
have been proposed to serve as intracellular second
messengers [12—18]. In this regard, intracellular ROS
generation has been linked to the regulation of a variety
of cell signalling events, such as the nuclear translocation
of the transcription factor APE1/Refl [20] as well as the
activation of NF-kB, AP-1, p90Rsk and members of the
MAP kinase family [12-18, 20, 21]. Although the relevant
mechanisms are not fully resolved, multiple processes have
been proposed to account for ROS contributions to the
activation of MAP kinases [13, 16, 22, 23]. Cells contain
numerous redox-sensitive systems that are modified in
response to oxidation, including glutathione, thioredoxin,
and cysteine-containing proteins [16, 22, 23]. For example,
many protein phosphatases can be reversibly inactivated via
the modification of critical cysteines by ROS [22, 24], and
this process may lead to the enhanced phosphorylation/
activation of enzymes such as p90Rsk and the MAP kinases
[21, 24]. In addition, signalling proteins that are upstream
of the MAP kinases, such as the small MW G-protein Ras,
have also been proposed to function as redox sensors [23]
and as such may contribute to the effects of ROS on cell
signalling events.

Another key role of ROS involves its capacity to affect
cardiovascular function and cellular apoptosis [2]. At low
levels, ROS such as O; and NO can play an important role
in the control of vessel tone, tissue repair and remodeling,
and angiogenesis [2, 3, 6, 25, 26]. Conversely, at higher
levels, ROS generation has been linked to a variety of
pathological conditions, including atherosclerosis, hyper-
tension, heart failure and aging [2, 25, 26]. In addition,
there is also evidence that ROS may contribute to the
tissue/organ damage associated with ischemic-reperfusion
injury and diabetes mellitus [2, 6, 7, 25, 26].

Immunological sources and mechanisms of ROS
generation

Cellular sources of ROS The diverse role of ROS in
mammalian biology is consistent with the observation that
a diverse array of cell types possess the capacity to
generate ROS. With respect to immunological function, the
production of O, and H,O, has been documented in
macrophages, eosinophils, neutrophils, microglia, mesan-
gial cells, endothelial cells and many other cell types [1-0,
26]. Similarly, the capacity to generate NO is widely
distributed and includes by cell types such as
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macrophages, microglia, mesangial cells, vascular smooth
muscle cells, endothelial cells, pancreatic islet cells, and
neuronal cells [7-9, 25]. In the present review, we will
focus our discussion on how ROS such as O;, H,O,, and
NO are generated by immune cell types that are subject to
nucleotide receptor regulation, namely, macrophages, eosin-
ophils, neutrophils, microglia, and mesangial cells.

Mechanisms of O, generation As noted above, the
generation of ROS can be mediated by several enzyme
systems including NADPH oxidases, nitric oxide synthases,
xanthine oxidase, and the mitochondrial respiratory chain
[1-6]. With respect to the regulated production of O3, the
principal enzyme systems controlling this endpoint are the
NADPH oxidases, which have been characterized in both
phagocytic and non-phagocytic cell types [3, 6]. The O
generated through this reaction can be rapidly converted
inside the cell to H,O, by dismutation, and in the presence
of iron salts, O, and H,O, can interact to form the
hydroxyl radical OH" [2, 4]. Altogether, these ROS are
potent antimicrobial compounds, and in this section we will
focus on several of the major mechanisms controlling
phagocytic NADPH oxidase (which shares many similarities
to non-phagocytic NADPH oxidase) [3—6], and in subse-
quent sections we will discuss how nucleotide receptor
signalling has been reported to contribute to this regulation.

Numerous studies have revealed that the NADPH
oxidase of phagocytic cells is a protein complex of at least
six different subunits, including gp917"°* (also known as
NADPH oxidase 2 or Nox2), p227"°* p67°"~, p47°h,
p40°"°*and Racl/2 [1-6]. The oxidase-specific compo-
nents of phagocytic cells are designated by the term phox,
which derives from the name phagocyte oxidase. In
addition, several other proteins (e.g., the GTPase RaplA
and p29 peroxiredoxin) have also recently been implicated
in the control of NADPH oxidase activity [3, 6]. The
overall regulation of this system is intricate and involves
stimulus-induced spatiotemporal assembly and activation of
the complex. The complex is subject to multiple levels of
control, including (a) separation of the subunits into
different subcellular compartments during the inactive state,
(b) reversible protein-protein and protein-phospholipid
interactions, and (¢) modulation by protein phosphoryla-
tion. The catalytic core of NADPH oxidase is composed of
two integral membrane proteins, the glycoprotein gp917°~
and the protein subunit p22”"°*, which together constitute a
heterodimeric flavocytochrome termed cytochrome bssg
[1-6].

In the resting state, a small portion of the cytochrome
bsss subunits gp91”"°* and p22”"°* are inserted into the
plasma membrane with the remaining gp917"°* and p22°"**
being localized to specific cytotoplasmic granules and
secretory vesicles [1, 3—6]. Cellular priming with factors
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such as LPS can lead to an up-regulation of gp91”°* and to
a lesser degree p227"°* [3, 27]. In addition, LPS priming
can further recruit gp91”"** and p22°"** from secretory
vesicles to the plasma membrane as well as promote the
assembly and activation of the final NADPH complex
within specific granules, which is a process likely to be
important for the intracellular destruction of bacteria [1, 3—
6, 26]. The oxidase activity of cytochrome bssg is dormant
until activated by four cytosolic components p67°"*,
p477"*  p40P"**, and Rac, which in turn are subject to
multiple levels of regulation, modification or activation in
order to reach the final functional state [1, 3—6]. Priming of
this system involves the stimulus-induced phosphorylation
of p477"°* that results in a conformational change that
unmasks a protein binding motif (an SH3 domain) and a
phosphoinositide- (such as 3-phosphoinositides) binding
domain termed a Phox homology or PX domain [3-6]. The
phosphorylated and unfolded p47”"°~ is recruited to p22°"*
at the plasma or granular membrane, which is a process that
has been suggested to be facilitated by the PX domain
present in p47”"°*. In addition, it has also been proposed
that p40”"°* also contains a phosphoinositide binding (PX)
domain that participates in its capacity to facilitate the
interaction of p67°"°* with gp917"°* at the membrane.
Overall, phosphorylation of the pd7°"°*/p40P"o*/p677ox
complex allows for its dissociation/structural reorganization
and subsequent recruitment to the plasma membrane at sites
containing the cytochrome bssg subunits [1, 3—6]. Simulta-
neous to these events is the stimulus-induced activation of
Rac2 by guanine nucleotide exchange factors that promote
the activated/GTP loaded form of Rac2 to be recruited to
the membrane whereupon it also facilitates p67”°* interac-
tion with cytochrome bssg.

With respect to the key regulatory step that centers on
p477"°% phosphorylation, many distinct protein kinases
have been implicated in this process. These kinases include
several isoforms of protein kinase C (PKC), p38 mitogen-
activated protein (MAP) kinases, p2l-activated kinase
(PAK), as well as other protein kinases [1, 3—6]. Further-
more, it has long been known that Ca™" fluxes are critical
for the activation of NADPH oxidase, and it is likely that its
participation in this regulation includes its capacity to
activate protein kinases such as certain PKC isoforms.
Moreover, activation of Rac-dependent pathways may not
only play an important role in recruiting phox proteins to
the plasma or granular membrane as discussed above, but
Rac activation may also contribute to the phosphorylation
of phox proteins via its role in initiating the activation of
MAP kinase family members such as p38. Final assembly/
activation of the NADPH complex requires additional
phosphorylation steps resulting in complete assembly of
the oxidase complex at the membrane and the transfer of
electrons from NADPH across the membrane culminating

in the generation of O,. In sum, stimuli that promote
changes in intracellular Ca™" levels, activation of isoforms
of PKC, and/or activation of MAP kinase members such as
p38 can all cooperate to regulate NADPH oxidase activity.
These observations support the concept that ligands for
distinct receptor classes, which activate differing signalling
pathways, can converge on NADPH oxidase regulation and
O, generation. This concept is relevant to further dis-
cussions in this review regarding the capacity of extracel-
lular nucleotides to regulate NADPH oxidase activity in
cooperation with other priming agents such as LPS or
chemoattractants.

Mechanisms controlling NO generation NO is a gaseous
free radical that plays a role in a variety of biological
functions, including host defense, vasodilatation, cellular
apoptosis, and the regulation of receptors (e.g., the cardiac
ryanodine receptor), enzymes (e.g., activation of soluble
guanylate cyclase) and transcription factors (e.g., the
inactivation of zinc finger transcription factors and the S-
nitrosylation/inactivation of NF-«kB/IkB) [7-9, 25, 26, 28,
29]. At high levels, NO can also have deleterious effects
including cellular mutagenesis and necrosis [7-9, 25, 26].
Furthermore, NO can react with O; to form ONOO", which
is a powerful oxidizing agent and antimicrobial compound
[2, 7, 25, 26].

The synthesis of NO occurs via the enzymatic oxidation
of the terminal guanidino-nitrogen of L-arginine, thereby
resulting in the formation of NO and L-citrulline [7-9, 25].
The enzymes involved in catalyzing this reaction are
termed NO synthases (NOS). Isoforms of these enzymes
are produced either constitutively, such as those produced
by endothelial cells (eNOS) and neuronal cells (nNOS), or
as an inducible form of the enzyme (iNOS) largely
expressed by macrophages and related cell types. Numer-
ous studies have focused on establishing the structure of
these isoforms and have revealed that all three isoforms are
multimeric complexes that have similar structural features,
especially with respect to the nature of their catalytic sites.
In this regard, it has been reported that each of the isoforms
requires multiple cofactors such as FAD, heme, calmodulin,
and tetrahydrobiopterin. Whereas eNOS and nNOS are
activated by Ca'"-calmodulin binding and therefore rapidly
controlled in response to Ca'" fluxes, iNOS is primarily
regulated at the transcriptional level and is only weakly
affected by changes in intracellular Ca™" levels. Accord-
ingly, NO production by eNOS and nNOS is transient and
localized, whereas NO production by iNOS is often large
and sustained [7-9, 25].

With respect to the induction of iNOS, the promoter of
the iINOS gene has binding sites for a wide array of
transcription factors, but several of the more well-charac-
terized factors controlling iNOS expression are NF-kB,
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interferon regulatory factor-1 (IRF-1), and signal transducer
and activator of transcription factor-1 (STAT-1) [30-34].
Therefore, factors that promote NF-«B activation (such as
TNF-a and IL-1) together with those that promote IRF-1 or
STAT-1 activation (such as IFN-y) cooperate to yield
synergistic activation of iNOS expression. In this review,
we will focus on the regulation of iNOS expression and its
relevance to purinergic receptor signalling.

Extracellular nucleotides and the regulation of ROS
production

General extracellular nucleotide action Despite the rapid
metabolism of extracellular nucleotides, numerous studies
have revealed that purines (adenosine, ADP, and ATP) and/
or pyrimidines (UDP and UTP) can be found at high
concentrations (millimolar) in the extracellular milieu
following events such as tissue damage or platelet
degranulation [35-40]. These agents can act as important
mediators in a plethora of physiological responses, includ-
ing neurotransmission, cardiovascular homeostasis, pulmo-
nary function, smooth muscle contraction, and immune
activity [38-42]. With respect to the role of extracellular
nucleotides in regulating the generation of ROS, there is
considerable evidence that nucleotides play a key role in
modulating inflammation, mediator production, cell-medi-
ated killing, and apoptosis [38—42]. The role of nucleotides
in immune function is also illustrated by the observation
that they can greatly enhance the effects of bacterial LPS on
macrophage and monocyte activation by augmenting the
production of mediators such as NO and other free radicals,
in addition to numerous cytokines, such as interleukin-1
(IL-1) and tumor necrosis factor-o (TNF-) [43—48]. The
increased production of these mediators, although important
for the activation of the immune system and for bactericidal
effects, can also contribute to the deleterious effects on
tissues and organs observed in sepsis. In this section, we
will focus on the reported capacity of extracellular
nucleotides to promote the generation of ROS by immune
cells, and we will then discuss the potential mechanisms by
which nucleotide receptors may mediate this process.

Nucleotide receptor families and signalling Nucleosides
and nucleotides exert their effects by interacting with
specific cell surface receptors, which in turn modulate a
diverse array of cell signalling and transcriptional events.
Receptors for extracellular nucleotides are known as P2
receptors, and these receptors are divided into two
subfamilies: P2Y and P2X [38-40, 49-51]. Eight P2Y
receptors have been identified in mammals and have been
designated P2Y, P2Y,, P2Y,, P2Y¢, P2Y,;, P2Y 2, P2Y 3
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and P2Y 4 [40]. These receptors are predicted to contain
seven-transmembrane domains and they are associated with
heterotrimeric G-protein activation [38, 40, 49]. On the
other hand, the P2X receptors are a family of seven distinct
subunit isoforms (P2X;_;) that are thought to act as
predominantly homotrimeric ligand-gated, cation-selective
ion channels that contain two predicted membrane-span-
ning domains [38—40, 50-52].

With respect to the ligand specificity and cell signalling
events initiated by these two classes of P2 receptors, there
exist many overlapping properties within subfamily group-
ings. There is extensive literature covering the pharmacol-
ogy of these receptors and the reader is referred to several
recent reviews for more detailed information [38—40, 49—
51]. Briefly, within the P2Y receptor subfamily, both
adenine nucleotides and/or uridine nucleotides can serve
as ligands, depending on the specific receptor. For example,
P2Y,, P2Y,, and P2Y,; exhibit a preference for ADP
binding, whereas P2Y, and P2Y; can be activated by ATP.
In addition, P2Y, and P2Y, can be stimulated by UTP,
whereas P2Y exhibits a preference for UDP binding and
P2Y,4 is activated upon UDP-glucose binding. With
respect to cell signalling, P2Y,, P2Y,, P2Y,, P2Yy,
P2Y,,, P2Y,; and P2Y 4 can all promote phosphoinositide
hydrolysis resulting in increased inositol-1,4,5-trisphos-
phate (IPs) generation [40 and references therein], which
leads to an elevation of cytoplasmic free Ca™" levels, and
perhaps diacylglycerol production, which can activate
various PKC isoforms. Furthermore, several P2Y receptors
have been implicated in the regulation of cAMP formation,
i.e., P2Y; and P2Y, have been reported to attenuate cAMP
levels, and P2Y,.14 have been linked to a Gi protein-like
activity. Conversely, P2Y; activation has been associated
with elevations in cAMP-dependent pathways via the
action of a heterotrimeric Gs protein complex; whereas
P2Y 3 has been reported to have biphasic effects on cAMP
levels [40 and references therein]. Interestingly, several
recent reports have suggested that ligand binding to P2Y,
P2Y, and P2Y,, can also result in the stimulation of
pathways dependent on the activation of the small MW G-
protein Rac, including activation of PAK-1 and the p38
MAP kinase [53-58]. Given the importance of Ca™" fluxes
and the activation of PAK-1, p38 MAP kinase and various
PKC isoforms in the regulation of NADPH oxidase, it is
not surprising that various P2Y agonists have been
implicated in ROS generation (see below).

In terms of cell signalling via P2X receptors, there is
considerable evidence indicating that these receptors act as
ATP-gated ion channels that can dramatically elevate
intracellular free cytoplasmic Ca’" levels [38-40, 50, 51].
Furthermore, the P2X; receptor has been shown by several
groups to promote protein complex formation, cytoskeletal
reorganization and membrane blebbing in macrophages and
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other cell types via the regulation of Rho and the activation
of p38 MAP kinase [59—62]. In addition to inducing
cytoskeletal changes, MAP kinase stimulation (p38, Jun
kinases (JNKs) and ERKs 1/2) and alterations in ion fluxes
(Ca™ and Na' influx, K" efflux), several reports have
appeared demonstrating that ligand binding to P2X;
receptor can also stimulate IkBa degradation and the

activation of the transcription factor NF-kB [63-66].
Therefore, analogous to the P2Y receptors, P2X-mediated
elevations in intracellular Ca™" levels and stimulation of
p38 MAP kinase may contribute to extracellular nucleotide-
induced NADPH oxidase assembly and activation (see
Table 1), whereas the capacity of P2X; stimulation to
enhance NF-kB activation is a likely contributing factor to

Table 1 Summary of extracellular nucleotide regulation of ROS production by immune and tumor cells

Cell type Treatments* Nucleotide effect Receptors Method for measuring References
on ROS production* proposed ROS production
Human neutrophils fMLP + ATP, ADP, ATP or ADP: 1 Not discussed SOD-sensitive reduction [68]
or AMP of ferricytochrome ¢
AMP: |
Immune complex + ATP, ADP,
ATP, ADP, or AMP or AMP: 1
Rat peritoneal fMLP + ATP, ADP, ATP or ADP: 1 Not discussed Ferrithiocyanate formation + [69]
neutrophils or AMP ferricytochrome ¢ = SOD
Immune complex + ATP, ADP, or AMP: 1
ATP, ADP, or AMP
Human or rat blood fMLP or immune ATP: 1
neutrophils complex + ATP
Human neutrophils fMLP + ATP, UTP, ATP, UTP, or ITP: 1 None identified Ferricytochrome ¢ [70]
or ITP reduction assay
Human HL 60 cells ATP, ADP, dATP, ATP or UTP: 1 P2 receptors SOD-sensitive reduction [72]
(promyelocytic UTP, dUTP, UDP, of ferricytochrome ¢
leukemia cells) ITP, CTP, or TTP
Human neutrophils ATP ATP: 1 Not discussed Ferricytochrome ¢ [71]
reduction assay
Rat alveolar ATP, ADP, AMP, ATP, ADP, or ATPyS: 2 or more P2 SOD-sensitive reduction [74]
macrophages or ATPyS 1 receptor classes of ferricytochrome c
Human eosinophils ATP, ATPyS, ATP, ATPyS, P2Y and P2X Lucigenin-dependent [75, 76]
2-MeS-ATP, UTP, 2-MeS-ATP, UTP, receptors chemi-luminescence
GTP, ADP, BzATP, GTP, or BZATP: 1
or CTP 0ATP or KN62: |
Human neutrophils BzATP BzATP: 1 P2X, DCFDA fluorescence [73]
and promyelocytes (intracellular ROS)
(HL-60 cells)
Human DU145 cells ATP, ADP, UTP, ATP, ADP, UTP, P2 receptors DCFDA fluorescence [21]
(prostate cancer) or 2-MeS-ATP or 2-MeS-ATP: 1 (intracellular ROS)
Rat mesangial cells BzATP BzATP: 1 P2X, DCFDA fluorescence [77]
(intracellular ROS)
Rat microglia BzATP or ATP BzATP or ATP: 1 P2X, SOD-sensitive reduction [78]
of ferricytochrome c;
tetrazolium dye reduction;
translocation of p677*
(NADPH oxidase subunit)
Human ARO cells ATP ATP: 1 P2Y DCFDA fluorescence [20]
(thyroid cancer) (intracellular ROS)
Murine RAW 264.7 BzATP, ATP, UTP, BzATP or ATP: 1 P2X, DCFDA fluorescence [79]

macrophages

or «f3-Methylene-ATP

(intracellular ROS)

* The upward arrow (1) indicates that the specified treatment enhanced the indicated parameter (ROS production), whereas the downward arrow
(}) designates that the specified treatment or inhibitor (e.g., 0ATP or KN-62) attenuated ROS production. SOD superoxide dismutase, DCFDA the
intracellular ROS-reactive indicator dye- 2’,7'-dichlorodihydrofluorescein diacetate.
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the capacity of this receptor system to potentiate LPS-
induced iNOS expression and NO production [39, 65, 66]
(see Table 2).

Stimulation of O3 production by extracellular nucleotides
Extracellular nucleotides and their receptors have an
increasingly appreciated role as mediators of inflammatory
responses [38—40] and have been implicated in modulating
both NO production and the respiratory burst by immune
cells, which is the production of O,, H,O, and other
reactive oxygen intermediates that can contribute to the
killing of microorganisms [3—6, 67]. In this regard, various
P2 purinergic receptor classes are expressed in immune
cells such as macrophages, neutrophils, eosinophils, micor-
glia, and mesangial cells and, as shown in Table 1, several
of these receptor classes have been implicated in the
generation of ROS [20, 21, 38-40, 68-79].

As shown in Table 1, one of the earliest reports
suggesting that extracellular adenine nucleotides can regu-
late ROS production came from studies by Ward et al. [68],
which revealed that the platelet-induced production of O;
by human neutrophils appeared to be mediated by an
extracellular adenine nucleotide. In these studies, Ward et
al. [68] observed that the presence of ATP or ADP
enhanced chemoattractant- (formyl-met-leu-phe, fMLP)
mediated O, production from human neutrophils; whereas
AMP and adenosine attenuated fMLP-stimulated O,
production. Interestingly, when immune complex-stimulat-
ed human neutrophils were treated with either ATP, ADP,
AMP, or adenosine, the cells exhibited increased O;

production. Subsequent studies by these investigators using
both human and rat neutrophils provided further support
that both hydrolyzable and non-hydrolyzable adenine
nucleotides potentiated O, generation [69]. In these studies
by Ward et al. [68, 69], as well as those of Kuhns et al. [70]
and Kuroki and Minankami [71], a common observation
was that adenine nucleotides stimulated a transient Ca'"
flux in neutrophils, but that this was insufficient to promote
O, production when the cells were treated with these
agents alone, i.e., cell exposure to a priming agent such as
fMLP, immune complexes or cytochalasin B was necessary
in order to detect nucleotide-potentiated O, production.
Furthermore, when the nucleotide specificity of these
effects was analyzed, it was reported for rat neutrophils
that only adenine nucleotides enhanced O, generation [69];
whereas with human neutrophils, it was observed that ATP,
UTP, or ITP all potentiated O, generation in primed cells
[70]. Similarly, work by Seifert et al. [72] showed that ATP
and UTP augmented ROS production in fMLP-primed
human neutrophils as well as human promyelocytic HL60
leukemia cells. Although the precise nucleotide receptors
involved in these actions were not defined in any of these
early studies, the pharmacological data indicating that di-
and tri- nucleotides could promote ROS formation are con-
sistent with the involvement of one or more P2 receptors.
More recent investigations by Suh et al. [73] on the
nucleotide regulation of O, production by human neutro-
phils and promyelocytic cells revealed that cell treatment
with the P2X; agonist 2" and 3’-O-(4-benzoyl) benzoyl-ATP
(BzATP) potently promoted sustained Ca’™" currents and

Table 2 Summary of extracellular nucleotide regulation of iNOS expression and NO production by immune cells

LPS-stimulated event and system studied Nucleotide and effect® References
Nitric oxide (NO) production
LPS+ IFNvy-treated murine (CD-1) peritoneal macrophages 2-MeS-ATP: | [83]
LPS-treated RAW 264.7 murine macrophages 0oATP: | [65, 87]
LPS-treated RAW 264.7 murine macrophages ADP: [85]
LPS-treated RAW 264.7 murine macrophages ATP: 1 [86]
LPS-treated RAW 264.7 murine macrophages ATP or BzATP: 1 [66]
LPS-treated rat astrocytes ATP, ADP, AMP, UTP, BzATP, or 2-MeS-ATP: 1 [88]
oATP: |
IFNy-treated BV-2 murine microglia cells ATP, ADP, BZATP, or 2-MeS-ATP: [89]
IL-1B/IFNvy-treated human astrocytes BzATP: 1 [90]
iNOS expression
LPS-treated RAW 264.7 murine macrophages ATP: 1 [84]
LPS+ IFNvy-treated murine (CD-1) peritoneal macrophages 2-MeS-ATP: | [83]
LPS-treated RAW 264.7 murine macrophages PPADS: | oATP: | [87]
LPS-treated RAW 264.7 murine macrophages BzATP: 1 [65, 66]
LPS-treated RAW 264.7 murine macrophages ATP: 1 [88]
IFNy-treated murine BV-2 microglia cells BzATP or ATP: 1 [89]

* The upward arrow (1) indicates that the specified nucleotide enhanced the indicated parameter (NO production or iNOS expression), whereas
the downward arrow (|) designates that the specified nucleotide or inhibitor attenuated the indicated parameter.
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O, production, supporting a role for the nucleotide receptor
P2X; in this process. In these studies, the cells did not
appear to require priming by fMLP or other agents for
BzATP-induced ROS generation, suggesting that the
sustained Ca'" currents and/or other events initiated by
BzATP are sufficient for NADPH oxidase priming and
activation. The different Ca™" currents induced by BzATP/
P2X; compared to that stimulated by the nucleotides used
in earlier studies (ATP and UTP) may account, at least in
part, for the differences in nucleotide priming requirements
for O, production by neutrophils and promyelocytic HL60
cells.

In addition to the influence of extracellular nucleotides
on neutrophil-mediated ROS production, other studies have
revealed that purinergic receptor ligands can promote ROS
generation by other immune cells, including human
eosinophils, mouse RAW 264.7 macrophages, as well as
rat alveolar macrophages, mesangial cells, and microglia
(see Table 1). In the case of rat alveolar macrophages,
Murphy et al. [74] found that the addition of ATP, ADP, and
ATPYyS directly stimulated O, generation by these cells;
whereas the addition of adenosine and AMP did not
promote this activity. These authors determined that ADP
exhibited a potency that was greater-than-or-equal-to that of
ATPyS, and both were more potent than ATP. Interestingly,
the co-addition of optimal concentrations of ADP and ATP
yielded an additive effect, thus prompting these investi-
gators to propose the involvement of at least two P2 type
receptors. These authors also found that the addition of the
nucleotides resulted in sustained Ca"" fluxes and that
removal of extracellular Ca’™" eliminated the sustained
elevation in intracellular Ca”™" and greatly attenuated O
production. These studies provided additional support for
the concept that adenine nucleotides stimulate a Ca' -
dependent respiratory burst.

Additional studies characterizing the relationship be-
tween nucleotide-stimulated Ca™" fluxes and ROS produc-
tion focused on the human eosinophil. In the studies by
Dichman et al. [75] and Ferrari et al. [76], many nucleotides
were found to promote Ca'  mobilization and ROS
production, including ATP, 2-methylthio-ATP (2-MeS-
ATP), ATPyS, BzATP, and UTP. These authors went on
to demonstrate that the P2X; inhibitors periodate oxidized-
adenosine 5'-triphosphate (0ATP) and KN62 attenuated
ATP- and BzATP-stimulated ROS production, suggesting
that P2X,; was at least one of the receptor subtypes
promoting ROS production in eosinophils. Furthermore,
the chelation of extracellular Ca”" was found to attenuate
BzATP stimulated ROS production but had little effect on
UTP stimulated ROS production. Because BzATP is known
to mobilize extracellular Ca™" via the P2X; receptor,
whereas UTP is known to mobilize Ca™" from intracellular
stores via P2Y, and P2Y, receptors, these data again

support the earlier concept that at least two different P2
receptor subtypes can be involved in the process of ROS
generation, specifically a purinoceptor (e.g., P2X;) and a
pyrimidinoceptor (e.g., P2Y, or P2Yy).

More recent studies examining nucleotide specificity in
mediating ROS production have utilized mesangial, micro-
glial, and murine macrophage-like RAW 264.7 cells, and
have also implicated P2X; in this process. In a study by
Harada et al. [77], it was observed that the P2X; agonist,
BzATP promoted ROS generation in a manner that was
concentration-dependent and characteristic of NADPH
oxidase involvement. Furthermore, these studies also
demonstrated that BzATP could induce the production of
ONOQO'". These results are consistent with the idea that
P2X; promotes the production of O, and NO (see below).
In the study by Parvathenani et al. [78], it was also
observed that primary rat microglia stimulated with either
ATP or BzATP released large amounts of O, . In addition,
these authors reported that antagonists of p38 MAP kinase
or phosphatidylinositol 3-kinase attenuated O, production,
which is consistent with the known capacity of p38 MAP
kinase and 3-phosphoinositides to enhance NADPH oxi-
dase assembly and activation [1, 3-6].

Analogous to the aforementioned studies, recent studies
from our laboratory support the idea that the P2X receptor
is involved in ROS generation by murine RAW 264.7
macrophages and demonstrate that this process is augment-
ed by priming the cells with bacterial LPS [79]. In these
studies, treatment of murine RAW 264.7 macrophages with
250 uM BzATP or 3 mM ATP for 30 min resulted in a ~3-
to 4-fold increase in intracellular ROS production as
measured by the fluorescence of the indicator dye 2',7'-
dichlorodihydrofluorescein diacetate (DCFDA). Moreover,
only high ATP doses (3 mM) stimulated detectable ROS
production; whereas low ATP doses (250 uM) did not. This
pharmacology is consistent with that of P2X;-mediated
responses. To assess whether macrophage exposure to
bacterial products could prime nucleotide-mediated ROS
production, cells were treated with 1 pg/ml LPS for 18 hr
and then treated with either buffer, 250 uM BzATP or
3 mM ATP, for 30 min. In these studies, LPS priming alone
caused approximately a 3-fold increase in ROS production;
whereas the treatment of LPS-primed cells with 250 uM
BzATP or 3 mM ATP for 30 min resulted in an additional
~3-fold increase in DCFDA fluorescence above that
detected following incubation with either LPS or nucleotide
alone [79]. These data suggest that oxidative stress is
further increased in LPS-primed macrophages following
stimulation of P2X5. In this regard, LPS has been shown to
promote P2X; function [80], which may account for the
enhanced macrophage responsiveness to P2X; agonists. In
addition, it is possible that LPS potentiation of P2X;-
induced events are mediated by the induction and/or
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activation of enzymes or phox proteins (e.g., gp917"%)
involved in ROS production [3, 27].

Besides nucleotide regulation of O, production by
immune cells, several reports have appeared describing
the capacity of extracellular nucleotides to promote O}
generation by certain tumor cells (see Table 1). For
example, Sauer et al. [21] showed that the activation of
the protein kinase p90Rsk and the enhanced growth of
multicellular human tumor spheroids (DU145 prostate
cancer cells) was dependent on ROS generated following
purinergic receptor stimulation by ATP. In these studies, it
was observed that the generation of ROS was associated
with ATP-induced intracellular Ca*™ fluxes. In addition,
exogenous ATP was found to activate p90Rsk and the
ERK1/2 MAP kinases. Interestingly, the radical scavengers
vitamin E, dimethyl thiourea, and N-acetyl-cysteine did not
inhibit ATP-stimulated ERK 1/2 activation but attenuated
p90Rsk activation, suggesting that ROS production may be
involved in mediating extracellular ATP-dependent p90Rsk
activation. Similarly, Pines et al. [20] also observed that
extracellular ATP stimulated ROS generation in human
ARO (thyroid cancer) cells, and that this process augment-
ed the translocation and activation of the transcription
factor apurinic apyrimidinic endonuclease redox effector
factor-1 (APE1/Ref-1).

Nitric oxide production and iNOS expression Although
extracellular nucleotides alone have been shown to be
capable of inducing O, generation in some cell types such
as macrophages, changes in iNOS expression and NO
production have not been shown to be strongly affected by
cell exposure to nucleotides alone [39, 65, 66]. However,
several reports have appeared regarding the capacity of
extracellular nucleotides to modulate iNOS expression and
NO production in LPS-primed macrophages (see Table 2).
In support of the concept that LPS and nucleotide receptors
cooperate to control macrophage activation, previous
studies have found that extracellular adenine nucleotides
can influence multiple LPS effects. For example, previous
studies have indicated that a macrophage membrane-
associated, LPS-stimulated GTPase activity was potentiated
by ATP, ADP, and ATPyS [81] but not by 2-MeS-ATP.
Subsequent investigations revealed that co-administration
of 2-MeS-ATP to mice reduced LPS-stimulated increases in
serum levels of TNF-x and IL-lx and protected the
animals from endotoxic death [82]. Moreover, studies by
Denlinger et al. [83] revealed that 2-MeS-ATP attenuated
LPS-stimulated NO release from elicited murine peritoneal
macrophages. Conversely, studies from Tonnetti et al. [84]
revealed that cotreatment of RAW 264.7 macrophages with
ATP enhanced LPS-stimulated TNF-oc mRNA and NO
production. Similarly, studies from Denlinger et al. [85],
Sperlagh et al. [86], and Aga et al. [66] observed that ADP,
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ATP, or BZATP potentiated NO release from RAW 264.7
macrophages stimulated by toxic species of LPS. These
investigators proposed that the nucleotide receptor P2X is
critical for influencing LPS signalling, including the
modulation of iNOS expression and NO release. Further-
more, because LPS-primed RAW 264.7 cells also have
increased O, production (see Table 1), it is likely that
P2X;-dependent NO production by these cells would
contribute to increased ONOO™ formation and thus en-
hanced antimicrobial activity.

Additional evidence suggesting that P2 receptors are
involved in LPS-mediated macrophage activation comes
from the work of Hu et al. [87] wherein it was shown that
pretreatment of RAW 264.7 macrophages with P2 receptor
antagonists, oATP or pyridoxal-phosphate-6-azophenyl-
2" 4'-disulfonic acid (PPADS), inhibited LPS-stimulated
NO production and/or iNOS expression (see Table 2) and
attenuated LPS activation of NF-kB and ERK-1/2. In
addition, besides modulating macrophage NO production,
extracellular nucleotides have also been reported to influ-
ence iINOS expression and NO production in rat and human
astrocytes treated with either LPS or IL-1 (see Table 2). For
example, Murakami et al. [88] found that stimulating LPS-
primed rat astrocytes with either ATP, ADP, AMP, UTP,
BzATP, or 2-MeS-ATP augmented NO generation and
shifted the LPS dose response curve by approximately
one log unit to the left. In addition the P2 antagonist, 0ATP,
was observed to block this effect. These investigators also
demonstrated that the magnitude of LPS-induced expres-
sion of INOS by these cells was increased several-fold
following the addition of ATP.

Besides the capacity of extracellular nucleotides to
enhance LPS-induced iNOS expression or NO production
by immune cells, several reports have appeared demon-
strating that nucleotide receptor action is likely important
for potentiating the action of other cytokines that are known
to regulate NO generation. For example, Gendron et al. [89]
observed that extracellular nucleotides augmented IFNvy-
induced NO release from murine BV-2 microglial cells, but
that extracellular nucleotides alone were without effect.
These investigators also found that BZATP, and to a lesser
degree ATP, enhanced IFN-y-induced iNOS expression,
and that ATP, ADP, BzATP, and 2-MeS-ATP, but not UTP,
could potentiate IFN+y-induced NO production, suggesting
that the uridine nucleotide receptors P2Y, and P2Y are not
involved in this response. However, the broadly-reactive
P2X; receptor antagonist oATP, and suramin, a non-
selective P2 receptor antagonist, attenuated the effect of
ATP or BzATP on IFNvy-induced NO production, and the
authors noted that this outcome is consistent with an
involvement of the P2X; receptor. Similarly, Narcisse et
al. [90] reported that BzATP stimulation of IL-13/IFNvy-
treated human astrocytes resulted in enhanced iNOS
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expression and NO production, and these authors also
proposed a role for P2X; in this process.

In sum, P2 receptors have been implicated in controlling
the action of LPS and other cytokines with respect to the
induction of iNOS and the production of NO by immune
cells. Although many studies support a role for P2X5 in this
process, the observation that P2Y receptor ligands (e.g.,
UTP, ADP, and 2-MeS-ATP) can also modulate LPS-
induced signalling and NO/ROS production, together with
the fact that NO production by Mycobacterium tuberculosis
infection in P2X; knockout mice is inhibited by P2

EXTRACELLULAR

blockers, supports the idea that multiple P2X and P2Y
receptors participate in NO generation and LPS/cytokine-
initiated immune responses [39, 82, 91].

Postulated mechanisms of nucleotide regulation of ROS
production

Although extracellular nucleotides have been shown to
regulate O, production and LPS/cytokine-induced NO
generation, the exact molecular mechanisms by which

CYTOPLASM \

Fig. 1 Working model for the involvement of P2X and P2Y recep-
tors in regulating the phagocytic NADPH oxidase complex. In the
resting state, a small portion of gp91”"** (Nox2) and p22°"* are
located at the plasma membrane (although priming with factors such
as LPS or chemoattractants can recruit additional gp917#°* and p22°"**
to the membrane and promote the assembly of the NADPH complex
(see text)). The oxidase function of the gp917"**/p227"** is dormant
until it is complexed with the cytosolic components p677"%*, p47°"%*,
p407"°*, and Racl/2. Stimulus-induced phosphorylation of p47°
results in a conformational change that allows it to be recruited to the
membrane and additional phosphorylation of the p477%*/p40”"**/
p677"°% complex allows for its structural reorganization and assembly
with gp917#°%/p22P"* at the membrane. Also, stimulus-induced
recruitment of activated (GTP-loaded) Rac2 to the membrane
facilitates the assembly of the functional NADPH oxidase complex.
With respect to phox protein phosphorylation, several kinases are
postulated to be important, including PKC isoforms and p38 MAP
kinase. Also, Ca™™ fluxes can promote NADPH oxidase assembly, in
part via Ca™ -dependent activation of kinases (e.g., PKC isoforms).
Moreover, Rac activation may also contribute to phox protein

PKC

phosphorylation via initiating p38 MAP kinase activation. Final
assembly/activation of the NADPH complex requires additional
phosphorylation steps. In terms of P2X and P2Y receptor-associated
activation of NADPH oxidase activity, it is hypothesized that increases
in intracellular Ca™" induced by P2X agonists result in the activation
of protein kinases, such as PKC isoforms, that are essential for the
phosphorylation/activation of NADPH oxidase subunits including
p477"°*  Furthermore, activation of P2X, has been linked to the
stimulation of p38 MAP kinase, which would also be expected to
facilitate the phosphorylation/activation of NADPH oxidase subunits.
In the case of P2Y receptors, many of these receptors can regulate
certain phospholipase C (PLC) isoforms with the subsequent
conversion of phosphoinositide-4,5-bisphosphate (PIP,) to IP; and
diacylglycerol (DAG), which in turn would lead to the elevation of
cytoplasmic free Ca™" and the activation of PKC isoforms, respec-
tively. These events would also be expected to promote the
phosphorylation/activation of NADPH oxidase subunits. Furthermore,
certain P2Y receptors have also been reported to lead to Rac
activation, which in turn would be predicted to facilitate the
phosphorylation, activation and assembly of NADPH oxidase
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these processes occur are currently unclear. However, based
on known nucleotide receptor signalling events, together
with the well recognized events that control iNOS
expression and NADPH oxidase assembly and activation,
there are several plausible mechanisms that can be
proposed and these will be discussed below.

NADPH oxidase As noted above, NADPH oxidase activity
can be regulated by various signalling events such as Ca'"
fluxes, as well as activation of various isoforms of PKC,
p38, and Rac. Interestingly, there is evidence for both P2X
and P2Y receptor mediated activation of NADPH oxidase
activity (see Table 1 and Fig. 1). In the case of the P2X
receptors, such as P2X5, there is clear evidence that the
activation of these receptors allow for the mobilization of
extracellular Ca'", and it has been shown that chelation of
extracellular Ca™" can block ROS generation by P2X
agonists. It is likely that increases in intracellular Ca'™"
induced by P2X agonists results in the activation of certain
kinases, such as PKC isoforms, that are essential for the
phosphorylation/activation of NADPH oxidase subunits
such as p47°"°*. Furthermore, activation of P2X, has been
linked to the stimulation of p38 MAP kinase [66], which
would also be expected to facilitate the phosphorylation/
activation of NADPH oxidase subunits. In the case of P2Y
receptors, these receptors are largely linked to the activation
of phospholipase C with the subsequent generation of 1P,
and diacylglycerol (DAG), which would lead to the
elevation of cytoplasmic free Ca’ and the activation of
PKC isoforms, respectively. These events would also be
expected to promote the phosphorylation/activation of
NADPH oxidase subunits. Furthermore, certain P2Y
receptors, such as P2Y,, have also been reported to lead
to the activation of the small MW G-protein Rac, which in
turn would also be predicted to facilitate the phosphoryla-
tion, activation and assembly of NADPH oxidase as
discussed in the preceding sections.

iNOS expression As noted earlier, iNOS expression is
largely induced by the action of the transcription factors
NF-kB, IRF-1, and STAT-1 [30-34]. Although extracellular
nucleotides alone have not been shown to promote iNOS
expression, they have been shown to potentiate the capacity
of LPS, IL-1 or IFNy to induce iNOS expression in
macrophages, astrocytes and microglia (see Table 2). In this
regard, the cell signalling events associated with the co-
presentation of nucleotides and LPS/cytokines in NO
generation and iNOS expression remain to be clearly
elucidated [26, 32, 54]. However, current evidence supports
a role for nucleotide receptor-mediated activation of NF-xB
and certain MAP kinases such as p38 MAP kinase. For
example, P2X; activation has been associated with in-
creased degradation of the NF-«B inhibitor IkBx and
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enhanced NF-kB DNA binding activity [63-66, 87].
Similarly, activation of MAP kinases such as p38 can
trigger the nuclear accumulation and activity of various
transcription factors, including NF-«kB, NFAT, ATF2, Ets,
and c-Jun [66, 92-95]. In fact, recent data suggest that the
p38 MAP kinase is critical for LPS-stimulated iNOS
expression, NO production, and the activation of NF-kB
DNA-binding activity in macrophages [96, 97]. Although
this increased activation of NF-kB in response to extracel-
lular nucleotides would be expected to enhance iNOS ex-
pression in the presence of factors that also promote IRF-1
and STAT-1 activation (e.g., IFNy/LPS), this nucleotide-
induced NF-kB response in the absence of IRF-1 and
STAT-1 activation is likely to be insufficient for iNOS
induction and would thus explain why nucleotides alone do
not promote iNOS expression and NO generation.

Conclusion

The current observations suggest that multiple P2 receptors
can contribute to ROS production in many cell types, and
that this process is likely important for a diverse array of
inflammatory and anti-microbial activities. These findings
expand the range of biological processes that appear
critically regulated by extracellular nucleotide-mediated
events.
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